基于滚环DNA扩增和纳米金的生物传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来新的分子生物学技术不断涌现,并在科学研究和实际应用中得到不断的发展和完善,使生物分子检测的灵敏度和特异性都得到很大的提高。但随着疾病诊断水平的不断提高和科学研究的不断深入,对生物分子检测方法的要求也越来越高。因此,我们迫切需要开发一些高灵敏性、高特异性、高通量性和高准确性的定性或定量方法,以便更好地满足研究和实际应用的需要。针对上述问题,本论文在蛋白质和核酸的分析和检测方面发展了一系列新的高灵敏性的生物传感技术,并通过分析实际样品以及对照经典的检测方法,初步验证了这些技术的可行性、可靠性及准确性。
     (1)核酸适体,是通过体外筛选技术从寡核苷酸库中随机筛选出的一段短的与特定的目标分子具有高亲和力和高特异性的寡核苷酸探针。在第2章,我们利用核酸适体可与抗体相媲美的特点,基于滚环DNA扩增技术(RCA),构建了一种新型的高灵敏性的检测蛋白质的电化学适体传感器,并实现了对模型蛋白—血小板源生长因子B链(PDGF-BB)的高灵敏性和特异性检测。该方法首先采用巯基乙胺自组装技术和戊二醛交联技术将PDGF-BB抗体固定在金电极表面,然后通过抗体-抗原-核酸适体免疫夹心反应,将带有RCA引物的PDGF-BB核酸适体连接在金电极上。该适体-引物探针在连接反应组分和滚环扩增反应组分中对环形DNA模板进行滚环放大反应,接着利用生物素标记的探针捕获扩增产物,再通过生物素-亲和素特异性结合将碱性磷酸酶标记的链霉亲和素捕捉在金电极上,结合酶的生物催化银沉积反应放大分析信号,实现对人血清中PDGF-BB的检测,动态响应范围宽达4个数量级,从10 fM到100 pM,检测下限可达10 fM,比文献所报道的高3个数量级。
     (2)上章构建的核酸适体-RCA电化学免疫传感器实现了对模型蛋白PDGF-BB的高灵敏性检测,但是到目前为止,已经筛选出的核酸适体种类有限,不能满足大量蛋白质检测的需要,且核酸适体在蛋白质表面的非特异性吸附会产生一定的背景干扰。第3章中,我们在此实验的基础上,利用脂质体包埋DNA技术和滚环扩增技术,构建了一种超灵敏性的免疫分析方法用于前列腺特异性抗原(PSA)的检测。首先将PSA抗体吸附在微孔板上,免疫夹心反应后,将表面包被了PSA抗体,里面包埋了RCA引物的脂质体固定在微孔板上,然后溶解脂质体,释放其内包埋的RCA引物。接着加入滚环扩增反应组分进行RCA反应,随后加入生物素标记的探针和荧光素标记的探针与扩增产物杂交,再用亲和素标记的微珠捕获反应产物,最后检测荧光信号。由于该方法结合了脂质体包埋引物探针和RCA两步放大反应,分析的灵敏度得到了显著的提高,响应动态范围从0.1 fg/mL到0.1ng/mL,检测下限为0.08 fg/mL。
     (3)第4章中,鉴于RCA技术的高灵敏度,结合核酸外切酶I(Exo I)末端保护技术,发展了一种高灵敏性的检测模型分析物—叶酸结合蛋白的光学生物传感技术。该方法利用叶酸与叶酸结合蛋白的特异性结合,保护叶酸标记的单链DNA不被Exo I水解,作为后续RCA反应的成环模板。当DNA链完整存在时,引发滚环DNA扩增反应,随后扩增产物与Taqman探针杂交,在核酸外切酶III(Exo III)作用下引发酶切循环放大反应,产生荧光信号。结果表明,该方法可实现对叶酸结合蛋白的高灵敏性检测,响应动态范围从1 pM到1 nM,检测下限为1 pM。
     (4)第5章中,我们在上章末端保护技术的基础上,基于核酸外切酶III末端保护技术和纳米金凝聚变色效应,提出了一种新型、快速、简便、灵敏的比色传感策略用于序列特异性DNA结合蛋白的检测。首先是包含有目标结合蛋白的结合序列的互补金标探针杂交形成纳米金团聚体,溶液呈紫色。目标结合蛋白存在时,与其特定结合序列的特异性结合,保护纳米金团聚体不被Exo III水解,溶液保持紫色不变。当目标结合蛋白不存在时,Exo III水解DNA双链,释放纳米金团聚体,纳米金呈单颗粒分散状态,溶液变红色。结果表明,序列特异性DNA结合蛋白在0~120 nM范围内呈良好的线性关系,检测下限为10 nM。
     (5)第6章中,建立了一种基于纳米金凝聚变色效应的检测T4多聚核苷酸激酶(T4 PNK)活性的新方法。鉴于寡核苷酸链标记的纳米金能够稳定存在于一定浓度的盐离子缓冲溶液中,利用5′羟基修饰的分子信标作为金标探针,有T4 PNK存在时,金标探针5′羟基磷酸化,λ核酸外切酶被激活,酶切分子信标茎部双链DNA片段,接着在RecJ核酸外切酶作用下降解纳米金上修饰的残余的单链DNA,使得纳米金在一定盐离子浓度下团聚,溶液变成蓝紫色。结果表明,T4 PNK激酶的检
     测的线性响应范围为0~4 U/mL,检测下限为0.24 U/mL。
     (6)第7章中,提出了一种基于胞嘧啶-银离子-胞嘧啶特定结构(C-Ag~+-C)的非标记纳米金比色传感技术用于检测银离子(Ag~+)。无Ag~+存在时,富C链吸附在纳米金表面,增加了纳米金表面的负电荷,从而增加了它们的排斥力,在一定盐离子浓度下保护纳米金不团聚,溶液呈红色。当Ag~+存在时,富C链通过C-Ag~+-C配对形成准双链结构,不能吸附在纳米金表面,没有DNA链保护的纳米金颗粒在一定盐离子浓度下发生团聚,颜色由红色变成蓝色。结果表明,Ag~+浓度在0.5~6μM浓度范围内呈良好的线性关系,检测下限为0.1μM。同时,该方法还具有高的选择性和特异性,且简单、快速、成本低、便于普及。
In recent years, a seris of new biology techniques have been developed as a powerful platform for sensitively detection of proteins and DNA. However, with the development of the scientific research, greater sensitivity and specificity techniques are required. Therefore, the development of the high sensitivity, selectivity and accuracy strategies, as well as proved a high performance platform for proteins and DNA assays are of paramount importance for biomedical research and clinical diagnosis. In this thesis, a series of novel biosensing strategies were developed for ultrasensitive detection of proteins and DNA. The proposed methods were implemented in the analysis of realistic biological samples and were in good agreement with the classical methods. These results primarily proved that the proposed technology was feasible, reliable and accurate. The detailed content was described as follows:
     (1) Aptamers are nucleic acids (DNA or RNA) that selectively bind to low-molecular-weight organic or inorganic substrates or to macromolecules such as proteins. In chapter 2, based on rolling circle amplification, a novel versatile electrochemical aptasensor was developed for the ultrasensitive detection of model analyte PDGF-BB. First, PDGF-BB antibody was immobilized on the electrode surface via the SAM of cysteamine and the bifunctional linker of glutaraldehyde and then used to capture the protein target. The surface-captured protein was then sandwiched by an aptamer-primer complex. The aptamer-primer sequence mediated an in situ RCA reaction that generated hundreds of copies of a circular DNA template. Detection of the amplified copies via enzymatic silver deposition then allowed enormous sensitivity enhancement in the assay of target protein. In conclusion, the presented method exhibited a linear correlation to target concentration through a 4-decade range of 10 fM~100 pM, and a detection limit as low as 10 fM. The wide dynamic range of the presented sensor was about 3 orders of magnitude larger than those shown previously.
     (2) We have reported an aptamer-based immuno-RCA assay for protein detection in chapter 2. However, aptamers for most important protein biomarkers are currently unavailable, and like the DNA-antibody conjugates, aptamers are also exposed to the risk of electrostatic adsorption on proteins as well as chemical or enzymatic degradation. In chapter 3, we reported for the first time a DNA encapsulating liposome based RCA immunoassay, liposome-RCA immunoassay, as an alternative strategy. This technique utilized antibody-modified liposomes with DNA prime probes encapsulated as the detection reagent in the sandwiched immunoassays. The DNA prime probes were released from liposomes and then initiated a linear RCA reaction, generating a long tandem repeated sequences that could be selectively and sensitively detected by a microbead-based fluorescence assay. The developed technique offered very high sensitivity due to primary amplification via releasing numerous DNA primers from a liposome followed by a secondary RCA amplification. The results revealed that the technique exhibited a dynamic response to PSA over a 6-decade concentration range from 0.1 fg/mL to 0.1 ng/mL with a limit of detection as low as 0.08 fg/mL and a high dose-response sensitivity.
     (3) In chapter 4, based on rolling circle amplification and terminal protection assay, a novel photochemical biosensing strategy was developed for the ultrasensitive detection of model analyte folate receptor (FR). This assay was based on our new finding that single-stranded DNA (ssDNA) terminally tethered to a small molecule could be protected from the degradation by exonuclease I (Exo I) when the small molecule moiety was bound to its protein target. The small-molecule-linked protected DNA was served as a template of the ligation probe to trigger the rolling circle amplification. And then generated a long tandem repeated sequences that could be selectively and sensitively detected by an exonuclease III-aided oligonucleotide recycling assay. This strategy was demonstrated for quantitative analysis of the interaction of folate with a tumor biomarker of folate receptor. And quasilinear correlation was obtained in the concentration range from 1 pM to 1 nM with a readily achieved detection limit of 1 pM.
     (4) In chapter 5, a novel exonuclease III (Exo III) protection-based colorimetric biosensing strategy was developed for rapid, sensitive, and visual detection of sequence-specific DNAbinding proteins. This strategy relied on the protection of DNA-cross-linked gold nanoparticle (AuNP) aggregates from Exo III-mediated digestion by specific interactions of target proteins with their binding sequences. In the absence of the DNA-binding protein, Exo III will stepwisely and nonprocessively digested the double-stranded DNA. This caused the dissociation of the AuNP aggregates into dispersed AuNPs with a concomitant purple-to-red color change for the solution. In the presence of the DNA-binding protein, tight binding of the proteins to the consensus sequences induced steric hindrance to Exo III in approaching the 3′-termini, which protected the antisense strands from Exo III-mediated digestion. This retained stable AuNP aggregates in the solution with no color change obtained. The results revealed that the method allowed a specific, simple, and quantitative assay of the target protein with a linear response range from 0 to 120 nM and a detection limit of 10 nM.
     (5) In chapter 6, we described a novel colorimetric assay method for detecting of the activity and kinetics of T4 polynucleotide kinase (PNK) by using of molecular beacons-modified gold nanoparticles (AuNPs) coupled withλexonuclease (λexo) and recj exonuclease (recj exo) cleavage. The assay was performed at salt concentrations so that DNA-modified AuNPs were barely stabilized by the electrostatic and steric stabilization. The 5′-hydroxyl group of the molecular beacons modified AuNPs was first phosphorylated in the presence of T4 PNK, then initiatedλexo and recj exo cleavage. Enzymatic cleavage of DNA chains on the AuNP surface destabilized the AuNPs, resulting in a rapid aggregation and a red-to-purple color change. In conclusion, the presented method exhibited a linear correlation to target concentration with a linear range of 0~4 U/mL and a detection limit of 0.24 U/mL.
     (6) In chapter 6, a rapid, simple colorimetric sensor with unmodified AuNPs for highly sensitive and selective detection of silver ion was developed. It was based on the specific recognition property of Ag~+ with a cytosine-cytosine mismatched base pair. In the absence of Ag~+, single strand oligonucleotide adsorbed on the surface of AuNPs and protected them from aggregation with the addition of high concentration salt. In contrast, the presence of Ag~+ drived the formation of C-Ag~+-C duplex structure and enabled the oligonucleotide to be desorbed from the surface of the AuNPs, resulting in the aggregation of AuNPs. The results revealed that the method allowed a specific, simple, and rapid assay of Ag~+ with a linear response range from 0.5μM to 6μM and a detection limit of 0.1μM.
引文
[1] Hedenmo M, Narváez A, Domínguez E, et al. Improved mediated tyrosinase amperometric enzyme electrode. Journal of Electroanalytical Chemistry, 1997, 425(1): 1-11
    [2] Wang J. Miniaturized DNA biosensor for detecting cryptosporidium in water samples. Technical completion report, 2000, 26(3): 1-11
    [3]赵涛,郝红,管晓玉.生物传感器研究及应用进展.化学研究与应用, 2009, 21(11): 1481-1485
    [4]佘俐莹,张认成,徐志保,等.生物传感器概述.仪器仪表用户, 2007, 14(01): 3-4
    [5] Kaláb T, Skládal P. Disposable multichannel immunosensors for 2,4-dichlorophenoxyacetic acid using acetylcholinesterase as an enzyme label. Electroanalysis, 1997, 9(2): 293-297
    [6] Trosok S P, Driscoll B T, Luong J H T. Mediated microbial biosensor using a novel yeast strain for wastewater BOD measurement. Applied Microbiology and Biotechnology, 2001, 56(3-4): 550-554
    [7] Sergeyeva T A, Soldatkin A P, Achkov A E, et al.β-Lactamase label-based potentiometric biosensor forα-2 interferon detection. Analytica Chimica Acta, 1999, 390(1-3): 78-81
    [8] Toppozada A R, Wright J, Eldefrawi A T. Evaluation of a fiber optic immunosensor for quantitating cocaine in coca. Biosensors and Bioelectronics, 1997, 12(2): 113-124
    [9]覃柳,刘仲明,邹小勇.电化学生物传感器研究进展.中国医学物理学杂志, 2007, 24(1): 60-62
    [10]施咏军,杨斌,赵亚丽.生物传感器的现状及发展前景.医疗装备, 2005, 18(11): 8-9
    [11]饶家声.生物传感器的研究现状和发展趋势.湖南冶金技术学院学报, 2007, 7(2): 21-23
    [12]司士辉.生物传感器.北京:化学工业出版社, 2003, 7-9
    [13] Lizardi P M, Huang X, Zhu Z, et al. Mutation detection and single-molecule counting using isothermal rolling circle amplification. Nature Genetics, 1998, 19(3): 225-232
    [14] Zhang D Y, Brandwein M, Hsuih T C, et al. Amplification of target-specific, ligation-dependent circular probe. Gene, 1998, 211(2): 277-285
    [15] Yuriy G, Jason S, Arumugham R, et al. Rolling circle amplification a new approach to increase sensitivity for immunohistochemistry and flow cytometry. American Journal of Pathology, 2001, 159(1): 63-69
    [16] Beyer S, Nickels P, Simmel F C. Periodic DNA nanotemplates synthesized by rolling circle amplification. Nano Letters, 2005, 5(4): 719-722
    [17] Nilsson M, Malmgren H. Samiotaki M, et a1. Padlock probes: Circularizing oligonucleotides for localized DNA detection. Science, 1994, 265(5181): 2085-2088
    [18] Szemes M, Bonants P, Weeixh M, et a1. Diagnostic application of padlock probes-multiplex detection of plant pathogens using universal microarrays. Nucleic Acids Research, 2005, 33(8): 701-704
    [19] Baner J, Nilsson M, Mendel H M, et al. Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Research, 1998, 26(22): 5073-5078
    [20] Kuhn H, Demidov V V, Frank-Kamenetskii M D. Topological links between duplex DNA and a circular DNA single strand. Angewandte Chemie International Edition, 1999, 38(10): 1446-1449
    [21] Kuhn H, Demidov V V, Frank-Kamenetskii M D. Rolling circle amplification under topological constraints. Nucleic Acids Research, 2002, 30(2): 574-580
    [22] Nallur G, Luo C, Fang L, et a1. Signal amplification by rolling circle amplification on DNA Microarrays. Nucleic Acids Research, 2001, 29(23): e118
    [23] Schweitzer B, Roberts S, Grimwade B, et al. Multiplexed protein profiling on microarrays by rolling circle amplification. Nature biotechnology, 2002, 20(4): 359-365
    [24] Osama A Alsmadi, Carole J Bornarth, Wanmin Song, et al. High accuracy genotyping directly from genomic DNA using a rolling circle amplification based assay. BMC Genomics, 2003, 4(1): 4-21
    [25] Barry S, Steven W, Jeremy L, et al. Immunoassays with rolling circle DNA amplification: A versatile platform for ultrasensitive antigen detection. Proceedings of the National Academy of Sciences, 2000, 97(18): 10113-10119
    [26] Kingsmore S F, Patel D D. Multiplexed protein profiling on antibody-based microarrays by rolling circle amplification. Current Opinion in Biotechnology, 2003, 14(1): 74-81
    [27] Shao W, Zhou Z, Laroche I, et al. Optimization of rolling circle amplified protein microarrays for multiplexed protein profiling. Journal of Biotechnology, 2003, 2003(5): 299-307
    [28] Liu D Y, Daubendiek S L, Zillman M A, et al. Rolling circle DNA synthesis: Small circular oligonucleotides as efficient templates for DNA polymerases. Journal of the American Chemical Society, 1996, 118(7): 1587-1594
    [29] Lage J M, Leamon J H, Pejovic T. Whole genome analysis of genetic alterations in small DNA samples using multiple displacement amplification and array-CCH. Genome Research, 2003, 13(2): 294-307
    [30] Thomas D, Nardone G, Randall S. Amplification of padlock probes for DNA diagnostics by cascade rolling circle amplification or the polymerase chain reaction. Archives of Pathology & Laboratory Medicine, 1999, 123(12): 1170-1176
    [31] Hafner G J, Yang L C, Staggord W M R, et al. Isothermal amplification and multimerization of DNA by Bst DNA polymerase. Biotechniqueas, 2001, 30(4): 852-856
    [32] Dean F B, Hosono S, Fang L, et al. Comprehensive human genome amplification using multiple displacement amplification. Proceedings of the National Academy of Sciences, 2002, 99(8): 5261-5266
    [33] Reagin M J, Giesler T L, Mamone J A, et al. TempliPhi: A sequencing template preparation procedure that eliminates overnight cultures and DNA purification. Journal of Biomolecular Techniques, 2003, 14(2): 143-148
    [34] Nelson J R, Cai Y C, Giesler T L, et al. TempliPhi, phi29 DNA polymerase based rolling circle amplification of templates for DNA sequencing. Biotechniques, 2002, 32(1): 44-47
    [35] Wu H C, Shieh J, Wright D J, et al. DNA sequencing using rolling circle amplification and precision glass syringes in a high-throughput liquid handling system. Biotechniques, 2003, 34(1): 204-207
    [36] Simison W B, Lindberg D R, Boore J L. Rolling circle amplification of metazoan mitochondrial genomes. Molecular Phylogenetics and Evolution, 2006, 39(2): 562-567
    [37] Landegren U, Kaiser R, Sanders J, et a1. A ligase-mediated gene detection technique. Science, 1988, 241(4869): 1077-1080
    [38] Qi X, Bakht S, Devos K M, et al. L-RCA (ligation- rolling circle amplification): A general method for genotyping of single nucleotide polymorphisms (SNPs).Nucleic Acids Research, 2001, 29(22): e116
    [39] Faruqi A F, Hosono S, Driscoll M D, et al. High-through-put genotyping of single nucleotide polymorphisms with rolling circle amplification. BMC Genomics, 2001, 2(1): 4
    [40] Qian X, Lloyd R V. Recent developments in signal amplification methods for in situ hybridization. Diagnostic Molecular Pathology, 2003, 12(1): 1-13
    [41] Bock L C, Griffin L C, Latham J A, et al. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 1992, 355(6360): 564-566
    [42] Li J, Young C S, Lizardi P M, et al. In situ detection of specific DNA double strand breaks using rolling circle amplification. Cell Cycle, 2005, 4(12): 1767-1773
    [43] Christian A T, Pattee M S, Attix C M, et al. Detection of DNA point mutations and mRNA expression levels by rolling circle amplification in individual cells. Proceedings of the National Academy of Sciences, 2001, 98(25): 14238-14243
    [44] Baner J, Nilsson M, Isaksgon A, et a1. More keys to padlock probes: Mechanisms for high-throughput nucleic acid analysis. Current Opinion in Biotechnology, 2001, 12(1): 11-15
    [45] Murakami T, Sumaoka1 J, Komiyama1 M. Sensitive isothermal detection of nucleic-acid sequence by primer generation-rolling circle amplification. Nucleic Acids Research, 2009, 37(3): e19
    [46] Niemeyer C M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angewandte Chemie International Edition, 2001, 40(22): 4128-4158
    [47]石士考.纳米材料的特性及应用.大学化学, 2001, 16(2): 39-42
    [48]吴鹰飞,周兆英,冯焱颖,等.纳米技术及其前景.科技通报, 2003, 19(1): 42-46
    [49] Daniel M C, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 2004, 104(1): 293-346
    [50] Liu J, Lu Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. Journal of the American Chemical Society, 2004, 126(39): 12298-12305
    [51] Swearingen C B, Wernette D P, Cropek D M, et al. Immobilization of a catalytic DNA molecular beacon on Au for Pb(II) detection. Ana1yticalChemistry, 2005, 77(2): 442-448
    [52] Liu J, Lu Y. Optimization of a Pb2+ directed gold nanoparticle/DNAzyme assembly and its application as a colorimetric biosensor for Pb2+. Chemical of Materials, 2004, 16(17): 3231-3238
    [53] Storhoff J J, Lazarides A A, Mucic R C, et al. What controls the optical properties of DNA-linked gold nanoparticles assemblies? Journal of the American Chemical Society, 2000, 122(19): 4640-4650
    [54] Pavlov V, Xiao Y, Gill R, et al. Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. Ana1ytical Chemistry, 2004, 76(7): 2152-2156
    [55] Powell D. Dual-labled probes for fluorescence and electron microscopy. Proceedings of the 56th Annual Meeting. Microscopy Society of America. New York: Spinger, 1998: 992-993
    [56] Wang J, Xu D K, Kawde A, et a1. Metal nanoparticle-based electrochemical stripping potententiometric detection of DNA hybridization. Ana1ytical Chemistry, 2001, 73(22): 5576-5581
    [57] Claire L, Robert A, David A, et al. Glyconanoparticles for the colorimetric detection of cholera toxin. Ana1ytical Chemistry, 2007, 79(4): 1356-1361
    [58] Zhang J, Wang L, Fan C, et al. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small, 2008, 4(8): 1196-1200
    [59] Shlyahovsky B, Li D, Nowarski R, et al. Spotlighting of cocaine by an autonomous aptamer-based machine. Journal of the American Chemical Society, 2007, 129(13): 3814-3815
    [60] Griffin J, Senapati D, Robinson B, et al. Size and distance dependent nanoparticle surface energy transfer (NSET) method for selective sensing of hepatitis C virus RNA. Chemistry-A European Journal, 2009, 15(2): 342-351
    [61] Faulk W P, Taylor G M. An immunocolloid method for the election microscope. Immunochemistry, 1971, 8(11): 1081-1083
    [62] Danscher G. Localization of gold in biological tissue: A photochemical method for light and electronmicroscopy. Histochemistry, 1981, 71(1): 81-88
    [63] Barth M, Oulmi Y, Ehrenreich H, et al. Pre-embedding immunogold labeling of TUNEL stain enables evaluation of DNA strand breaks and ultrastructural alterations in individual cells of neuronal tissue. Acta Neuropathologica, 2002, 104(6): 621-636
    [64] Liu T, Tang J, Jiang L. The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity. Biochemical and Biophysical Research Communication, 2004, 313(1): 3-7
    [65] Woodbury R G, Wendin C, Clendenning J, et al. Construction of biosensors using a gold-binding polypeptide and a miniature integrated surface plasmon resonance sensor. Biosensors and Bioelectronics, 1998, 13(10): 1117-1126
    [66] Gonzalez M B, Costa G A. Adsorptive stripping voltammetric behaviour of colloidal gold and immunogold on carbon paste electrode. Bioelectrochemistry and Bioenergetics, 1995, 38(2): 389-395
    [67] Dequaire M, Degrand C, Limoges B. An electrochemical metalloimmunoassay based on a colloidal gold label. Ana1ytical Chemistry, 2000, 72(22): 5521-5528
    [68] Yin X, Qi B, Wang E, et al. 4-(Dimethylamino)butyric acid labeling for electrochemiluminescence detection of biological substances by increasing sensitivity with gold nanoparticle amplification. Ana1ytical Chemistry, 2005, 77(11): 3525-3530
    [69] Storhoff J J, Elghanian R, Mucic R C, et a1. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Journal of the American Chemical Society, 1998, 120(9): 1959-1964
    [70] Taton T A, Mucic R C, Mirkin C A, et a1. The DNA-mediated formation of supramolecular mono-and multilayered nanoparticle structures. Journal of the American Chemical Society, 2000, 122(26): 6305-6306
    [71] Demers L M, Mirkin C A, Mucic R C, et al. A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Ana1ytical Chemistry, 2000, 72(22): 5535-5541
    [72] Lazarides A A, Schalz G C. DNA linked metal namosphere materials: Structural basis for the optical properties. The Journal of Physical Chemistry B, 2000, 104(3): 460-467
    [73] Bangham A D, Standish M M. Diffusion of univalent ions across the lamellae of swollen phospholopids. Journal of Molecular Biology, 1965, 13(1): 238-252
    [74] Bangham A D, Horne R W. Negative staining of phospholipids and their structural modification by surface-active-agents as observer in the electron microscope. Journal of Molecular Biology, 1964, 8(5): 660-665
    [75] Gregoriadis G, Ryman B E. Fate of protein containing liposomes injected into rats: An approach to the treatment of storage diseases. European Journal of Biochemistry, 1973, 24(3): 485-488
    [76] Carafa M, Marianecci C, Annibaldi V, et at. Novel O-palmitoylsele-roglucan- coated liposomes as drug carriers: Development characterization and interaction with leuprolide. International Journal of Pharmaceutics, 2006, 325(1-2): 155-162
    [77] Coussios C, Constantin C, Robert C, et al. In vitro characteriation of liposomes and Optison(r) by acoustic scattering at 3.5 MHz. Ultrasound in Medicine and Biology, 2004, 30(2):181-1901
    [78]李国峰,周日红,曾抗,等.维生素E脂质体的制备.中国应用药学. 1997, 14(4): 18-20
    [79] Szoka F. Preparation of liposome of intermedia size by a combination of reverse phase evaporation and extrusion through polyamonate membranes. Biochimica et Biophysica Acta, 1980, 601(4): 559-571
    [80] Chapman C J, Erdahl W E, Taylor R W, et al. Effects of solute concentration onthe entrapment of solutes in phospholipid vesicles prepared by freeze-thawextrusion. Chemistry and physics of lipids, 1991, 60(2): 201-208
    [81] Huang C. Studies of phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry, 1969, 8(1): 344-352
    [82] Szoka F, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proceedings of the National Academy of Sciences, 1978, 75(9): 4194-4198
    [83] Kumada Y, Maehara M, Minami N, et a1. Colony lifts immunoassay utilizing antibody-coupled liposome encapsulating HRP. Biochemical Engineering Journal, 2006, 29(1): 98-102
    [84] Baeumner A J, Schlesinger N A, Slutzki N S, et al. Biosensor for dengue virus detection: Sensitive, rapid, and serotype specific. Analytica Chemistry, 2002, 74(6): 1442-1448
    [85] Ralston E, Hjelmel L M, Klausner R D, et al. Carboxyfluorescein as a probe for liposome-cell interactions: Effect of impurities, and purification of the dye. Biochimica et biophysica Acta, 1981, 649(1): 133-137
    [86] Baumner A J, Schmid R D. Development of a new immunosensor for pesticide detection: Disposable system with liposome-enhancement and amperometric detection. Biosensors and Bioelectronics, 1998, 13(5): 519-529
    [87] Katsu T, Tanaka A, Fujita Y. An immunochemical study with potassium ion-loaded liposomes. Chemical and pharmaceutical bulletin, 1982, 30(4): 1504-1507
    [88] Vamvakaki V, Chaniotakis N A. Pesticide detection with a liposome-based nano-biosensor. Biosens and Bioelectronics, 2007, 22(11): 2848-2853
    [89] Ahn-Yoon S, DeCory T R, Baeumner A J, et al. Ganglioside-liposome immunoassay for the ultrasensitive detection of cholera toxin. Analytical Chemistry, 2003, 75(10): 2256-2261
    [90] Litzinger D C, Huang L. Phosphatidylethanolamine liposomes: Drug delivery, gene-transfer and immunodiagnostic applications. Biochimica et Biophysica Acta, 1992, 1113(2): 201-227
    [91] Ho J A A, Wauchope R D. A strip liposome immunoassay for aflatoxin B1. Analytical Chemistry, 2002, 74(7): 1493-1496
    [92] Singh A K, Harrison S H, Schoeniger J S. Gangliosides as receptors for biological toxins: Development of sensitive fluoroimmunoassays using ganglioside-bearing liposomes. Analytical Chemistry, 2000, 72(24): 6019-6024
    [93] Wagner A, Vorauer-Uhl K, Katinger H. Liposomes produced in a pilot scale: Production, purification and efficiency aspects. European Journal of Pharmaceutics and Biopharmaceutics, 2002, 54(2): 213-219
    [94] Lee K S, Kim T H , Shin M C. Disposable liposome immunosensor for theophylline combining an immunochromatographic membrane and a thick-film electrode. Analytica Chimica Acta, 1999, 380(1): 17-26
    [95] A1fonta L, Singh A K, Willner I. Liposomes labeled with biotin and horseradishperoxidase: A probe for the enhanced amplification of antigen- antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Analytical Chemistry, 2001, 73(1): 9l-102
    [96] Viswanathan S, Wu L C, Huang M R. Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon Nanotubes. Analytical Chemistry, 2006, 78(4): 1115-1121
    [97] Yun K, Kobatake E, Haruyama T, et al. Use of a quartz crystal microbalance to monitor immunoliposome-antigen interaction. Analytical Chemistry, 1998, 70(2): 260-264
    [98] Kobatake E, Yun K, Yanagida Y, et al. Immunoassay systems based on immunoliposomes consisting of genetically engineered single-chain antibody. Sensors and Actuators B, 2000, 65(1-3): 42-45
    [99] Nakane P K, Pierce G B. Enzyme-labeled antibodies: Preparation and localization of antigens. Journal of Histochemistry Cytochemistry, 1966, 14(12): 929-931
    [100] Blackburn G F, Shan H P, Kenten J H, et al. Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics. Clinical Chemistry, 1991, 37(9): 1534-1539
    [101] Van Gijlswijk R P, Zijlmans H J, Tanke H J, et al. Fluorochrome-labeled tyramides: Use in immunocytochemistry and fluorescence in situ hybridization. Journal of Histochemistru and Cytochemistry, 1997, 45(3): 375-382
    [102] Chu X, Fu X, Chen K, et al. An electrochemical stripping metalloimmunoassay immunoassay based on silver-enhanced gold nanoparticle label. Biosensors and Bioelectronics, 2005, 20(9): 1805-1812
    [103] Cousino M A, Jarbawi T B, Halsall H B, et al. Pushing down the limits of detection: Molecular needles in a haystack. Analytical Chemistry, 1997, 69(17): 544A-549A
    [104] Sano T, Smith C L, Cantor C R. Immuno-PCR: Very sensitive antigen detection by means of specific antibody-DNA conjugates. Science, 1992, 258(5079): 120-122
    [105] Ruzicka V, Marz W, Gross W, et al. Immuno-PCR with a commercially available avidin system. Science, 1993, 260(5108): 698-699
    [106] Hendrickson E R, Joerger R D, C.Ebersole R, et al. High sensitivity multianalyte immunoassay using covalent DNA-labeled antibodies and polymerase chain reaction. Nucleic Acids Research, 1995, 23(3): 522-529
    [107] Niemeyer C M, Adler M, Wacker R. Immuno-PCR: High sensitivity detection of proteins by nucleic acid amplification. Trends Biotechnology, 2005, 23(4): 208-216
    [108] Zhong X B, Lizardi P M, Huang X H, et al. Visualization of oligonucleotide probes and point mutations in interphase nuclei and DNA fibers using rolling circle DNA amplification. Proceedings of the National Academy of Sciences, 2001, 98(7): 3940-3945
    [109] Mullenix M C, Wiltshire S, Shao W, et al. Allergen-specific IgE detection on microarrays using rolling circle amplification: Correlation with in vitro assays for serum IgE. Clinical Chemistry, 2001, 47(10): 1926-1929
    [110] Raghunathan A, Sorette M P, Ferguson H R, et al. Rolling circle amplification technology as a potential tool in detection and monitoring of cancer by flowcytometry. Clinical Chemistry, 2002, 48(10): 1853-1855
    [111] Sivakamasundari R, Feaver W J, Krishna R M, et al. Rolling circle amplification improves sensitivity in multiplex immunoassays on microspheres. Clinical Chemistry, 2002, 48(10): 1855-1858
    [112] Weiss S, Proske D, Neumann M, et al. RNA aptamers specifically interact with the prion protein PrP. The Journal of Virology, 1997, 71(11): 8790-8797
    [113] Palecek E. Adsorptive transfer stripping voltammetry: Determination of nanogram quantities of DNA immobilized at the electrode surface. Analytical Biochemistry, 1988, 170(2): 421-431
    [114] Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angewandte Chemie International Edition, 2004, 43(45): 6042-6108
    [115] Liu G, Wang J, Jan M R, et al. Electrochemical coding for multiplexed immunoassays of proteins. Analytical Chemistry, 2004, 76(23): 7126-7130
    [116] Wang J, Ibanez A, Chatrathi M P. On-chip integration of enzyme and immunoassays: Simultaneous measurements of insulin and glucose. Journal of the American Chemical Society, 2003, 125(28): 8444-8445
    [117] Kelley S O, Barton J K, Jackson N M, et al. Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconjugate Chemistry, 1997, 8(1): 31-37
    [118] Authier L, Grossiord C, Brossier P. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Analytical Chemistry, 2001, 73(18): 4450-4456
    [119] Wang J, Liu G D, Merkoci A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. Journal of the American Chemical Society, 2003, 125(11): 3214-3215
    [120] Wang J, Li J H, Zhou F M, et al. Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Analytical Chemistry, 2003, 75(15): 3941-3945
    [121] Hermann T, Patel D J. Adaptive recognition by nucleic acid aptamers. Science, 2000, 287(5454): 820-825
    [122] Drolet D W, Moon-McDermott L, Romig T S. An enzyme-linked oligonucleotide assay. Nature Biotechnology, 1996, 14(8): 1021-1025
    [123] Floch F L, Ho H A, Leclerc M. Label-free electrochemical detection of proteinbased on a ferrocene-bearing cationic polythiophene and aptamer. Analytical Chemistry, 2006, 78(13): 4727-4731
    [124] Radi A E, Balldrich E, O’Sullivan C K, et al. Reusable impedimetric aptasensor. Analytical Chemistry, 2005, 77(19): 6320-6323
    [125] Polsky R, Gill R, Kaganovsky L, et al. Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules. Analytical Chemistry, 2006, 78(7): 2268-2271
    [126] Xu D, Yu X B, Ma Z Q, et al. Label-free electrochemical detection for aptamer-based array electrodes. Analytical Chemistry, 2005, 77(16): 5107-5113
    [127] Centi S, Tombelli S, Mascini M. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Analytical Chemistry, 2007, 79(4): 1466-1473
    [128] Lai R Y, Plaxco K W, Heeger A J. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Analytical Chemistry, 2007, 79(1): 229-233
    [129] Kleinjung F, Klussmann S, Bier F F, et al. High-affinity RNA as a recognition element in a biosensor. Analytical Chemistry, 1998, 70(2), 328-331
    [130] Potyrailo R A, Conrad R C, Ellington A D, et al. Adapting selected nucleic acid ligands (aptamers) to biosensors. Analytical Chemistry, 1998, 70(16): 3419-3425
    [131] Hartmann R, Norby P L, Juatesen J, et al. Activation of 2′-5′oligoadenylate synthetase by single-stranded and double-stranded RNA aptamers. Journal of Biological Chemistry. 1998, 273(6): 3236-3246
    [132] Liss M, Petersen B, Wolf H, et al. An aptamer-based quartz crystal protein biosensor. Analytical Chemistry, 2002, 74(17): 4488-4495
    [133] Li J J, Fang X, Tan W H. Molecular aptamer beacons for real-time protein recognition. Biochemical and Biophysical Research Communications, 2002, 292(1): 31-40
    [134] Stojanovic M N, Prada P D, Landry D W. Aptamer-based folding fluorescent sensor for cocaine. Journal of the American Chemical Society, 2001, 123(21): 4928-4931
    [135] Frauendorf C, Jaschke A. Detection of small organic analytes by fluorescing molecular switches. Bioorganic & Medicinal Chemistry, 2001, 9(10): 2521-2524
    [136] Yamamoto R, Kumar P K R. Molecular beacon aptamer fluoresces in the presence of tat protein of HIV-1. Genes Cells, 2000, 5(5): 389-396
    [137] Fang X H, Sen A, Tan W H. Synthetic DNA aptamers to setect protein molecular variants in a high-throughput fluorescence quenching assay. ChemBioChem, 2003, 4(9): 829-834
    [138] Hwang S, Kim E, Kwak J. Electrochemical detection of DNA hybridization using biometallization. Analytical Chemistry, 2005, 77(2): 579-584
    [139] Green L S, Jellinek D, Janjic N, et al. Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry, 1996, 35(45): 14413-14424
    [140] Zucker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 2003, 31(13): 3406-3415
    [141] Sauerbrey G. Verwendung von schwingquarzen zur wagung dunner schichten und zur mikrowagung. Zeitschrift fur Physsikalische chemie, 1959, 155(2): 206-222
    [142] Chu X, Shen G L, Yu R Q. Piezoelectric immunosensor for the detection of immunoglobulin M. Analyst, 1995, 120(12), 2829-2832
    [143] Brainina K Z. Film stripping voltammetry. Talanta, 1971, 18(5): 513-539
    [144] Fang X H, Cao Z H, Beck T, et al. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. Analytical Chemistry, 2001, 73(23): 5752-5757
    [145] Vicens M C, Sen A, Vanderlaan A, et al. Investigation of molecular beacon aptamer-based bioassay for platelet-derived growth factor detection. ChemBioChem, 2005, 6(5): 900-907
    [146] Grubisha D S, Lipert R J, Porter M D, et al. Femtomolar detection of prostate-specific antigen: An immunoassay based on surface-enhanced raman scattering and immunogold labels. Analytical Chemistry, 2003, 75(21): 5936-5943
    [147] Wang Z, Lee J, Cossins A R, et al. Microarray-based detection of protein binding and functionality by gold nanoparticle probes. Analytical Chemistry, 2005, 77(17): 5770-5774
    [148] Lowe C R. Analytical biotechnology. Current Opinion in Biotechnology, 1996, 7(1): 1-3
    [149] Michal B M, Buchner V, Rishpon J. Electrochemical biosensors for pollutants in the environment. Electroanalysis, 2007, 19(6): 2015-2028
    [150] Uttamchandani M, Huang X, Chen G Y, et al. Nanodroplet profiling of enzymatic activities in a microarray. Bioorganic and Medicinal Chemistry Letters, 2005, 15(7): 2135-2139
    [151] Tang L, Zeng G M, Shen G L, et al. Rapid detection of picloram in agriculturalfield samples using a disposable immunomembrane-based electrochemical sensor. Environmental Science and Technology, 2008, 42(5): 1207-1212
    [152] Vitzthum F, Behrens F, Anderson N L, et al. Proteomics, from basic research to diagnostic application. A review of requirements & needs, Journal of Proteome Research, 2005, 4(4): 1086-1097
    [153] Cooper K M, Samsonava J V, Plumpton L, et al. Enzyme immunoassay forsemicarbazide-the nitrofuran metabolitr and food contaminant. Analytica Chimica Acta, 2007, 592(1): 64-71
    [154] Luo J X, Yang X C. Flow injection chemiluminescent immunoassay with para-phenylphenol and sodium tetraphenylborate as synergistic enhancers. Analytica Chimica Acta, 2003, 485(1): 57-62
    [155] Narvanen O, Erkkila A, Yla-Herttuala S. Evaluation and characterization of ELISA measuring autoantibodies against oxidized low density lipoprotein. Atherosclerosis, 2000, 151(1): 200
    [156] Sheikh H, Sohail H, Brain A, et al. Development of a fluorescence immunoassay for measurement of paclitaxel in human plasma. Analytical Biochemistry, 2000, 283(1): 33-38
    [157] Bhattacharya D, Bhattacharya R, Dhar T K. A novel signal amplification technology for ELISA based on catalyzed reporter deposition: Demonstration of its applicability for measuring aflatoxin B1. Journal of Immunological Methods, 1999, 230(1): 71-86
    [158] Moors A, Naessens G. Comparison of the performances of immunobiotting and of six different ELISA assays for the detection of autoantibodies to histones in human serum. Immunology Letters, 1997, 56(2): 475
    [159] Jin L J, Giordano B C, Landers J P. Dynamic labeling during capillary or microchip electrophoresis for laser-induced fluorescence detection of protein-SDS complexes without pre-or postcolumn labeling. Analytical Chemistry, 2001, 73(14): 4994-4999
    [160] Schroder S, Zhang H, Yeung E S, et al. Quantitative gel electrophorsis: Sources of variation. Journal of Proteomic Research, 2008, 7(4): 1226-1234
    [161] Lee J O, So H M, Jeon E K, et al. Aptamers as molecular recognition elements for electrical nanobiosensors. Analytical and Bioanalytical Chemistry, 2008, 390(4): 1023-1032
    [162] Service R F. Searching for recipes for protein chips. Science, 2001, 294(5549): 2080-2082
    [163] Murphy M B, Fuller S T, Richardson P M, et al. An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. Nucleic Acids Research, 2003, 31(18): e110
    [164] Gosling J P. A decade of development in immunoassay methodology. Clinical Chemistry, 1990, 36(8): 1408-1427
    [165]胡剑均,乔卫红,李宗石.脂质体在药物控释与基因治疗中的应用.第七届国际表面活性剂/洗涤剂会议论文集.太原:山西化工出版社, 2002, 143-146
    [166] Alfonta L, Willner I. Electrochemical and quartz crystal microbalance detection of the cholera toxin employing horseradish peroxidase and GM1-functionalized liposomes. Analytical Chemistry, 2001, 73(21): 5287-5295
    [167] Monroe D. Novel liposome immunoassay for detecting antigens, antibodies, and haptens. Journal of Liposome Research, 1989, 1(3): 339-377
    [168] Ho J A, Hsu H W. Procedures for preparing Escherichia coli O157: H7 immunoliposome and its application in liposome immunoassay. Analytical Chemistr, 2003, 75(17): 4330-4334
    [169] Rongen H A H, Van der Horst H M, Hugenholtz G W K, et al. Development of a liposome immunosorbent assay for human interferon-γ. Analytica Chimica Acta, 1994, 287(3): 191-199
    [170] Kubotsu K, Ushio I, Yoshikawa K, et al. Colorimetric liposome lysis for assay of anti-streptolysin O antibody. Clinical Chemistry, 1990, 36(10): 1747-1749
    [171] Garcon N, Senior J, Gregoriades G. Coupling of ligands to liposomes before entrapment of agents sensitive to coupling procedures. Biochemical Society Transactions, 1986, 14(6): 1038
    [172] Patolsky F, Lichtenstein A, Willner I. Electronic transduction of DNA sensing processes on surfaces: Amplification of DNA detection and analysis of single-base mismatches by tagged liposomes. Journal of the American Chemistry Society, 2001, 123(22): 5194-5205
    [173] Chen H, Jiang J H, Li Y F, et al. A novel piezoelectric immunoagglutinationassay technique with antibody-modified liposome. Biosensors and Bioelectronics, 2007, 22(6): 993-999
    [174] Patolsky F, Lichtenstein A, Willner I. Amplified microgravimetric quartz- crystal-microbalance assay of DNA using oligonucleotide functionalized liposomes or biotinylated liposomes. Journal of the American Chemical Society, 2000, 122(2): 418-419
    [175] Wink T, Van Zuilen S J, Bult A, et al. Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry. Analytical Chemistry, 1998, 70(5): 827-832
    [176] Zhou L, Ou L J, Chu X, et al. Aptamer-based rolling circle amplification: A platform for electrochemical detection of protein. Analytical Chemistry, 2007, 79(19): 7492-7500
    [177] Senior J, Gregoriadis G. Dehydration-rehydration vesicle methodology facilitates a novel approach to antibody binding to liposomes. Biochimica et biophysica. Acta-Lipids and Lipid Metabolism, 1989, 1003(1): 58-62
    [178] Kamidate T, Komatsu K, Tani H, et al. Estimation of the membrane permeability of liposomes via use of eosin Y chemiluminescence catalysed by peroxidase encapsulated in liposomes. Luminescence, 2007, 22(3): 236-240
    [179] Zhan W, Bard A J. Electrogenerated chemiluminescence.83.immunoassay of human C-reactive protein by using Ru(bpy)32+-encapsulated liposomes as labels. Analytical Chemistry, 2007, 79(2): 459-463
    [180] Cho E J, Yang L, Levy M, et al. Using a deoxyribozyme ligase and rolling circle Amplification to detect a non-nucleic acid analyte, ATP. Journal of the American Chemical Society, 2005, 127(7): 2022-2023
    [181] Li J S, Zhong W W. Typing of multiple single-nucleotide polymorphisms by a microsphere-based rolling circle amplification assay. Analytical Chemistry, 2007, 79(23): 9030-9038
    [182] Deng Z, Tian Y, Mao C, et al. DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angewandte Chemie International Edition, 2005, 44(23): 3582-3585
    [183] Puu G. An approach for analysis of protein toxins based on thin films of lipidmixtures in an optical biosensor. Analytical Chemistry, 2001, 73(1): 72-79
    [184] Vamvakaki V, Fournier D, Chaniotakis N A. Fluorescence detection of enzymatic activity within a liposome based nano-biosensor. Biosensors and Bioelectronics, 2005, 21(2): 384-388
    [185] Nam J M, Park S J, Mirkin C A. Bio-barcodes based on oligonoligonucleotide modified nanoparticles. Journal of the American Chemical Society, 2002, 124(15): 3820-3821
    [186] Nam J M, Thaxton C S, Mirkin C A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science, 2003, 301(5641): 1884-1886
    [187] Nam J M, Stoeva S I, Mirkin C A. Bio-bar-code-based DNA detection with PCR-like sensitivity. Journal of the American Chemical Society, 2004, 126(19): 5932-5933
    [188] Ho J A, Huang M R. Application of a liposomal bioluminescent label in the development of a flow injection immunoanalytical system. Analytical Chemistry, 2005, 77(11): 3431-3436
    [189] Mason J T, Xu L, Sheng Z M, et al. A liposome-PCR assay for the ultrasensitive detection of biological toxins. Nature Biotechnology, 2006, 24(5): 555-557
    [190] Chen H, Zheng Y, Jiang J H, et al. An ultrasensitive chemiluminescence biosensor for cholera toxin based on ganglioside-functionalized supported lipid membrane and liposome. Biosensors and Bioelectronics, 2008, 24(4): 684-689
    [191] Singh A K, Kilpatrick P K, Carbonell R G. Application of antibody and fluorophore-derivatized liposomes to heterogeneous immunoassays for D-dimer. Biotechnology Progress, 1996, 12(2): 272-280
    [192] Stockwell B R. Exploring biology with small organic molecules. Nature, 2004, 432(7019): 846-854
    [193] Gao X H, Cui Y Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 2004, 22(8): 969-976
    [194] Michnick S W, Ear P H, Stefan E, et al. Universal strategies in research and drug discovery based on proteinfragment complementation assays. Nature Reviews Drug Discovery, 2007, 6(7): 569-582
    [195] Zou H, Zhang Q, Guo Z, et al. A mass spectrometry based direct-binding assay for screening binding partners of proteins. Angewandte Chemie International Edition, 2002, 41(4): 646-648
    [196] Schiller J, Arnhold J, Benard S, et al. Cartilage degradation by hyaluronate lyase and chondroitin ABC lyase: A MALDI-TOF mass spectrometric study. Carbohydrate Research, 199, 318(1-4): 116-122
    [197] Taunton J, Hassig C A, Schreiber S L. A mammalian histone deacetylase talated to the yeast transcriptional regulator rpd3p. Science, 1996, 272(5260): 408-411
    [198] Terstappen G C, Schlupen C, Gaviraghi G, et al. Target deconvolution strategies in drug discovery. Nature Reiews Drug Discovery, 2007, 6(11): 891-903
    [199] Petrov A, Okhonin V, Krylov S N, et al. Kinetic capillary electrophoresis (KCE): A conceptual platform for kinetic homogeneous affinity methods. Journal of the American Chemical Society, 2005, 127(48): 17104-17110
    [200] Drabovich A P, Berezovski M V, Krylov S N, et al. Selection of smart small-molecule ligands, the proof of principle. Analytical Chemistry, 2009, 81(1): 490-494
    [201] Zhang J, Campbell R E, Tsien R Y, et al. Creating new fluorescent probes for cell biology. Nature Reviews Molecular Cell Biology, 2002, 3(12): 906-918
    [202] Clapp A R, Medintz L M, Mattoussi H, et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Journal of the American Chemical Society, 2004, 126(1): 301-310
    [203] Huang J, Schreiber S L. A yeast genetic system for selecting small molecule inhibitors of protein-protein interactions in nanodroplets. Proceedings of the National Academy of Sciences, 1997, 94(25): 13396-13401
    [204] Kerppola T K. Visualization of molecular interactions by fluorescence Complementation. Nature Reviews Molecular Cell Biology, 2006, 7(6): 449-456
    [205] Huh Y S, Lowe A J, Erickson D, et al. Surface-enhanced raman scattering based ligase detection reaction. Journal of the American Chemical Society, 2009, 131(6): 2208-2213
    [206] Lee J S, Abigail K R, Hurst S J, et al. Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Letters, 2007, 7(7): 2112-2115
    [207] Hill H D, Mirkin C A. The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nature Protocols, 2006, 1(1): 324-336
    [208] Wang J, Liu G D. Templated one-step synthesis of compositionally encoded nanowire tags. Analytical Chemistry, 2006, 78(7): 2461-2464
    [209] Schweitzer B, Kingsmore S. Combining nucleic acid amplification anddetection. Currrent Opinion in Biotechnology, 2001, 12(1): 21-27
    [210] Xu X Y, Georganopoulou D G, Hill H D, et al. Homogeneous detection of nucleic acids based upon the light scattering properties of silver-coated nanoparticle probes. Analytical Chemistry, 2007, 79(17): 6650-6654
    [211] Miao J M, Cao Z J, Lu J Z, et al. Instantaneous derivatization technology forsimultaneous and homogeneous determination of multiple DNA targets. Analytical Chemistry, 2008, 80(5): 1606-1613
    [212] Brenner S, Lerner R A. Encoded combinatotial chemistry. Proceedings of the National Academy of Sciences, 1992, 89(12): 5381-5383
    [213] Doyon J B, Snyder T M, Liu D R. Highly sensitive in vitro selections for DNA-linked synthetic small molecules with protein binding affinity and specificity. Journal of Biological Chemistry, 2003, 125(41): 12372-12373
    [214] Melkko S, Scheuermann J, Neri D, et al. Encoded self-assembling chemical libraries. Nature Biotechnology, 2004, 22(5): 568-574
    [215] Sprinz K I, Tagore D M, Hamilton A D, et al. Self-assembly of bivalent protein-binding agents based on oligonucleotide-linked organic fragments. Bioorganic and Medicinal Chemistry Letters, 2005, 15(17): 3908-3911
    [216] Melkko M, Zhang Y X, Neri D, et al. Isolation of high-affinity trypsin inhibitors from a DNA-encoded chemical library. Angewandte Chemie International Edition, 2007, 46(25): 4671-4674
    [217] Rosenzweig B A, Ross N T, Tagore D M, et al. Multivalent protein binding and precipitation by self-assembling molecules on a DNA pentaplex scaffold. Journal of the American Chemical Society, 2009, 131(14): 5020-5021
    [218] Kusher S R, Nagaishi H, Clark A J, et al. Genetic recombination in Escherichia coli: the role of Exonuclease I. Proceedings of the National Academy of Sciences, 1971, 68(4): 824-827
    [219] Kusher S R, Nagaishi H, Clark A J. Indirect suppression of recB and recC mutations by Exonuclease I deficiency. Proceedings of the National Academy of Sciences, 1972, 69(6): 1366-1370
    [220] Goldmark P G, Linn S. Purification and properties of the recBC DNase of Escherichia coli K-12. The Journal of Biological Chemistry, 1972, 247(6): 1849-1860
    [221] Rosamond J, Telander K M, Linn s. Modulation of the action of the recBC enzyme of Escherichia coli K-12 by Ca2+. The Journal of Biological Chemistry, 1979, 254(17): 8646-8652
    [222] Shalloway D, Kleinberger T, Livingdton D M. Mapping of SV40 DNA replication origin region binding sites for SV40 T antigen by protection against exonuclease III digestion. Cell, 1980, 20(2): 411-422
    [223] Wang J K, Li T X, Lu Z H. A method for fabricating uni-dsDNA microarray chip for analyzing DNA-binding proteins. Journal of biochemical and biophysical methods, 2005, 63(2): 100-110
    [224] Xu X Y, Zhao Z, Qin L D, et al. Fluorescence recovery assay for the detection of protein-DNA binding. Analytical Chemistry, 2008, 80(14): 5616-5621
    [225] Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene, 1984, 28(3): 351-359
    [226] Richardson C C, Lehman I R, Kornberg A. A deoxyribonucleic acid phosphatase-exonuclease from Escherichia coli. The Journal of Biological Chemistry, 1964, 239(1): 251-258
    [227] Lee H J, Li Y, Corn R M, et al. Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays. Analytical Chemistry, 2005, 77(16): 5096-5100
    [228] Li J W, Chu Y Z, Xie X L, et al. Enzymatic signal amplification of molecular beacons for sensitive DNA detection. Nucleic Acids Research, 2008, 36(6): e36
    [229] Xu W, Xue X J, Li T H, et al. Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angewandte Chemie International Edition, 2009, 48(37): 6849-6852
    [230] Kam N W S, Wisdom J A, Dai H, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proceedings of the National Academy of Sciences, 2005, 102(33): 11600-11605
    [231] Henne W A, Doomeweerd D D, Savran C, et al. Detection of folate binding protein with enhanced sensitivity using a functionalized quartz crystal microbalance sensor. Analytical Chemistry, 2006, 78(14): 4880-4884
    [232] Acharya G, Chang C L, Doorneweerd D D, et al. Immunomagnetic diffractometry for detection of diagnostic serum markers. Journal of the American Chemical Society, 2007, 129(51): 15824-15829
    [233] Fahlman R P, Sen D. DNA conformational switches as sensitive electronic sensors of analytes. Journal of the American Chemical Society, 2002, 124(17): 4610-4616
    [234] Ren B, Robert F, Bell S P, et al. Genome-wide location and function of DNA binding proteins. Science, 2000, 290(5500): 2306-2309
    [235] Helin K. Regulation of cell proliferation by the E2F transcription factors. Current Opinion in Genetics & Development, 1998, 8(1): 28-35
    [236] Aboussekhra A, Biggerstaff M, Wood R D, et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell, 1995, 80(6): 859-868
    [237] Pandolfi P P. Transcription therapy for cancer. Oncogene, 2001, 20(24): 3116-3127
    [238] Garner M M, Revzin A. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: Application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Research, 1981, 9(13): 3047-3060
    [239] Galas D J, Schmitz A. DNAase footprinting a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Research, 1978, 5(9): 3157-3170
    [240] Bulyk M L. DNA microarray technologies for measuring protein-DNA Interactions. Current Opinion in Biotechnology, 2006, 17(4): 422-430
    [241] Berger M F, Philippakis A A, Qureshi A M, et al. Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nature Biotechnology, 2006, 24(11): 1429-1435
    [242] Boon E M, Salas J E, Barton J K. An electrical probe of protein-DNA interactions on DNA-modified surfaces. Nature Biotechnology, 2002, 20(3): 282-286
    [243] Gorodetsky A A, Ebrahim A, Barton J K. Electrical detection of TATA binding protein at DNA-modified microelectrodes. Journal of the American Chemical Society, 2008, 130(10): 2924-2925
    [244] Bonham A J, Braun G, Reich N O, et al. Detection of sequence-specific protein-DNA interactions via surface enhanced resonance raman scattering. Journal of the American Chemical Society, 2007, 129(47): 14572-14573
    [245] Furey W S, Joyce C M, Balasubramanian S, et al. Use of fluorescence resonance energy transfer to investigate the conformation of DNA substrates bound to the Klenow Fragment. Biochemistry, 1998, 37(9): 2979-2990
    [246] Heyduk T, Heyduk E. Molecular beacons for detecting DNA binding proteins. Nature Biotechnology, 2002, 20(2): 171-176
    [247] Wang J K, Li T X, Guo X Y, et al. Exonuclease III protection assay with FRET probe for detecting DNA-binding proteins. Nucleic Acids Research, 2005, 33(2): 2-9
    [248] Metzger W, Heumann H. In footprinting with Exonuclease III. Humana Press Inc, Totowa NJ: Moss T, 2001, pp 39-47
    [249] Zhao W, Brook M A, Li Y F. Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem, 2008, 9(15): 2363-2371
    [250] Elghanian R, Storhoff J J, Mirkin C A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277(5329): 1078-1081
    [251] Hazarika P, Ceyhan B, Niemeyer C M. Reversible switching of DNA-gold nanoparticle aggregation. Angewandte Chemie International Edition, 2004, 43(47): 6469-6471
    [252] Kim Y, Johnson R C, Hupp J T. Gold nanoparticle-based sensing of“spectroscopically silent”heavy metal ions. Nano Letters, 2001, 1(4): 165-167
    [253] Xue X, Wang F, Liu X. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. Journal of the American Chemical Society, 2008, 130(11): 3244-3245
    [254] Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angewandte Chemie International Edition, 2007, 46(22): 4093-4096
    [255] Liu J, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticle. Angewandte Chemie International Edition, 2006, 45(1): 90-94
    [256] Zhao W, Chiuman W, Brook M A, et al. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. ChemBioChem, 2007, 8(7): 727-731
    [257] Zhao W, Chiuman W, Mcmanus S A, et al. DNA aptamer folding on gold nanoparticles: From colloid chemistry to biosensors. Journal of the American Chemical Society, 2008, 130(11): 3610-3618
    [258] Liu J, Lu Y. Non-base pairing DNA provides a new dimension for controlling aptamer-linked nanoparticles and sensors. Journal of the American Chemical Society, 2007, 129(27): 8634-8643
    [259] Lee J S, Ulmann P A, Han M S, et al. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Letters,2008, 8(2): 529-533
    [260] Huang C C, Huang Y F, Tan W H, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Analytical Chemistry, 2005, 77(17): 5735-5741
    [261] Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemical Society, 2004, 126(38): 11768-11769
    [262] Hong S, Choi I, Yi J, et al. Sensitive and colorimetric detection of the structural evolution of superoxide dismutase with gold nanoparticles. Analytical Chemistry, 2009, 81(4): 1378-1382
    [263] Xu H, Mao X, Liu G D, et al. Aptamer-functionalized gold nanoparticles asprobes in a dry-reagent strip biosensor for protein analysis. Analytical Chemistry, 2009, 81(2): 669-675
    [264] Liu G D, Mao X, Phillips J A, et al. Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Analytical Chemistry, 2009, 81(24): 10013-10018
    [265] Han M S, Lytton-Jean A K R, Mirkin C A, et al. Colorimetric screening of DNA-binding molecules with gold nanoparticle probes. Angewandte Chemie International Edition, 2006, 45(11): 1807-1810
    [266] Hurst S J, Han M S, Mirkin C A, et al. Screening the sequence selectivity of DNA-binding molecules using a gold nanoparticle-based colorimetric approach. Analytical Chemistry, 2007, 79(18): 7201-7205
    [267] Chen C, Zhao C, Qu X, et al. Enzymatic manipulation of DNA-modified goldnanoparticles for screening G-quadruplex ligands and evaluating selectivities. Advanced Materials, 2009, 21(1): 1-5
    [268] Xu X, Han M S, Mirkin C A. A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition. Angewandte Chemie International Edition, 2007, 46(19): 3468-3470
    [269] Liu T, Zhao J, Li G, et al. Novel method to detect DNA methylation using gold nanoparticles coupled with enzyme-linkage reactions. Analytical Chemistry, 2010, 82(1): 229-233
    [270] Zhao W A, Monsur Ali M, Aguirre S D, et al. Paper-based bioassays using gold nanoparticlecolorimetric probes. Analytical Chemistry, 2008, 80(22): 8431-8437
    [271] Lee J H, Wang Z, Lu Y, et al. Highly sensitive and selective colorimetricsensors for uranyl (UO22+): Development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. Journal of the American Chemical Society, 2008, 130(43): 14217-14226
    [272] Zhao W, Lam J C F, Li Y, et al. Enzymatic cleavage of nucleic acids on gold nanoparticles: A generic platform for facile colorimetric biosensors. Small, 2008, 4(6): 810-816
    [273] Li J S, Chu X, Liu Y L, et al. A colorimetric method for point mutation detectionusing high-fidelity DNA ligase. Nucleic Acids Research, 2005, 33(19): e168
    [274] Letsinger R L, Elghanian R, Viswanadham G, et al. Use of a steroid cyclic disulfide anchor in constructing gold nanoparticle-oligonucleotide conjugates. Bioconjugate Chemistry, 2000, 11(2): 289-291
    [275] Huang Y, Zhang Y L, Jiang J H, et al. Highly specific and sensitive electrochemical genotyping via gap ligation reaction and surface hybridization detection. Journal of the American Chemical Society, 2009, 131(7): 2478-2480
    [276] Hernandez N. TBP, a universal eukaryotic transcription factor. Genes & Development, 1993, 7(7b): 1291-1308
    [277] Liu J, Lu Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nature Protocols, 2006, 1(1): 246-252
    [278] Zhang Y L, Huang Y, Jiang J H, et al. Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection. Journal of the American Chemical Society, 2007, 129(50): 15448-15449
    [279] Thomas K R, Olivery B M. Processivity of DNA exonucleases. The Journal of Biological Chemistry, 1978, 253(2): 424-429
    [280] Richards C C. Phosphorylation of nucleic acid by an enzyme from T4 bacteriophage-infected Eseheriehia Coli. Proceedings of the National Academy of Sciences, 1965, 54(1): 158-165
    [281] Wang L K, Lima C D, Shuman S. Structure and mechanism of T4 polynucleotide kinase: An RNA repair enzyme. EMBP Journal, 2002, 21(14): 3873-3880
    [282] Cameron V, Uhlenbeck O C. 3'-Phosphatase activity in T4 polynucleotide Kinase. Biochemistry, 1977, 16(23): 5120-5126
    [283] Wang L K. Shuman S. Domain structure and mutational analysis of T4 polynucleotide kinase. The Journal of Biological Chemistry, 2001, 276(29):26868-26874
    [284] Rosi N L, Mirkin C A. Nanostructures in biodiagnostics. Chemical Reviews, 2005, 105(4): 1547-1562
    [285] Kanaras A G, Wang Z, Brust M, et al. Towards multistep nanostructure synthesis: Programmed enzymatic self-assembly of DNA/gold systems. Angewandte Chemie International Edition, 2003, 42(2): 191-194
    [286] Xu X, Han M S, Mirkin C A. A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition. Angewandte Chemie International Edition, 2007, 119(19): 3538-3540
    [287] Little J W, Lehman I R, Kaiser A D. An exonuclease induced by Bacteriophageλ. The Journal of Biological Chemistry, 1967, 242(4): 672-678
    [288] Lovett S T, Kolodner R D. Identification and purification of a single- stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli. Proceedings of the National Academy of Sciences, 1989, 86(8): 2627-2631
    [289] Barriada J L, Tappin A D, Achterberg E P, et al. Dissolved silver measurements in seawater. TrAC Trends in Analytical Chemistry, 2007, 26(8), 809-817
    [290] Richards R M E, Taylor R B, Xing D K L. An evaluation of the antibacterial activities of combinations of sulfonamides, trimethoprim, dibromopropamidine, and silver nitrate compares their uptakes by selected bacteria. Journal of Pharmaceutical Sciences, 1991, 80(9): 861-867
    [291] Reinfelder J R, Chang S I. Speciation and microalgal bioavailability of inorganic silver. Environmental Science & Technology, 1999, 33 (11): 1860-1863
    [292] Furst P, Hamer D. Cooperative activation of a eukaryotic transcription factor: Interaction between Cu(I) and yeast ACEI protein. Proceedings of the National Academy of Sciences, 1989, 86 (14): 5267
    [293] Ralston D M, O’Halloran T V. Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proceedings of the National Academy of Sciences, 1990, 87 (10): 3846-3850
    [294] Ratte H T. Bioaccumulation and toxicity of silver compounds: A review. Environmental Toxicology and Chemistry, 1999, 18(1): 89-108
    [295] Huang X, Ke C H, Wang W X. Bioaccumulation of silver, cadmium and mercury in the abalone haliotis diversicolor from water and food sources. Aquaculture, 2008, 283(1): 194-202
    [296] Nichols J W, Brown S, Wood C M, et al. Influence of salinity and organic matter on silver accumulation in gulf toadfish (opsanus beta). Aquatic Toxicology, 2006, 78(3): 253-261
    [297] Resano M , Aramendia M, Belarra M A, et al. Solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of silver at trace and ultratrace levels. Analytica Chimica Acta, 2006, 571(1): 142-149
    [298] Dadfarnia S, Shabani A M H, Gohari M. Trace enrichment and determination of silver by immobilized DDTC microcolumn and flow injection atomic absorption spectrometry. Talanta, 2004, 64(3): 682-687
    [299] Liu J F, Chao J B, Jiang G B, et al. Cloud point extraction as an advantageouspreconcentration approach for analysis of trace silver nanoparticles in environmental waters. Analytical Chemistry, 2009, 81(15): 6496-6502
    [300] Chatterjee A, Santra M, Kim S B, et al. Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media. Journal of the American Chemical Society, 2009, 131(6): 2040-2041
    [301] Gazda D B, Fritz J S, Porter M D. Multiplexed colorimetric solid-phase extraction: Determination of silver(I), nickel(II), and sample pH. Analytical Chemistry, 2004, 76(16): 4881-4887
    [302] Yang R H, Chan W H, Li K A, et al. A ratiometric fluorescent sensor for Ag+ with high selectivity and sensitivity. Journal of the American Chemical Society, 2003, 125(10): 2884-2885
    [303] Iyoshi S, Taki M, Yamamoto Y. Rosamine-based fluorescent chemosensor for selective detection of silver(I) in an aqueous solution. Inorganic Chemistry, 2008, 47(10): 3946-3948
    [304] Li T, Shi L, Dong S, et al. Silver-ion-mediated DNAzyme switch for the ultrasensitive and selective colorimetric detection of aqueous Ag+ and cysteine. Chemistry-A European Journal, 2009, 15(14): 3347-3350
    [305] Renzoni A, Zino F, Franchi E. Mercury levels along the food chain and risk for exposed populations. Environmental Research, 1998, 77(2): 68-72
    [306] Basu N, Kwan M, Chan H M. Mercury but not organochlorines inhibits muscarinic cholinergic receptor binding in the cerebrum of ringed seals. Journal of Toxicology and Environmental Health PartA, 2006, 69(12): 1133-1143
    [307] Wang M, Gu X G, Zhang G X, et al. Continuous colorimetric assay foracetylcholinesterase and inhibitor screening with gold nanoparticles. Langmuir, 2009, 25(4): 2504-2507
    [308] Park S Y, Schatz G C, Weigand S, et al. DNA-programmable nanoparticle crystallization. Nature, 2008, 451(7178): 553-556
    [309] Nykypanchuk D, Maye M M, Gang O, et al. DNA-guided crystallization of colloidal nanoparticles. Nature, 2008, 451(7178): 549-552
    [310] Li H X, Rothberg L J. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. Journal of the American Chemical Society, 2004, 126(35): 10958-10961
    [311] Xin A P, Dong Q P, Ling L S, et al. Colorimetric recognition of DNA intercalators with unmodified gold nanoparticles. Chemical Communications, 2009, 45(13): 1658-1660
    [312] Kanjanawarut R, Su X D. Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic probes. Analytical Chemistry, 2009, 81(15): 6122-6129
    [313] Li H X, Rothberg L J. Detection of specific sequences in RNA using differential adsorption of single-stranded oligonucleotides on gold nanoparticles. Analytical Chemistry, 2005, 77(19): 6229-6233
    [314] Liu X, Dai Q, Huo Q, et al. A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. Journal of the American Chemical Society, 2008, 130(9): 2780-2782
    [315] Yu C J, Tseng W L. Colorimetric detection of mercury(II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate. Langmuir, 2008, 24(21): 12717-12722
    [316] Oishi J, Asami Y, Mori T, et al. Colorimetric enzymatic activity assay based on noncrosslinking aggregation of gold nanoparticles induced by adsorption of substrate peptides. Biomacromolecules, 2008, 9(9): 2301-2308
    [317] Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382(6592): 607-609
    [318] Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of Sciences, 2004, 101(39): 14036-14039

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700