燃料电池封装力学及多相微流动
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池是将氢气和氧气的化学能直接转换为电能的电化学装置。由于最终产物只有水,燃料电池是非常环保的发电装置。尤其是质子交换膜燃料电池由于结构紧凑、启动快、效率高、无噪音、工作温度低等优点,不仅被认为是现代环保汽车的最佳动力源,而且是潜艇等需要高隐蔽性能等军事武器装备的理想动力源之一。
     多孔电极是质子交换膜燃料电池的重要部件之一,它由气体扩散层和催化层组成。其中气体扩散层是关键的功能结构材料,是由随机分布的碳纤维或正交编织的碳纤维束组成的高孔隙度材料,厚度在100-300μm左右,具有较高的电导率和渗透性能。气体扩散层的主要功能有:(1)将“燃料”(阳极中的氢气和阴极中的氧气或空气)从外部储气设备输送至催化层,要求具有高透气性;(2)为反应产物(水)和未反应完的气体提供微通道使之快速排出电极,要求具有两相混合流的良好传输性能;(3)与双极板耦合作用提供较低的界面接触电阻;(4)作为电子和热传导的重要介质,提供导电和传热功能;(5)作为催化剂载体,具有很高的比表面积,反应效率高;(6)具有一定的机械强度和刚度,为结构和系统封装提供联结和支撑作用。前五个功能都直接受到结构封装载荷的影响,第六个功能更是直接与封装载荷相关。在燃料电池堆的封装过程中,气体扩散层变形最大,并且封装压力作用下产生了非均匀压缩变形。如果封装压力太大,一方面气体扩散层孔隙度减小,反应效率下降:另一方面可能引起质子交换膜等相关组件的屈服甚至破坏。但是如果封装压力太小,不但界面接触电阻增大严重影响系统效率,而且可能造成电池堆整体结构封装失效或密封失效。然而以前有关质子交换膜燃料电池的相关研究都没有考虑封装压力对电池堆性能的影响,不但使燃料电池堆效率降低,而且常常造成可靠性较低等问题。近年来,关于燃料电池结构封装力学越来越受到关注,研究工作集中在封装压力对气体扩散层多孔材料力学特性、物理特性、微流体传输特性等重要性能的影响。
     本文以质子交换膜燃料电池为研究对象,以数值模拟为主要研究手段,研究了质子交换膜燃料电池在多物理过程耦合作用下的若干力学问题,重点研究了燃料电池在封装力作用下引起的一系列结构性能和物理性能的变化规律。不但从宏观尺度上研究了气体扩散层在封装压力作用下的力学行为、封装载荷对燃料电池性能的影响以及大型电池堆的封装受力和性能分析,而且在微观尺度上研究了气体扩散层中微液滴的形成、长大、聚集和传输过程,进一步揭示了质子交换膜燃料电池的重要反应产物——水的产生与传输原理。从电池堆(尺度在分米量级)、膜电极(毫米量级)、气体扩散层纤维结构(微米量级)三个不同尺度揭示了封装压力对燃料电池系统性能的影响规律和多孔电极内的液态水传输机理。
     本文提出了气体扩散层和双极板间界面的接触电阻率模型和接触电阻的计算方法,建立了一套用于分析多孔电极受到非均匀压缩时燃料电池性能预报方法。首先通过有限单元法研究了在封装压力作用下,双极板和多孔电极之间接触电阻的变化规律、气体扩散层的变形以及孔隙度的分布规律,然后用有限体积法分析反应物和生成物的输运过程。发现燃料电池封装压力导致气体扩散层的变形不但会直接影响界面接触电阻,而且会极大地影响扩散层的孔隙度分布、气体流道的几何尺寸和流动阻力,进而影响系统电压和电阻,并最终影响电池效率和工作可靠性。数值模拟结果显示当接触电阻可以忽略时(理想工况)燃料电池输出功率和极限电流都随着封装压缩力的增加而下降,当考虑接触电阻时(真实工况)存在最优封装压力。研究发现气体扩散层在封装压力作用下的变形显著影响燃料电池性能,尤其在高电流区域更为明显,其影响规律取决于封装压力与接触电阻和传质阻力间的关系。为了研究封装载荷对电池堆性能的影响,本文还提出了电池堆的封装模型,并结合电池堆流场分布模型分析了大型电池堆封装后的性能变化。
     不论是否考虑封装载荷造成的气体扩散层非均匀压缩,几乎所有燃料电池理论分析模型都涉及到多孔介质内两相流传输问题。两相流模型主要用来分析气体扩散层内的液态水平衡问题,也就是通常所说的水管理技术——一项影响燃料电池性能和寿命最关键的技术难题。传统的宏观均匀化结合非饱和流理论的分析方法高效、简单,过去已经被大量使用。但是这种基于宏观尺度的分析方法无法揭示两相流在多孔介质内部传输的本质,因而不能指导气体扩散层微结构设计。因润湿不够产生的质子交换膜失效问题和因排水困难产生的水淹问题长期得不到很好解决,这一问题已成为燃料电池电极设计最棘手的问题之一。本文根据微流体流动的基本理论,采用基于简化模型的解析方法和Lattice Boltzmann方法,对气体扩散层多孔介质内的两相流传输进行了数值模拟,揭示了微液滴在多孔电极中的形成、长大、聚集和传输机理与规律,对研制高性能的多孔电极具有指导意义。
Fuel cells are electrochemical devices to directly convert the chemical energy of hydrogen and oxygen into the electrical energy. Since the final reaction product is only water, fuel cells become one of the most favorable green power sources. Especially the proton exchange membrane (PEM) fuel cell, owing to the compact configuration, rapid start-up, high efficiency, low noise and low operation temperature, it is widely regarded as not only the optimal power source of a modern automobile, but also one of the perfect power sources for some special military weapons and equipment, for example a submarine requiring a high concealment ability.
     Porous electrode consisting of the gas diffusion layer (GDL) and the catalyst layer is one of the essential components of PEM fuel cells. GDL is the important functional structure material with high electronic conductivity and excellent performance of permeability. GDL, with a thickness about 100-300μm, is generally made from stochastic distributed carbon fibers or orthogonal woven of carbon fiber bundles. The main roles of GDL in a PEM fuel cell stack are: (1) to allow the gaseous reactants (fuels: oxygen or air in cathode and hydrogen in anode) to move towards the catalyst layer region, requiring a high permeability; (2) to provide a large number of the micro-paths for the reaction product (liquid water) and non-reaction gaseous reactants to flow towards the flow channel, requiring a good transport ability for the two phase mixed-flow; (3) to give a low interfacial contact resistance and to reduce the Omhic overpotential working together with the bipolar plates; (4) as an important media to transport the electron and thermal; (5)as an important structure to support catalyst, requiring a high specific surface; (6) to connect and support the structure and system, requiring a certain mechanical strength and stiffness. The first five functions are affected directly by the assembly load (pressure) of the structure. The final function is more closely related to the assembly load. In the assembly (packaging) process of a fuel cell stack, the GDL gives a large and inhomogeneous deformation. The mechanical and physical properties of GDL depend strongly on this inhomogeneous compression pressure. When the assembly pressure is unreasonably high, on one hand, the reaction efficiency of the fuel cell will decrease due to the decrease in the porosity of the GDL. On the other hand, the related components of the electrode (i.e., the exchange membrane) may reach the yield state and even is destroyed. However, an unreasonable low assembly pressure will give a high interfacial contact resistance and therefore reduces the system efficiency. It may also cause the failure of either the stack structure or the mechanical seal. However, most of the previous studies have neglected those effects. This not only affects the efficiency of the fuel cell stack but also reduces the reliability of the fuel cell stack. During the past few years, assembly mechanics of fuel cell stack is thus received more and more attention. Most of the studies are focused on the effect of the assembly pressure on the mechanical properties, physical properties and micro fluid transport ability of the GDL.
     Taking the PEM fuel cells as the studied objective and the numerical simulation as the main studying method, this dissertation investigates several mechanics problems of the PEM fuel cells under multiphysical fields, especially the dependence regulation of the structural and physical properties of the fuel cells on the clamping pressure. The effects of assembly pressure on the performance of a single fuel cell and fuel cell stacks are studied in macroscale. On the other hand, the formation, growth and transport process of the micro-droplets is studied in microscale to reveal the fundamental mechanism of liquid water development in the GDL. Therefore, effects of the assembly pressure and the transport mechanisms of liquid water in GDL on the PEM fuel cell performance are studied in three different structure scales, including fuel cell stack (decimeter), electrode (millimeter) and fiber structure in GDL (micrometer).
     This dissertation not only proposes a model of the contact resistance between rib and GDL, but also develops a numerical method to study the effect of the compression deformation of the GDL on the performance of PEM fuel cells. First, finite element method (FEM) is used to analyze the contact resistance between the rib and the GDL, the GDL deformation, and the GDL porosity distribution. Then, finite volume method is used to analyze the transport of the reactants and reaction products. It is found that the GDL compression deformation induced by the clamping pressure strongly affects the contact resistance, the GDL porosity distribution, and the cross section area of the gas channel, which, in turn, influence the over-potential and finally influence the system efficiency. The numerical results show that the fuel cell performance decreases with increasing the compression deformation if the contact resistance is negligible (ideal condition), but there exists an optimal compression deformation if the contact resistance is taken into account (actual condition). This suggests that the compression of GDL has a significant effect on the fuel cell performance, especially in the high current density region. In order to research the effect of the clamping pressure on the performance of fuel cell stacks, a simplified assembly model is proposed.
     No matter whether the inhomogeneous compression of GDL is considered, the numerical simulation of the PEM fuel cells always involves the two-phase flow transport problem in porous media. A two-phase flow model has to be used to analyze the problem of water balance in the electrode, i.e. the water management, one of the key technologies affecting the performance and the lifetime of the PEM fuel cells. The traditional models use the macroscopic approach based on the unsaturated flow theory to investigate liquid water transport in the PEM fuel cells. These methods are easily mastered, but cannot be incorporated the GDL morphology. Therefore they can neither reveal the mechanisms of liquid water transport nor give an enlightening idea for the optimal design of the GDL microstructure. The flooding phenomenon, one of the most important technology problems in the PEM fuel cells, has not been well solved for a long period. Based on the micro-flow principle, this dissertation adopts equivalent capillary model and the Lattice Boltzmann method to study the formation, growth and transport process of the liquid water in the porous media. The simulation result has a guiding significance for high performance porous electrode design.
引文
[1]Mehta V,Cooper J S.Review and analysis of PEM fuel cell design and manufacturing.J.Power Sources,2003,114(1):32-53.
    [2]吴承伟,张伟.新世纪能源之星--燃料电池--希望与挑战.电源技术,2004,28(2):109-115.
    [3]任学佑.质子交换膜燃料电池的研究进展.中国工程科学,2005,7(1):86-94.
    [4]衣宝廉,俞红梅.质子交换膜燃料电池关键材料的现状与展望.电源技术,2003,27(增刊):175-182.
    [5]Nitta I.Inhomogeneous compression of PEMFC gas diffusion layers.Doctoral Dissertation,Helsinki University of Technology.2008.
    [6]Fushinobu K,Takahashi D,Okazakl K.Micromachined metallic thin films for the gas diffusion layer of PEFCs.J.Power Sources,2006,158(2):1240-1245.
    [7]詹姆斯·拉米尼,安德鲁·迪克斯.燃料电池系统--原理·设计·应用.朱红译.北京:科学出版社,2006.
    [8]Weber A Z,Newman J.Coupled thermal and water management in polymer electrolyte fuel cells.J.Electrochem.Soc.,2006,153(12):2205-2214.
    [9]Zawodzinski T A,Radzinski S,Sherman R J et al.Water uptake by and transport through Nafion 117 membranes.J.Electrochem.Soc.,1993,140(4):1041-1047
    [10]Lee W K,Ho C H,Van Zee J W et al.The effects of compression and gas diffusion layers on the performance of a PEM fuel cell.J.Power Sources,1999,84(1):45-51.
    [11]Lim C,Wang C Y.Development of high-power electrodes for a liquid-feed direct methanol fuel cell.J.Power Sources,2003,113(1):145-150.
    [12]Jhonen J,Mikkola M,Lindbergh G.Flooding of gas diffusion backing in PEFCs:physical and electrochemical characterization.J.Electrochem.Soc.,2004,151(8):1152-1161.
    [13]Ge J,Higier A,Liu H T.Effect of gas diffusion layer compression on PEM fuel cell performance.J.Power Sources,2006,159(1):922-927.
    [14]Chang W R,Hwang J J,Weng F B et al.Effect of clamping pressure on the performance of a PEM fuel cell.J.Power Sources,2007,166(1):149-154.
    [15]Nitta I,Hottinen T,Himanen O et al.Inhomogeneous compression of PEMFC gas diffusion layer:Part Ⅱ.Modeling the effect.J.Power Sources,2007,171(1):113-121.
    [16]Antolini E,Passos R R,Ticianelli A.Effects of the carbon powder characteristics in the cathode gas diffusion layer on the performance of polymer electrolyte fuel cells.J.Power Sources,2002,109(2):477-482.
    [17]Ralph T R,Hards G A,Keating J E et al.Low cost electrodes for proton exchange membrane fuel cells.J.Electrochem.Soc.,1997,144(11):3845-3857.
    [18] Wang Y, Wang C Y, Chen K S. Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells. Electroch. Acta, 2007, 52(12):3965-3975.
    [19] Hottinen T, Mikkola M, Mennola T et al. Titanium sinter as gas diffusion backing in PEMFC. J. Power Sources, 2003, 118(1-2):183-188.
    [20] Bevers D, Rogers R, Bradke M V. Examination of the influence of PTFE coating on the properties of carbon paper in polymer electrolyte fuel cells. J. Power Sources, 1996, 63(2):193-201.
    [21] Pasaogullari U, Wang C Y. Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells. J. Electrochem. Soc, 2004, 151(3) :A399-406.
    [22] Nam J H, Kavianv M. Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium. Int. J. Heat Mass Transfer, 2003, 46(24):4595-4611.
    [23] Pasagullari U, Wang C Y. Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells. Electroch. Acta, 2004, 49(25) :4359-4369.
    [24] Holmstrom N, Ihonen J, Lundblad A et al. The influence of the gas diffusion layer on water management in polymer electrolyte fuel cells. Fuel Cells, 2007, 7(4) :306-313.
    [25] Gostick J, Fowler M W, Loannidis M A et al. Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells. J. Power Sources, 2006, 156(2): 375-387.
    [26] Tuber K, Pocza D, Hebling C. Visualization of water buildup in the cathode of a transparent PEM fuel cell. J. Power Sources, 2003, 124(2):403-414.
    [27] Satija R, Jacobson D L, Arif M et al. In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells. J. Power Sources, 2004, 129(2):238-245.
    [28] Turhan A, Heller K, Brenizer J S et al. Quantification of liquid water accumulation and distribution in a polymer electrolyte fuel cell using neutron imaging. J. Power Sources, 2006, 160(2):1195-1203.
    [29] Paganin V A, Ticianellie A, Gonzaleze R. Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. J. Appl. Electrochem., 1996, 26(3): 297-304.
    [30] Giorgi L, Antolini E, Pozio A et al. Infuence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells. Electroch. Acta, 1998, 43(24):3675-3680.
    [31] Antolini E, Passos R R, Ticianelli E A. Effects of the cathode gas diffusion layer characteristics on the performance of polymer electrolyte fuel cells. J. Appl. Electrochem., 2002, 32(4):383-388.
    [32] Moreira J, Ocampo A L, Sebastian P J et al. Infuence of the hydrophobic material content in the gas diffusion electrodes on the performance of a PEM fuel cell. Int. J. Hydrog. Energy, 2003, 28(6): 625-627.
    [33] Williams M V, Beg E, Bonville L J et al. Characterization of gas diffusion layers for PEMFC. J. Electrochem. Soc, 2004, 151(8): A1173-1180.
    [34] Kong C S, Kim D Y, Lee H K et al. Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells. J. Power Sources, 2002, 108(1-2):185-191.
    [35] Pharoah J G, Karan K, Sun W. On effective transport coefficients in PEM fuel cell electrodes in PEM fuel cell electrodes: Anisotropy of the porous transport layers. J. Power Sources, 2006, 161(1):214-224.
    [36] Springer T E, Zawodzinski T A, Gottesfeld S. Polymer electrolyte fuel cell model. J. Electrochem. Soc, 1991, 138(8): 2334-2339.
    [37] Gottesfeld S. , Zawodzinski T. A. , In Advances in Electrochemical Science and Engineering. Wiley and Sons, New York, 1997.
    [38] Wang C Y. Fundamental models for fuel cell engineering. Chem. Rev., 2004, 104(10):4727-4766.
    [39] BrokaK, Ekdunge P., Modelling the PEM fuel cell cathode. J. Appl. Electrochem., 1997, 27 (3) :281-289.
    [40] Haradsson K, Wipke K. Evaluating PEM fuel cell system models. J. Power Sources, 2004, 126(1-2):88-97.
    [41] Adam Z W, Newman J. Modeling transport in polymer-electrolyte fuel cells. Chem. Rev., 2004, 104(10):4679-4726.
    [42] Ticianelli E A, Derouin C R, Redondo A et al. Methods to advance technology of proton exchange membrane fuel cells. J. Electrochem. Soc, 1988, 135(9): 2209-2214.
    [43] Kim J, Lee S M, Srinivasan S et al. Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation. J. Electrochem. Soc, 1995, 142(8): 2670-2674.
    [44] Amphlett J C, Mann R F, Peppley B A et al. A model predicting transient responses of proton exchange membrane fuel cells. J. Power Sources, 1996, 61(1):183-188.
    [45] Mann R F, Amphlett J C, Hooper A I et al. Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. J. Power Sources, 2000, 86 (1-2):173-180.
    [46] Bernardi D M, Verbrugge M W. A mathematical model of the solid-polymer-electrolyte fuel cell. J. Electrochem. Soc, 1992, 139(9): 2477-2490.
    [47] Fuller T F, Newman J. Water and thermal management in solid-polymer electrolyte fuel cells. J. Electrochem. Soc, 1993, 140(8): 1218-1225.
    [48] Nguyen T V, White R E. A water and heat management model for proton exchange membrane fuel cells. J. Electrochem. Soc, 1993, 140(8):2178-2186.
    [49] West A C, Fuller T F. Influence of rib spacing in proton exchange membrane electrode assemblies. J. Appl. Electrochem., 1996, 26(6): 557-565.
    [50] Gurau V, Liu H, Kakac S. Two-dimensional model for proton exchange membrane fuel cells. AIChE J., 1998, 44(11) :2410-2422.
    [51] Gloaguen F, Durand R. Simulations of PEFC cathodes: an effectiveness factor approach. J. Appl. Electrochem., 1997, 27(9):1029-1035.
    [52] Okada T, Xie G, Meeg M. Simulation for water management in membranes for polymer electrolyte fuel cells. Electroch. Acta, 1998, 43(14-15):2141-2155.
    [53] Bussel H, KoeneF, Mallant R. Dynamic model of solid polymer fuel cell water management. J. Power Sources, 1998, 71(1-2):218-222.
    [54] Wang C Y, Gu W B, Liaw B. Micro macroscopic coupled modeling of batteries and fuel cells. J. Electrochem. Soc, 1998, 145(10):3407-3417.
    [55] Weisbrod K R, Grot S A, Vanderborgh N E et al. Through-the-electrode model of a proton exchange membrane fuel cell. Proc. Electrochem. Soc, Pennington, 1995, 95(23): 152-166.
    [56] Thirumulai D, White R E. Mathematical modeling of proton-exchange-membrane fuel cell stacks. J. Electrochem. Soc, 1997, 144(5):1717-1723.
    [57] WohrM, Bolwin K, Schnurnberger W et al. Dynamics modelling and simulation of a polymer membrane fuel cells including mass transport limitation. Int. J. Hydrog. Energy, 1997, 23(3):213-218.
    [58] Yi J S, Nguygen T V. An along-the-channel model for proton exchange membrane fuel cells. J. Electrochem. Soc, 1998, 145(4):1149-1159.
    [59] Xue D, Dong Z. Optimal fuel cell system design considering functional performance and production costs. J. Power Sources, 1998, 76(1):69-80
    [60] Eikerling M, Kornyshev A A. Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells. J. Electroanal. Chem., 1998, 453(1):89-106.
    [61] Virji M B V, Adcock P L, Mitchell P J et al. Effect of operating pressure on the system efficiency of a methane-fuelled solid polymer fuel cell power source. J. Power Sources, 1998, 71(1-2):337-347.
    [62] Lee J H, Lalk T R. Modeling fuel cell stack systems. J. Power Sources, 1998, 73(2): 229-241.
    [63] Yi J S, Nguyen T V. Multicomponent transport in porous electrodes of proton exchange membrane fuel cells using the interdigitated gas distributors. J. Electrochem. Soc, 1999, 146(1):38-45.
    [64] Squadrito G, Maggio G, Passalacqua E et al. An empirical equation for polymer electrolyte fuel cell (PEFC) behaviour. J. Appl. Electrochem., 1999, 29(12): 1449-1455.
    [65] Urn S, Wang C Y, Chen K S. Conputational fluid dynamics modeling of proton exchange fuel cells. J. Electrochem. Soc, 2000, 147(12): 4485-4493.
    [66] Dannenberg K, Ekdunge P, Lindbergh G. Mathematical model of the PEMFC. J. Appl. Electrochem., 2000, 30(12):1377-1387.
    [67] Gurau V, Barbir F, Liu H. An analytical solution of a half-cell model for PEM fuel cell. J. Electrochem. Soc, 2000, 147(7):2468-2477.
    [68] Cownden R, Nahon M, Rosen M A. Modelling and analysis of a solid polymer fuel cell system for transportation applications. Int. J. Hydrog. Energy, 2001, 26(6):615-623.
    [69] Hamelin J, Agbossou K, Laperricre A et al. Dynamic behavior of a PEM fuel cell stack for stationary applications. Int. J. Hydrog. Energy, 2001, 26(6):625-629.
    [70] Maggio G, Recupero V, Pino L. Modeling polymer electrolyte fuel cells: an innovative approach. J. Power Sources, 2001, 101(2):275-286.
    [71] Kulikovsky A A. Quasi three-dimensional modeling of PEM fuel cell: comparison of the catalyst layers performance. Fuel Cells, 2001, 1(2):162-169.
    [72] Wang Z H, Wang C Y, Chen K S. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J. Power Sources, 2001, 94(1):40-50.
    [73] Rowe A, Li XG. Mathematical modeling of proton exchange membrane fuel cells. J. Power Sources, 2001, 102(1-2):82-96.
    [74] You L, Liu H. A two-phase flow and transport model for the cathode of PEM fuel cells. Int. J. Heat Mass Transfer, 2002, 45(11):2277-2287.
    [75] Berning T, Lu D M, Djilai N. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell celt. J. Power Sources, 2002, 106(2):284-294.
    [76] Pisani L, Murgia G, Valentini M et al. A new semi-empirical approach to performance curves of polymer electrolyte fuel cells. J. Power Sources, 2002, 108(1-2):192-203.
    [77] Boettner D, Paganelli G, Guezennec Y et al. Proton exchange membrane fuel cell system model for automotive vehicle simulation and control. J. Energy Res. Technol. Trans. ASME, 2002, 124(1): 20-27.
    [78] Um S, Wang C Y. Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells. J. Power Sources, 2004, 125(1):40-51.
    [79] Nguyen P T, Berning T, Djilali N. Computational model of a PEM fuel cell with serpentine gas flow channels. J. Power Sources, 2004, 130(1-2):149-157.
    [80] Shimpalee S, Greenway S, Spuckler D et al. Predicting water and current distributions in a commercial-size PEMFC. J. Power Sources, 2004, 135(1-2):79-87.
    [81] Hu G L, Fan J R, Chen S et al. Three-dimensional numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields. J. Power Sources, 2004, 136(1):1-9.
    [82] Lin G Y, He W S, Van Nguyen T. Modeling liquid water effects in the gas diffusion and catalyst layers of the cathode of a PEM fuel cell. J. Power Sources, 2004, 151 (12): A1999-2006.
    [83] Pathapati P R, Xue X, Tang J. A new dynamic model for predicting transient phenomena in a PEM fuel cell system. Renewable Energy, 2005, 30(1):1-22.
    [84] Birgersson E, Noponen M, Vynnycky M. Analysis of a two-phase non-isothermal model for a PEFC. J. Electrochem. Soc, 2005, 152(5): A1021-1034.
    [85] Sivertsen B R, Djilali N. CFD-based modelling of proton exchange membrane fuel cells. J. Power Sources, 2005, 141(1):65-78.
    [86] Al-Baghdadi. MARS Modelling of proton exchange membrane fuel cell performance based on semi-empirical equations. Renewable Energy, 2005, 30(10):1587-1599.
    [87] Guvelioglu G H, Stenger H G. Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells. J. Power Sources, 2005, 147(1-2):95-106.
    [88] Litster S, Pharoah J G, McLean G et al. Computational analysis of heat and mass transfer in a micro-structured PEMFC cathode. J. Power Sources, 2006, 156(2): 334-344.
    [89] Shimpalee S, Spuckler D, Van Zee J W. Prediction of transient response for a 25-cm(2) PEM fuel cell. J. Power Sources, 2007, 167(1):130-138.
    [90] Oszcipok M, Hakenjos A, Riemann D et al. Start up and freezing processes in PEM fuel cells. Lucerne Fuel Cell Forum. 2007, 7(2):135-141.
    [91] Transient Multiscale Modeling of Aging Mechanisms in a PEFC Cathode J. Electrochem. Soc, 2007, 154(7):B712-B723.
    [92] Franco A A, Tembely M. Transient multiscale modeling of aging mechanisms in a PEFC cathode. J. Electrochem. Soc, 2007, 154(7):B712-723.
    [93] Adzakpa K P, Ramousse J, Dube Y et al. Transient air cooling thermal modeling of a PEM fuel cell. J. Power Sources, 2008, 179(1):164-176.
    [94] Wang X D, Duan Y Y, Yan W M et al. Effect of humidity of reactants on the cell performance of PEM fuel cells with parallel and interdigitated flow field designs. J. Power Sources, 2008, 176(1):247-258.
    [95] Bi W, Fuller TF. Modeling of PEM fuel cell Pt/C catalyst degradation. J. Power Sources, 2008, 178(1):188-196.
    [96] Baschuk J J, Li X. A comprehensive, consistent and systematic mathematical model of PEM fuel cells. Appl. Energy, 2009, 86(2):181-193.
    [97] Berg P, Promislow K., Pierre J et al. Water Management in PEM Fuel Cells. J. Electrochem. Soc, 2004, 151(3) :A341-A353.
    [98] Chang P, Pierre J, Stumper J et al. Flow distribution in proton exchange membrane fuel cell stacks. J. Power Sources, 2006, 162(1):340-355.
    [99] Chang P, Kim G, Promislow K et al. Reduced dimensional computational models of polymer electrolyte membrane fuel cell stacks. J. Comput. Phys., 2007, 223(2):797-821.
    [100] Wang C Y, Cheng P. A multiphase mixture model for multiphase, multicomponent transport in capillary porous media - I: model development. Int. J. Heat Mass Transfer, 1996, 39(17):3607-3618.
    [101] Wang C Y, Cheng P. Multiphase flow and heat transfer in porous media. Adv. Heat Transfer, 1997, 30:93-196.
    [102]Abriola L M, Pinder G F. A multiphase approach to the modeling of porous media contamination byorganic compounds 1. Equation development. WaterResour. Res., 1985, 21(1): 11-18.
    [103] Parker J C. Multiphase flow and transport in porous media. Rev. Geophys., 1989, 27(3):311-328.
    [104] Wang C Y, Beckermann C. A two-phase mixture model of liquid gas flow and heat transfer capillary porous media-I: formulation. Int. J. Heat Mass Transfer, 1993, 36(11):2747-2758.
    [105] Wang C Y, Beckermann C. A two-phase mixture model of liquid gas flow and heat transfer capillary porous media- II: application to pressure-driven boiling flow adjacent to a vertical heated plate. Int. J. Heat Mass Transfer, 1993, 36(11):2759-2768.
    [106] Wang C Y, Cheng P. A multiphase mixture model for multiphase, multicomponent transport in capillary porous media-II: numerical simulation of the transport of non-aqueous phase liquids in the unsaturated subsurface. Int. J. Heat Mass Transfer, 1996, 39(17):3619-3632.
    [107] He W, Yi J S, Nguyen T V. Two-Phase Flow Model of the. Cathode of PEM Fuel Cells Using Interdigitated Flow Fields. AIChE J., 2000, 46(10):2053-2064.
    [108] Natarajan D, Nguyen T V. A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors. J. Electrochem. Soc, 2001, 148(12):A1324-1335.
    [109] Natarajan D, Nguyen T V. Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell. J. Power Sources, 2003, 115(1):66-80.
    [110] Weber A Z, Darling R M, Newman J. Modeling two-phase behavior in PEFCs. J. Electrochem. Soc, 2004, 151(10) .A1715-1727.
    
    [111] Gostick J T, Ioannidis M A, Fowler M W et al. Pore network modeling of fibrous gas - diffusion layers for polymer electrolyte membrane fuel cells. J. Power Sources, 2007, 173(1):277-290.
    [112]Sinha P K,Wang C Y.Pore-network modeling of liquid water transport in gas diffusion layer of a polymer electrolyte fuel cell.Electroch.ACTA,2007,52(28):7936-7945.
    [113]Sinha P K,Mukherjee P P,Wang C Y.Impact of GDL structure and wettability on water management in polymer electrolyte fuel cells.J.Mater.Chem.,2007,17(30):3089-3103.
    [114]Beavers G,Joseph D D.Boundary conditions at a naturally permeable wall,J.Fluid Mech.,1967,30:197-207.
    [115]Ogedengbe E O B.Thermal management with solid-fluid slip irreversibility treatment in conjugate microdevices,J.Thermodynamics,2009(2009):176495
    [116]吴芝亮.质子交换膜燃料电池接触电阻数学建模与参数分析:(博士学位论文).天津:天津大学,2008.
    [117]Mishra V,Yang F,Pitchumani R.Measurement and prediction of electrical contact resistance between gas diffusion layers and bipolar plate for applications to PEM fuel cells.ASME J.Fuel Cell Sci.Technol.,2004,1(1):2-9.
    [118]Zhang L H,Song H,Wang S X et al.Estimation of contact resistance in proton exchange membrane fuel cells.J.Power Sources,2006,162(2),1165-1171.
    [119]Zhou Y,Lin G,Shih A J et al.A micro-scale model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells.J.Power Sources,2007,163:777-783
    [120]Greewood J A,Williamson J B P.Contact of nominally flat surface.Proc.R.Soc.Lond.,1966,A295:300-319.
    [121]Williamson J B P.Deterioration process in electrical connectors.Proc.4~(th) Int.Conf.On Electrical Contact Phenomena,Swansea,1968:30-34.
    [122]Wang H,Sweikart M A,Turner J A.Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells.J.Power Sources,2003,115(2):243-251.
    [123]Ihonen J,Jaouen F,Lindbergh G et al.A novel polymer electrolyte fuel cell for laboratory investigations and in-situ contact resistance measurements.Electroch.Acta,2001,46(19):2899-2911.
    [124]Majumdar A,Tien C L.Fractal network model for contact conductance.ASME J.Heat Transfer,1991,113(3):516-525.
    [125]Soler J,Hontanon E,Daza L.Electrode permeability and flow-field configuration:influence on the performance of a PEMFC.J.Power Sources,2003,118(1-2):172-178.
    [126]Prasanna M,Ha H Y,Cho E A et al.Influence of cathode gas diffusion media on the performance of the PEMFCs.J.Power Sources,2004,131(1-2):147-154.
    [127]Pharoah J G.On the permeability of gas diffusion media used in PEM fuel cells.J.Power Sources,2005,144(1):77-82.
    [128] Dohle H, Jung R, Kimiaie N et al. Interaction between the diffusion layer and the flow field of polymer electrolyte fuel cells-experiments and simulation studies. J. Power Sources, 2003, 124(2):371-384.
    [129] Roshandel R, Farhanich B, Saievar-Iranizad E. The effects of porosity distribution variation on PEM fuel cell performance. Renewable Energy, 2005, 30(10):1557-1572.
    [130] Kumar A, Reddy R G. Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates. J. Power Sources, 2003, 114(1):54-62.
    [131] Wood D L, Yi J S, Nguyen T V. Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells. Electroch. Acta, 1998, 43 (24): 3795-3809.
    [132] Wang L B, Wakayama N I, Okada T. Numerical simulation of a new water management for PEM fuel cell using magnet particles deposited in the cathode side catalyst layer. Electrochem. Comm., 2002, 4(7):584 - 588.
    [133] Wang L B, Wakayama N I, Okada T. Management of water transport in the cathode of proton exchange membrane fuel cells using permanent magnet particles deposited in the cathode-side catalyst layer. IAIJ intl., 2005, 45(7):1005 - 1013.
    [134] Tang Y, Karlsson A M, Santare M H et al. An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane. Mater. Sci. Eng. A, 2006, 425(1-2):297-304
    [135] Zheng J P. Resistance distribution in electrochemical capacitors with a bipolar structure. J Power Sources, 2004, 137(1):158-162.
    [136] Zienkiewicz OC, Taylor R L. The Finite Element Method, Butterworth-Heinemann, Oxford, UK, 2000.
    [137] Tomadakis M M, Sotirchos S V. Viscous Permeability of Random Fiber Structures: Comparison of Electrical and Diffusional Estimates with Experimental and Analytical Results. AIChE J., 1993, 39(2):397-412.
    [138] Grujicic M, Chittajallu K M. Optimization of the cathode geometry in polymer electrolyte membrane (PEM) fuel cells. Chem. Eng. Sci., 2004, 59(24):5883-5895.
    [139] Rodriguez E, Giacomelli F, Vazquez A. Permeability-Porosity Relationship in RTM for Different Fiberglass and Natural Reinforcements. J. Composite Mater., 2004, 38(3): 259-268.
    [140] Mavko G, Nur A. The effect of a percolation threshold in the Kozeny-Carman relation. Geophysics, 1997, 62(5):1480-1482.
    [141] Chen C Y, Home R N, Fourar M. Experimental study of liquid-gas flow structure effects on relative permeabilities in a fracture. Water Resources Research, 2004, 40(8):W08301. 1- W08301.15.
    [142] Schulz V, Kehrwald D, Wiemann A et al. NAFEMS Seminar: Simulation of Complex Flows, April 2005,
    [143] Markicevic B, Djilali N. Two-scale modeling in porous media: Relative permeability predictions. Physics of Fluids, 2006, 18:033101.
    [144] Lam R C, Kardos J L. The permeabilitiy and compressibility of aligned and cross-plied carbon fiber beds during processing of composites. ANTEC' 89, SPE, New York, 1989:1408-1412.
    [145] Kim B Y, Nam G J, Ryu H S et al. Optimization of filling process in RTM using genetic algorithm. Korea-Australia Rheology J., 2000, 12(1): 83-92.
    [146] EG & G Technical Services, Inc., Fuel Cell Handbook 7~(th), National Energy Technology Laboratory, West Virginia, 2004:2-11-2-18.
    [147]Mench M M, Wang C Y. An introduction to fuel cells and related transport phenomena. Int. J. Trans. Pheno., 2001, 3(3): 151-176.
    [148] Wang Y, Wang C Y. Transient Analysis of Polymer Electrolyte Fuel Cells. Electroch. Acta, 2005, 50(6):1307 - 1315.
    [149] Hsieh S S, Yang S H, Kuo J K et al. Study of operational parameters on the performance of micro PEMFCs with different flow fields. Energy Conversion and Management, 2006, 47(13-14):1868-1878.
    [150] Ihonen J. Development of Characterisation Methods for the Components of the Polymer Electrolyte Fuel Cell. Ph.D. Thesis, Kungliga Tekniska Hogskolan Stockholm, 2003.
    [151] Zhou P, Wu C W. Ma G J. Influence of clamping force on the performance of PEMFCs. J. Power Sources, 2007, 163(2):874-881.
    [152] Cho E A, Jeon U S, Ha H Y et al. Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells. J. Power Sources, 2004, 125(2):178 - 182.
    [153] Davies D P, Adcock P L, Turpin M et al. Stainless steel as a bipolar plate material for solid polymer fuel cells. J. Power Sources, 2000, 86(1-5):237 - 242.
    [154] Lin G, Nguyen T V. A two-dimensional two-phase model of a PEM fuel cell. J. Electrochem. Soc, 2006, 153(2):A372-A382.
    [155] Sun W, Peppley B A, Karan K. An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters. Electroch. Acta, 2005, 50(16-17):3359-3374.
    [156] Bird R B, Stewart W E, Lightfoot E N. Transport Phenomena, John Wiley & Sons, New York, 1960.
    [157] Siegel N P, Ellis M W, Nelson D J et al. Single domain PEMFC model based on agglomerate catalyst geometry. J. Power Sources, 2003, 115(1):81-89.
    [158] Fogler H S. Elements of Chemical Reaction Engineering. Prentice Hall Inc., New Jersey, 1999.
    [159] Pasaogullari U, Wang C Y. Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells. J. Electrochem. Soc, 2004, 151(3):A399-A406.
    [160] Williams M V, Kunz H R, Fenton J M. Influence of convection through gas-diffusion layers on limiting current in PEM FCs using a serpentine flow field. J. Electrochem. Soc, 2004, 151(10) :A1617 - A1627.
    [161]Gurau V, Bluemle M J, Castro E S et al. Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 1. Wettability (internal contact angle to water and surface energy of GDL fibers). J. Power Sources, 2006, 160(2):1156-1162.
    [162] Kulikovsky A A. Two-dimensional numerical modelling of a direct methanol fuel cell. J. Appl. Electrochem., 2000, 30(9):1005-1014.
    [163] Parthasarathy A, Srinivasan S, Appleby A J et al. Pressure Dependence of the Oxygen Reduction Reaction at the Platinum Microelectrode/Nafion~(?) Interface: Electrode Kinetics and Mass Transport. J. Electrochem. Soc, 1992, 139(10): 2856-2862.
    [164] Parthasarathy A, Srinivasan S, Appleby A J et al. Temperature dependence of the electrode kinetics of oxygen reduction at the Platinum/Nafion interface-A microelectrode investigation. J. Electrochem. Soc, 1992, 139(9):2530-2537.
    [165] Kim J, Park J, Kim Y et al. Fuel cell end plates: a review. Int. J. Precision Engineering and Manufacturing, 2008, 9(0:39-46.
    [166] Gostick J T, Fowler M W, Ioannidis M A et al. Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells. J. Power Sources, 2006 156(2):375-387
    [167] Cheung P, Fairweather J D, Schwartz D T, Characterization of internal wetting in polymer electrolyte membrane gas diffusion layers. J. Power Sources, 2009, 187(2):487-492.
    [168] Basu S, Wang C Y, Chen K S, Phase change in a polymer electrolyte fuel cell, J. Electrochem. Soc, 2009, 156(6):B748-B756.
    [169] Hartnig C, Manke I, Kuhn R et al. Cross-sectional insight in the water evolution and transport in polymer electrolyte fuel cells, Applied Physics Letters, 2008, 92:134106.
    [170] Hartnig C, Manke I, Kuhn R et al. High-resolution in-plane investigation of the water evolution and transport in PEM fuel cells. J. Power Sources, 2009, 188(2):468-474.
    [171] Ziegler C, Gerteisen D, Validity of two-phase polymer electrolyte membrane fuel ceJl models with respect to the gas diffusion layer. J. Power Sources, 2009, 188(1): 184-191.
    [172] Zhang F Y, Yang X G, Wang C Y, Liquid water removal from a polymer electrolyte fuel cell. J. Electrochem. Soc, 2006, 153(2) :A225-A232.
    [173]Bazylak A,Liquid water visualization in PEM fuel cells:A review.Int.J.Hydrog.Energy.2009,34(1):3845-3857.
    [174]Mathias M F,Handbook of FuelCells-Fundamentals,Technology and Applications,John Wiley & Sons,Ltd.,New York,2003.
    [175]Dicks A L,The role of carbon in fuel cells.J.Power Sources,2006,156(2):128-141.
    [176]Lim C,Wang C Y,Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell.Etectroch.Acta,2004,49(24):4149-4156.
    [177]Sinha P K,Wang C Y,Liquid water transport in a mixed-wet gas diffusion layer of a polymer electrolyte fuel cell.Chemical Engineering Science,2008,63(4):1081-1091.
    [178]Benziger J,Nehlsen J,Blackwell D et al.Water flow in the gas diffusion layer of PEM fuel cells.J.Membr.Sci.,2005,261(1-2):98-106.
    [179]Lee H,Park J,Kim D,Lee T.A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC.J.Power Sources,2004,131(1-2):200-206.
    [180]Dutta S,Shimpalee S,Van Zee J W.Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell.Int.J.Heat Mass Transf.,2001,44(11):2029-2042.
    [181]Park J,Li X.An experimental and numerical investigation on the cross flow through gas diffusion layer in a PEM fuel cell with a serpentine flow channel.J.Power Sources,2007,163(2):853-863.
    [182]Lee W K,Van Zee J W.Characterization of Permeability Changes and Hydrophobic Nature of GDL,and Correlation with PEMFC Performance.Proc.Fuel Cell Seminar,San Antinio,Texas,2004.
    [183]Bear J,Dynamics of fluids in porous media.Dover publications,inc.,New york,1988.
    [184]何雅玲,王勇,李庆.格子Boltzmann方法的理论及应用.北京:科学出版社,2009.
    [185]郭照立,郑楚光.格子Boltzmann方法的原理及应用.北京:科学出版社,2009.
    [186]钱跃竑,dHumieres D,Pomeau Y et al.格子气流体动力学及其最新进展.力学与实践,1990,12(1):7-16.
    [187]Park J,Matsubara M,Li X.Application of lattice Boltzmann method to a micro-scale flow simulation in the porous electrode of a PEM fuel cell.J.Power Sources,173(1)2007 404-414.
    [188]Niu X D,Munekata T,Hyodo S A et al.An investigation of water-gas transport processes in the gas-diffusion-layer.J.power sources,2007,172(2):542-552.
    [189]Koido T,Furusawa T,Moriyama K.An approach to modeling two-phase transport in the gas diffusion layer of a proton exchange membrane fuel cell.J.power sources,2008,175(1):127-136.;
    [190]Park J,Li X.Multi-phase micro-scale flow simulation in the electrodes of a PEM Fuel Cell by Lattice Boltzmann Method.J.power sources,2008,178(1):248-257.
    [191] Shan X, Chen H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E, 1994, 49(4):2941-2948.
    [192] 陈黎,栾辉宝,陶文铨.PEMFC极催化层的LBM模拟.电源技术,2009,33(9):794-797.
    [193] Yuan P, Schaefer L. General solution of the diffusion equation with a nonlocal diffusive term and a linear force term. Phys. Fluids, 2006, 18(4):042101.
    [194] Martys N S, Chen H. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E, 1996, 53(1):743-750.
    [195] Szekely J, Neumann A W, Chuang Y K. The rate of capillary penetration and the applicability of the washburn equation. J. Colloid Interface Sci. 1971, 35:273-283.
    [196] Batten Jr. G L. Liquid imbibition in capillaries and packed beds. J. Colloid Interface Sci., 1984, 102:513-18.
    [197] Chen Y, Teng S L, Shukuwa S et al. Lattice Boltzmann simulation of two-phase fluid flows. Int. J. Mod. Phys. C, 1998, 9:1383-1391.
    [198] Inamuro T, Ogata T, Ogino F. Lattice Boltzmann simulation of bubble flows. Comput. Sci.-ICCS2003, 2003, 2657:1015-1023.
    [199] Sankaranarayanan K, Shan X, Kevrekidis I G et al. Analysis of drag and virtual mass forces in bubbly suspensions using an implicit formulation of the Lattice Boltzmann method. J. Fluid Mech., 2002, 452:61-96.
    [200] Inamuro T, Ogata T, Tajima S et al. A lattice Boltzmann method for incompressible two-phase flows with large density differences. J. Comput. Phys., 2004, 198:628-44.
    [201] Lee T, Lin C L. A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J. Comput. Phys., 2005, 206:16-47.
    [202] Schaffer E, Wong P. Contact line dynamics near the pinning threshold: A capillary rise and fall experiment. Phys. Rev. E, 2000, 61 (5A):5257-5277.
    [203] Raphael E, Gennes P G. Dynamics of wetting with nonideal surfaces. The single defect problem. J. Chem. Phys., 1989, 90:7577-7584.
    [204] Yan X Q, Hou M, Zhang H F et al., Performance of PEMFC stack using expanded graphite bipolar plates. J. Power Sources, 2006, 160(1): 252-257.
    [205] Kumbur E C, Sharp K Y, Mench M M, On the effectiveness of Leverett approach for describing the water transport in fuel cell diffusion media. J. Power Sources, 2007, 168(2): 356-368.
    
    [206] Borup R, Inbody M, Davey J et al., DOE Hydrogen Program, FY, Progress Report, 2004.
    [207] Chen J H, Hsieh W H. Electrowetting-induced capillary flow in a parallel-plate channel. J. Colloid Interface Sci., 2006, 296(1):276-283.
    [208] Yang X G, Zhang F Y, Lubawy A L et al. visualization of liauid water transport in a PEFC. Electrochem. Solid-State Lett., 2004, 7(11):408-411.
    [209] Navier C L M H. Memoire sur les lois du mouvement des fluids. Memoires de l' Academie Royale des Sciences de l'Institut de France, 1823, 6:389-440.
    [210] Maxwell J C. On stresses in rarefied gased arising from inequalities of temperature. Philosophical Transactiors of the Royal Society, 1879, 170:231-256.
    [211] Park S B, Kim S, Park Y, Oh M. Fabrication of GDL microporous layer using PVDF for PEMFCs. J. Phys. : Conference Series, 2009, 165:012046.
    [212] Chou Y, Siao Z Y, Chen Y F et al. Water permeation analysis on gas diffusion layers of proton exchange membrane fuel cells for Teflon-coating annotation. J. Power Sources, 2010, 195(2):536-540.
    [213] Craig V S J, Neto C, Williams D R M. Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys. Rev. Lett., 2001, 87:054504.
    [214] Zhu Y X, Granick S. Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys. Rev. Lett., 2001, 87:096105.
    [215] Sanchez-Reyes J, Archer L A. Interfacial slip violations in polymer solutions: Role of microscale surface roughness. Langmuir, 2003, 19(8):3304-3312.
    [216] Thompson P A, Troian S W. A general boundary condition for liquid flow at solid surfaces. Nature, 1997, 389:360-362.
    [217]Bair S, Winer W O. Shear strength measurements of lubricats at high pressure. ASME, J. Lubri. Technol., 1979, 101(7):251-256.
    [218] Granick S, Zhu Y, Lee H. Slippery questions about complex fluids flowing past solids. Nature Mater., 2003, 2(4):221-227.
    [219] Ge S, Wang C Y. Liquid water formation and transport in the PEFC anode. J. Electrochem. Soc, 2007, 154(10) :B998-B1005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700