聚吡咯的电化学合成、应用及防蚀机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电高分子具有特殊的结构和优异的物理化学性能,在金属防护、能源、光电子器件、分子器件、电磁屏蔽、隐身技术等方面具有广泛的诱人前景,是当前材料科学的研究热点。导电高分子对金属的保护作用及其机理很复杂,还不是很清楚。聚吡咯(PPy)是最有应用前景的导电高分子材料之一,具有优异的防蚀性能。本文研究了PPy的电化学合成方法,采用扫描电子显微镜、红外光谱、伏安曲线、动电位极化曲线、开路电位-时间曲线、电化学阻抗谱(EIS)等方法研究了PPy对不锈钢的保护机理,探讨了复合型导电高分子在防腐蚀和电化学电容器方面的应用,并对有关PPy电化学性能的基础问题进行了研究。
     一. PPy的电化学合成及其性质
     采用循环伏安法和恒电位法考察了PPy的电化学合成过程。结果表明已生成的PPy对吡咯在1 mol L-1十二烷基苯磺酸钠(SDBS)溶液中的氧化聚合具有催化作用,从而降低了吡咯的聚合电位。根据这个研究结果,提出了先在高电位下预合成一层薄PPy膜,再在较低电位下合成PPy膜的两步法。采用这种两步法在不锈钢表面合成PPy能够有效抑制不锈钢基体在合成过程中的阳极溶解和PPy膜的过氧化。
     研究了合成电位对PPy性质的影响。结果表明,采用低电位合成的PPy膜更均匀,膜过氧化程度低,与金属表面的附着力更好,电化学氧化还原活性更高,能更好地抑制不锈钢在3.5%NaCl溶液中的腐蚀。
     二. PPy对不锈钢的保护及腐蚀机理研究
     研究了PPy膜厚度对不锈钢/PPy在3.5%NaCl溶液中电化学行为的影响。结果表明,PPy膜越厚,不锈钢/PPy的EIS在高频段为容抗弧半圆越小;不锈钢/PPy的EIS在高频段的半圆主要反映PPy的氧化还原电荷转移电阻。有PPy膜保护的不锈钢阳极极化电流随PPy膜厚度增加而增大,在高于0.50 V(vs SCE)后阳极电流才迅速增加,表明PPy膜对不锈钢在NaCl溶液中的腐蚀具有抑制作用。低于0.50 V时的阳极极化电流主要反映PPy膜的氧化反应电流。
     测量了不锈钢/PPy和Pt/PPy在3.5%NaCl溶液中的EIS。不锈钢/PPy和Pt/PPy在高频端的半圆大小接近,这个半圆主要反映PPy的氧化还原电荷转移电阻,由此可认为PPy膜下不锈钢的腐蚀电阻非常大,不锈钢得到很好的保护。
     研究了浸泡时间对不锈钢/PPy在3.5%NaCl溶液中电化学行为的影响。结果表明刚浸入时不锈钢/PPy的阳极极化电流主要来自微孔处不锈钢的腐蚀电流,浸泡1 h后则主要来自PPy的氧化电流。
     比较了不锈钢/PPy和Pt/PPy在1 mol L-1SDBS溶液中的电化学行为。结果表明PPy与不锈钢发生电化学反应,使不锈钢钝化,自身发生还原;还原的PPy可以通过再氧化恢复到氧化态。
     建立了不锈钢/PPy在3.5%NaCl溶液中的EIS等效电路,分离出不锈钢的腐蚀电荷转移电阻与PPy的氧化还原电荷转移电阻。由不锈钢/PPy在3.5%NaCl溶液中的腐蚀电荷转移电阻、PPy的氧化还原电荷转移电阻随时间的变化曲线分析了不锈钢/PPy的腐蚀过程。结果表明,PPy膜通过与不锈钢发生电化学反应,使不锈钢钝化,释放出的十二烷基苯磺酸根离子也能抑制不锈钢的腐蚀。
     三. PPy独立膜的电化学性质
     测量了PPy独立膜在3.5%NaCl溶液中充氮气与不充氮气条件下的阴、阳极极化曲线。结果表明,在过电位很大的情况下PPy的氧化还原反应仍然处于电化学活化控制。
     在3.5%NaCl溶液中将PPy膜在-0.8V充分还原10min后,恒电位阳极极化的膜电阻随时间的变化呈指数衰减。从理论上建立了膜电阻与时间的关系方程。极化电位越正,半衰期越短。
     研究了在1 mol L-1NaCl溶液中pH值对PPy性质的影响。结果表明,当pH值小于11时,PPy独立膜的电位-pH直线斜率为-0.029 V/pH;当大于11时,直线斜率为-0.083 V/pH。在酸性溶液中,PPy发生质子酸掺杂,膜的导电性增强;在碱性溶液中发生去质子化脱掺杂,甚至发生过氧化,膜导电性变差。pH值愈大,过氧化峰的起始电位和峰电位越负,PPy越容易发生过氧化。
     四.导电高分子的应用
     以提高导电高分子的防蚀性能和电容性能为目的,用分层聚合或共聚合法制备了PPy-Pani(聚苯胺)复合型导电高分子材料并进行了表征。结果表明,双层膜或共聚合制备的膜均可以提高不锈钢在3.5%NaCl溶液中的点蚀电位。采用分层聚合制得的膜,以PPy为底层的膜的防蚀性能比以Pani为底层的好;对于采用共聚合制备的膜,聚合溶液中吡咯浓度越大膜的防蚀性能越好。以PPy为底层的复合型导电高分子电极电容器的电容性能比其它复合型电极或单层膜电极的好。SS/PPy/Pani和SS/PPy/Pani/PPy的阻抗近似为纯电容,其比电容高达206.11 F g-1和216.13 F g-1。
Due to the special structure and the excellent physical chemical properties, conducting polymers have attracted great interest in many applied fields such as metal protection, energy, optoelectronic devices, molecular devices, electromagnetic shielding, stealth technology etc.. The anti-corrosion efficiency and mechanism of conducting polymers have not yet been fully understood, and thus are still open for further investigation. Polypyrroly (PPy) is one of the most promising conducting polymers for corrosion protection application. In this work, the electrosynthesis processes of PPy were firstly studied, then the protection mechanism of PPy was investigated by methods such as scanning electronic microscopy, infrared spectrum, cyclic voltammetry, potentiodynamic polarisation curve, open circuit potential-time curve and electrochemical impedance spectroscopy (EIS) etc.. The application researches for PPy in the field of corrosion protection and electrochemical super-capacitor were also carried out after the study of some fundamental problems related to its electrochemical properties were done.
     1. Electrosynthesis of PPy and its properties
     Cyclic voltammetry and potentiostatic method were adopted to investigate the synthesis process of PPy. Results show that the pre-formed PPy films have a catalytic effect on oxidative polymerization of pyrrole in sodium dodecylbenzenesulfonate (SDBS) solution, thus lowering the polymerization potential. Therefore, a two-step process was proposed: the first step is the formation of a very thin PPy film at a higher potential, and the second step is the PPy film formation on the freshly produced thin film at a lower potential. PPy films prepared by this two-step method were found to be uniform and smooth in appearance, more flexible and adherent than those prepared using the conventional potentiostatic technique. Mostly, anodic metal substrate dissolution and over-oxidation of PPy can be avoided.
     The effects of applied potentials on the electrochemical, structural and protective properties of PPy films have been explored. Films electrodeposited at lower potentials have more homogeneous morphology, less overoxidation, better ahersion to metal surface and higher electroactivities. Applying lower potential for the synthesis improves the anti-corrosive efficiency of PPy film in 3.5% NaCl solution.
     2. Corrosion performance and mechanism research for PPy coated stainless steel
     The comparison of electrochemical properties of stainless steel/PPy in 3.5%NaCl solution for different thicknesses was performed. Interesting results were obtained that the thicker the PPy film was, the smaller the semicircle of EIS at high frequencies was, and thus the semicircle should correspond to the charge transfer impedance and the impedance diagram response is mainly ascribed to the polymer film rather than to the underlying stainless steel substrate. The anodic polarization current of stainless steel/PPy increased as film thickness increasing, and rose rapidly at about 0.50 V (vs SCE) indicating that the corrosion of stainless steel in 3.5%NaCl solution is inhibited. The polarization current mostly comes from redox current of PPy before the potential reaches 0.50 V.
     EIS of stainless steel/PPy and Pt/PPy in 3.5%NaCl solution were measured for the sake of comparision. Results show that the semicircle for stainless steel/PPy related to charge transfer impedance was found to be similar to that for Pt/PPy at high frequencies. The charge transfer impedance measured reflects the redox reaction of PPy, and the corrosion resistance of stainless steel substrate coated with PPy is very large indicating that the stainless steel is under protection of PPy film. The electrochemical behavior of stainless steel/PPy in 3.5%NaCl solution was investigated for different immersion time. The anodic polarization current is mainly ascribed to the dissolution of stainless steel at pinhole defects for initial immersion, and to PPy oxidation after 1 h immersion.
     The comparison of electrochemical properties for stainless steel/PPy and Pt/PPy in 1 mol L-1 SDBS solution was carried out. Results show that electrochemical reaction between PPy and stainless steel will take place when electrolyte reaches the surface of stainless steel causing passivation of stainless steel and dedoping of PPy. The dedoped PPy can be re-oxidized in doped form.
     An equivalent circuit of EIS for stainless steel/PPy in 3.5%NaCl solution was proposed, with which the charge transfer resistances for stainless steel corrosion and redox reaction of PPy were separated. Then the corrosion behavior of stainless steel/PPy was analyzed through the evolution of corrosion resistance and the redox reaction resistance with time in 3.5% NaCl solution for PPy coated stainless steel. Results show that PPy can inhibit corrosion of stainless steel by passivation and release of dodecylbenzenesulfonate anion.
     3. Electrochemical properties of free-standing PPy film
     Potentiodynamic polarization curves of free-standing PPy film electrode in 3.5% NaCl with no-deaeration and deaeration were measured. Results show that the redox reaction of PPy is under electrochemical control even in large overpotential.
     Free-standing PPy films were firstly polarized at -0.8 V for 10 min to reach full reduce state, then potentiostatic anodic polarizations were performed. It is found that film resistance evolution as a function of time shows exponential decay. The relation equation between film resistance and time was analyzed in theory, the more higher the potential, the shorter the half-life.
     The influences of pH value on properties for free-standing PPy film in 1 mol L-1 NaCl were investigated. Results show that line slope of potential-pH curve is -0.029 V/pH for pH < 11, and is -0.083 V/pH for pH > 11. In acidic solution, proton-acid doping occurs and film conductivity increases. While in alkaline solution, PPy films are de-protonated and confronted over-oxidization thereby becoming less conductivity. The higher the value of pH is, the more negative the initial potential and peak potential are.
     4. Application of conducting polymer
     PPy-Pani (polyaniline) composite were prepaired through layer by layer deposition or copolymerization in order to improve the anti-corrosive efficiency and capacitance properties of conducting polymer, and subsequent material test or characterization were carried out. Results show that pitting potential of stainless steel in 3.5% NaCl solution can be raised by covering with bilayer PPy films or copolymerizated PPy films. The composite polymers with PPy as primer have better protection effect than that with Pani as primer. Copolymerizated PPy films synthesized with higher pyrrole concentration show better anti-corrosive performance. The capacitor properties quite depend on the deposit order: the composite polymers with PPy as primer have better capacity than that with Pani as primer. The specific capacitance of stainless steel/PPy/Pani and stainless steel/PPy/Pani/PPy electrodes is far higher (up to 206.11 F g-1 and 216.13 F g-1) than that of pure conducting polymers or other composite polymers.
引文
[1]杨德钧,沈卓身.金属腐蚀学.第1版.北京:冶金工业出版社, 1999, 2.
    [2]柯伟.中国腐蚀调查报告.第1版.北京:化学工业出版社, 2003, 252, 254.
    [3] Reut J, Opik A, Idla K. Corrosion behavior of polypyrrole coated mild steel. Synthetic Metals, 1999, 102(1-3):1392-1393.
    [4] Tüken T, Yazici B, Erbil M. A new multilayer coating for mild steel protection. Progress In Organic Coatings, 2004, 50(2):115-122.
    [5] Lehr I L, Saidman S B. Corrosion protection of iron by polypyrrole coatings electrosynthesised from a surfactant solution. Corrosion Science, 2007, 49(5):2210-2225.
    [6] Chiang C K, Fincher C R, Jr., et al. Electrical conductivity in doped polyacetylene. Physical Review Letters, 1977, 39:1098-1101.
    [7] Shirakawa H, Louis E J, Macdiarmid A G, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. Journal of the Chemical Society, Chemical Communications, 1977:578-580.
    [8]万梅香.导电高分子.高分子通报, 1999, (03):47-53.
    [9]万梅香.导电高聚物的现状与挑战.中国基础科学, 2000, (09):24-25.
    [10] Deberry D W. Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating. Journal of The Electrochemical Society, 1985, 132(5):1022-1026.
    [11] Lu W, Elsenbaumer R L, Wessling B. Corrosion protection of mild steel by coatings containing polyaniline. Synthetic Metals, 1995, 71(1-3):2163-2166.
    [12] Wessling B. Corrosion prevention with an organic metal (polyaniline): Surface ennobling, passivation, corrosion test results. Materials And Corrosion-werkstoffe Und Korrosion, 1996, 47(8):439-445.
    [13] Wang J. Polyaniline coatings: anionic membrane nature and bipolar structures for anticorrosion. Synthetic Metals, 2002, 132(1):53-56.
    [14] Zhu H, Zhong L, Xiao S, et al. Accelerating effect and mechanism of passivation of polyaniline on ferrous metals. Electrochimica Acta, 2004, 49(28):5161-5166.
    [15] Zhong L, Xiao S, Hu J, et al. Application of polyaniline to galvanic anodicprotection on stainless steel in H2SO4 solutions. Corrosion Science, 2006, 48(12):3960-3968.
    [16] Yano J, Nakatani K, Harima Y, et al. Bilayer polymer coating containing a polyaniline for corrosion protection of iron. Materials Letters, 2007, 61(7):1500-1503.
    [17] Tüken T, Yazici B, Erbil M. Zinc modified polyaniline coating for mild steel protection. Materials Chemistry And Physics, 2006, 99(2-3):459-464.
    [18]孙再成,李季,王献红,等.苯胺低聚体的合成与表征.高分子通报, 2001, (1):1003-3726.
    [19]苏光耀,高德叔.聚苯胺修饰不锈钢电极的腐蚀行为.表面技术, 1997, 26(4):19-21.
    [20]谭焰,肖静知.聚苯胺在金属腐蚀保护中的应用.电镀与涂饰, 1998, 17(3):49-52.
    [21]倪余伟.聚苯胺在腐蚀防护中的应用.腐蚀与防护, 2000, 21(1):27-31.
    [22]于尚慈,曾跃,郑仰存.聚苯胺对碳钢腐蚀的阻化作用.湖南师范大学自然科学学报, 2002, 25(2):58-61.
    [23]张东华,王杨勇,强军锋.聚苯胺防腐蚀电化学方法研究.化工新型材料, 2003, 31(6):30-33.
    [24]井新利,王杨勇,强军锋.本征态聚苯胺的防腐性能.中国腐蚀与防护学报, 2004, 24(5):301-305.
    [25]黄美荣,李新贵,杨海军.水性聚苯胺防腐涂料研究.涂料工业, 2005, 35(8):1-3.
    [26]甘复兴,肖书虎,钟莲,等.酸性介质中聚苯胺对不锈钢的伽伐尼阳极保护效应研究.材料保护, 2006, 39(8):12-15.
    [27]林卫丽,杜美利,邓宇强.水溶性聚苯胺对碳钢的缓蚀作用研究.腐蚀与防护, 2006, 27(7):344-345,348.
    [28]钟莲,胡捷,朱华,等.聚苯胺对2Cr13不锈钢无氧钝化的机理探讨.武汉大学学报(理学版), 2006, 52(2):154-158.
    [29] Troch-Nagels G, Winand R, Weymeersch A, et al. Electron conducting organic coating of mild steel by electropolymerization. Journal of Applied Electrochemistry, 1992, 22(8):756-764.
    [30] Deronzier A A, Moutet J C. Functionalized polypyrroles. New molecular materials for electrocatalysis and related applications. Accounts Of Chemical Research, 1989, 22:248-255.
    [31]高扬,刘尚长.高导聚吡咯的结构、性质及其应用.化学通报, 1989,(7):23-26.
    [32] Spinks G M, Dominis a J, Wallace G G, et al. Electroactive conducting polymers for corrosion control: Part 2. Ferrous metals. Journal of Solid State Electrochemistry, 2002, 6(2):85-100.
    [33] Tallman D E, Spinks G, Dominis A, et al. Electroactive conducting polymers for corrosion control: Part 1. General introduction and a review of non-ferrous metals. Journal of Solid State Electrochemistry, 2002, 6(2):73-84.
    [34] Inzelt G, Pineri M, Schultze J W, et al. Electron and proton conducting polymers: recent developments and prospects. Electrochimica Acta, 2000, 45:2403-2421.
    [35] Wang J, Neoh K G, Kang E T. Comparative study of chemically synthesized and plasma polymerized pyrrole and thiophene thin films. Thin Solid Films, 2004, 446(2):205-217.
    [36] Dall'olio A, Dascola Y, Varraca V, et al. Electron paramagnetic resonance and conductivity of an electrolytic oxypyrrole [(pyrrole polymer)] black. Comptes Rendus de l' Academie des Sciences Serie IIc:Chemie, 1968, 267:433-435.
    [37] Diaz A F, Kanazawa K K, Gardini G P. Electrochemical polymerization of pyrrole. Journal of the Chemical Society, Chemical Communications, 1979, (14):635-636.
    [38] Diaz A F, Castillo J I. A polymer electrode with variable conductivity: polypyrrole. Journal of the Chemical Society, Chemical Communications, 1980, (9):397-398.
    [39] Baker C K, Reynolds J R. A quartz microbalance study of the electrosynthesis of polypyrrole. Journal of Electroanalytical Chemistry, 1988, 251(2):307-322.
    [40] Maddison D S, Unsworth J. Optimization of synthesis conditions of polypyrrole from aqueous solutions. Synthetic Metals, 1989, 30(1):47-55.
    [41] West K, Jacobsen T, Zachau-Christiansen B, et al. Electrochemical synthesis of polypyrrole: Influence of current density on structure. Synthetic Metals, 1993, 55(2-3):1412-1417.
    [42] Omastova M, Lazar M, Kosina S. Combined electrochemical and chemical synthesis of thick polypyrrole layers and their characterization. Polymer International, 1994, 34(2):151-156.
    [43] Lee J Y, Kim D Y, Kim C Y. Synthesis of soluble polypyrrole of the doped state in organic solvents. Synthetic Metals, 1995, 74(2):103-106.
    [44] Stankovic R, Laninovic V, Vojnovic M, et al. Synthesis and electrochemical properties of polypyrrole. Materials Science Forum, 1996, 214:147-154.
    [45] Omastova M, Pavlinec J, Pionteck J, et al. Synthesis, electrical properties and stability of polypyrrole-containmg conducting polymer composites. Polymer International, 1997, 43(2):109-116.
    [46] Kim J H, Sung H K, Kim J H, et al. Electrochemical synthesis of metallic polypyrrole films. Journal of The Korean Physical Society, 1997, 31(1):91-94.
    [47] Stankovic S, Stankovic R, Ristic M, et al. Some aspects of the electrochemical synthesis of polypyrrole. Reactive and Functional Polymers, 1997, 35(3):145-151.
    [48] Vernitskaya T V. Polypyrrole: A conducting polymer; its synthesis, properties and applications. Russian Chemical Reviews, 1997, 66(5):443-457.
    [49] Su W, Iroh J O. Effects of electrochemical process parameters on the synthesis and properties of polypyrrole coatings on steel. Synthetic Metals, 1998, 95(3):159-167.
    [50] Van Den Schoor R C G M, Van De Leur R H M, De Wit J H W. Synthesis of a polypyrrole film on a non-conducting substrate; the influence of the oxidant and acid concentration. Synthetic Metals, 1999, 99(1):17-20.
    [51] Ferreira C A, Domenech S C, Lacaze P C. Synthesis and characterization of polypyrrole/TiO2 composites on mild steel. Journal of Applied Electrochemistry, 2001, 31(1):49-56.
    [52] Bazzaoui M, Bazzaoui E A, Martins L, et al. Electrochemical synthesis of adherent polypyrrole films on zinc electrodes in acidic and neutral organic media. Synthetic Metals, 2002, 128(1):103-114.
    [53]郑玉斌,张善举.电聚合导电聚吡咯的合成研究.功能高分子学报, 1996, 9(4):613-615.
    [54]尹五生.聚吡咯导电材料合成方法的进展.功能材料, 1996, 27(2):97-102.
    [55]莫笑萍,王纪孝,胡山鹰,等.聚吡咯纳米线的恒电位合成及形貌分析.化学通报, 2005, 68(12):918-922.
    [56]任丽,王立新,赵金玲,等.导电聚合物及导电聚吡咯的研究进展.材料导报, 2002, 16(2):60-62.
    [57]贝建中,钱人元.在水溶液中电化学反应制备大面积聚吡咯膜.功能高分子学报, 1991, 4(4):320-325.
    [58]陈凤恩,石高全,徐景坤,等.拉曼光谱研究电化学沉积聚吡咯掺杂程度对膜厚度的依赖性.光散射学报, 2002, 14(1):54-57.
    [59]彭补之. 2024铝基体上聚苯胺-聚吡咯复合涂层的腐蚀保护性能.材料保护, 2003, 36(1):67-67.
    [60] Bazzaoui M, Martins L, Bazzaoui E A, et al. New single-step electrosynthesis process of homogeneous and strongly adherent polypyrrole films on iron electrodes in aqueous medium. Electrochimica Acta, 2002, 47(18):2953-2962.
    [61] Fenelon A M, Breslin C B. The electrochemical synthesis of polypyrrole at a copper electrode: corrosion protection properties. Electrochimica Acta, 2002, 47(28):4467-4476.
    [62] Martins J I, Bazzaoui M, Reis T C, et al. Electrosynthesis of homogeneous and adherent polypyrrole coatings on iron and steel electrodes by using a new electrochemical procedure. Synthetic Metals, 2002, 129(3):221-228.
    [63] Zhou M, Pagels M, Geschke B, et al. Electropolymerization of pyrrole and electrochemical study of polypyrrole. 5. Controlled electrochemical synthesis and solid-state transition of well-defined polypyrrole variants. Journal of Physical Chemistry B, 2002, 106(39):10065-10073.
    [64] Saidman S B. The potentiometric response of polypyrrole electrosynthesised in alkaline media. European Polymer Journal, 2005, 41(3):433-437.
    [65] Gao Y, Zhao L, Bai H, et al. Electrosynthesis of small polypyrrole microcontainers. Journal of Electroanalytical Chemistry, 2006, 597(1):13-18.
    [66] Zhang X, Zhang J, Song W, et al. Controllable synthesis of conducting polypyrrole nanostructures. Journal of Physical Chemistry B, 2006, 110(3):1158-1165.
    [67]杨绮琴,方北龙,童叶翔.应用电化学.第1版.广州:中山大学出版社, 2001, 80.
    [68]马淳安.有机电化学合成导论.第1版.北京:科学出版社, 2002, 5.
    [69]吴辉煌.电化学.第1版.北京:化学工业出版社, 2004, 80, 132, 145, 148, 226.
    [70]蒋永锋,郭兴伍,翟春泉,等.导电高分子在金属防腐领域的研究进展.功能高分子学报, 2002, 15(4):473-479.
    [71] Ghosh S, Bowmaker G A, Cooney R P, et al. Infrared and Raman spectroscopic studies of the electrochemical oxidative degradation of polypyrrole. Synthetic Metals, 1998, 95(1):63-67.
    [72] Diaz A F, Martinez A, Kanazawa K K, et al. Electrochemistry of some substituted pyrroles. Journal of Electroanalytical Chemistry, 1981, 130:181-187.
    [73] Genies E M, Bidan G, Diaz A F. Spectroelectrochemical study of polypyrrole films. Journal of Electroanalytical Chemistry, 1983, 149(1-2):101-113.
    [74] Diaz A F, Crowley J, Bargon J, et al. Electrooxidation of aromatic oligomers and conducting polymers. Journal of Electroanalytical Chemistry, 1981, 121:355-361.
    [75]李永舫.导电聚吡咯的研究.高分子通报, 2005, (4):51-57.
    [76]钱人元,李永舫.导电聚吡咯的研究.中国科学基金, 1996, 10(3):212-214.
    [77] Qian R, Pei Q, Huang Z. The role of H+ ions in the electrochemical polymerization of pyrrole. Angewandte Makromolekulare Chemie, 1991, 192:1263-1273.
    [78] Li Y, Fan Y. Doping competition of anions during the electropolymerization of pyrrole in aqueous solutions. Synthetic Metals, 1996, 79(3):225-227.
    [79] Li Y, Yang J. Effect of electrolyte concentration on the properties of the electropolymerized polypyrrole films. Journal of Applied Polymer Science, 1997, 65(13):2739-2744.
    [80] Li Y. Effect of anion concentration on the kinetics of electrochemical polymerization of pyrrole. Journal of Electroanalytical Chemistry, 1997, 433(1-2):181-186.
    [81] Su W P, Schrieffer J R, Heeger a J. Solitons in polyacetylene. Physical Review Letters, 1979, 42(25):1698-1701.
    [82]钱人元.导电高聚物的分子设计问题.高分子通报, 1991, (2):65-71.
    [83] Cao Y, Li S, Xue Z, et al. Spectroscopic and electrical characterization of some aniline oligomers and polyaniline. Synthetic Metals, 1986, 16(3):305-315.
    [84] Li Y. On the large overpotential of the first reduction of polypyrrole perchlorate films in organic solutions. Electrochimica Acta, 1997, 42(2):203-210.
    [85] Geetha S, Trivedi D C. Studies on polypyrrole film in room temperature melt. Materials Chemistry And Physics, 2004, 88(2-3):388-397.
    [86]黄赣辉,邓少平,詹月华.导电聚吡咯薄膜的大过电位现象.南昌大学学报(理科版), 2006, 30(4):368-371.
    [87]李春光,崔刚,尹寿玉,等.聚吡咯水杨酸修饰电极的电化学行为及水杨酸含量测定.分析化学, 1994, 22(9):922-924.
    [88]金文,詹瑞云.同多钼酸掺杂的聚吡咯薄膜电极的制备及表征.化学学报, 1994, 52(2):144-149.
    [89]丁杰,董绍俊.导电高分子薄膜修饰电极的研究(II):杂聚阴离子掺杂聚吡咯膜的性质.高等学校化学学报, 1996, 17(8):1191-1194.
    [90] Hallik A, Alumaa A, Tamm J, et al. Analysis of electrochemical impedance of polypyrrole|sulfate and polypyrrole|perchlorate films. Synthetic Metals, 2006,156(5-6):488-494.
    [91] Ehrenbeck C, Juttner K. Ion conductivity and permselectivity measurements of polypyrrole membranes at variable states of oxidation. Electrochimica Acta, 1996, 41(11-12):1815-1823.
    [92] Mondal S K, Prasad K R, Munichandraiah N. Analysis of electrochemical impedance of polyaniline films prepared by galvanostatic, potentiostatic and potentiodynamic methods. Synthetic Metals, 2005, 148(3):275-286.
    [93] Ehrenbeck C, Juttner K, Ludwig S, et al. The electrochemical impedance of a free-standing polypyrrole membrane. Electrochimica Acta, 1998, 43(19-20):2781-2789.
    [94] Jüttner K, Schmitz R H J, Hudson A. A parameter study on the impedance of poly(3-methylthiophene) film electrodes. Electrochimica Acta, 1999, 44(24):4177-4187.
    [95] Rodríguez Nieto F J, Posadas D, Tucceri R I. Effect of the bathing electrolyte concentration on the charge transport process at poly(o-aminophenol) modified electrodes. An ac impedance study. Journal of Electroanalytical Chemistry, 1997, 434(1-2):83-91.
    [96] Ro?berg K, Paasch G, Dunsch L, et al. The influence of porosity and the nature of the charge storage capacitance on the impedance behaviour of electropolymerized polyaniline films. Journal of Electroanalytical Chemistry, 1998, 443(1):49-62.
    [97]雷彤,赵孔双.导电高分子膜的电化学阻抗谱研究进展.化学通报, 2001, (1):11-17.
    [98]张爱勤,王力臻,张志峰.聚吡咯掺杂对LiMn2O4充放电性能的影响.电池工业, 2005, 10(5):271-273.
    [99]谢虹,严曼明.导电聚吡咯电极的现场红外光谱.复旦学报(自然科学版), 1997, 36(1):15-20.
    [100]柳闽生,李永舫.纳米尺度TiO2/聚吡咯多孔膜电极光电化学研究.高等学校化学学报, 1997, 18(6):938-942.
    [101]高劲松,田中群.十二烷基苯磺酸钠掺杂的聚吡咯的电化学和现场拉曼光谱.厦门大学学报(自然科学版), 1995, 34(02):226-233.
    [102] Furukawa Y, Tazawa S, Fujii Y, et al. Raman spectra of polypyrrole and its 2,5-13C-substituted and C-deuterated analogues in doped and undoped states. Synthetic Metals, 1988, 24(4):329-341.
    [103]肖迎红,王静,孙晓亮,等.导电聚吡咯的电化学行为及表面形貌研究.南京理工大学学报(自然科学版), 2005, 29(4):483-485.
    [104]刘建华,周新楣,李松梅.导电聚吡咯/聚苯胺复合材料的SEM研究.复合材料学报, 2006, 23(1):75-79.
    [105]任丽,王立新,张富强,等. PPy/APS-SiO2纳米导电复合材料的合成与表征.高分子材料科学与工程, 2004, 20(6):60-63.
    [106] Otero T F, Santamaria C. Kinetics of the polypyrrole electrogeneration from aqueous solution. An ex situ microgravimetric study. Electrochimica Acta, 1992, 37(2):297-307.
    [107] Biswas M, Roy A. O-chloranil initiated polymerization of pyrrole in presence of n-vinylcarbazole and some properties of the polymer. European Polymer Journal, 1995, 31(8):725-731.
    [108] Ouyang J, Li Y. Great improvement of polypyrrole films prepared electrochemically from aqueous solutions by adding nonaphenol polyethyleneoxy (10) ether. Polymer, 1997, 38(15):3997-3999.
    [109]李永舫.导电聚合物.化学进展, 2002, 14(03):207-211.
    [110] Diaz A F, Hall B. Mechanical properties of electrochemically prepared polypyrrole films. Ibm Journal of Research And Development, 1983, 27(4):342-347.
    [111] Salmon M, Diaz A F, Logan A J, et al. Chemical modification of conducting polypyrrole films. Molecular Crystals And Liquid Crystals, 1982, 83:265-276.
    [112] Qian R, Qiu J. Electrochemically prepared polypyrroles from aqueous solutions. Polymer Journal, 1987, 19(1):157-172.
    [113] Satoh M, Kaneto K, Yoshino K. Dependences of electrical and mechanical properties of conducting polypyrrole films on conditions of electrochemical polymerization in an aqueous medium. Synthetic Metals, 1986, 14(4):289-296.
    [114] Brie M, Turcu R, Mihut A. Stability study of conducting polypyrrole films and polyvinylchloride-polypyrrole composites doped with different counterions. Materials Chemistry And Physics, 1997, 49(2):174-178.
    [115] Schirmeisen M, Beck F. Electrocoating of iron and other metals with polypyrrole. Journal of Applied Electrochemistry, 1989, 19(3):401-409.
    [116] Tüken T, Ozyilmaz A T, Yazici B, et al. Electrochemical synthesis of polyaniline on mild steel in acetonitrile-LiClO4 and corrosion performance. Applied Surface Science, 2004, 236(1-4):292-305.
    [117] Ferreira C A, Aeiyach S, Aaron J J, et al. Electrosynthesis of strongly adherent polypyrrole coatings on iron and mild steel in aqueous media. ElectrochimicaActa, 1996, 41(11-12):1801-1809.
    [118]曹楚南.腐蚀电化学原理.第2版.北京:化学工业出版社, 2004, 71, 97-98.
    [119]张鉴清,曹楚南.电化学阻抗谱方法研究评价有机涂层.腐蚀与防护, 1998, 19(3):99-104.
    [120] Tüken T, Arslan G, Yazici B, et al. The corrosion protection of mild steel by polypyrrole/polyphenol multilayer coating. Corrosion Science, 2004, 46(11):2743-2754.
    [121] Nguyen Thi Le H, Garcia B, Deslouis C, et al. Corrosion protection and conducting polymers: polypyrrole films on iron. Electrochimica Acta, 2001, 46(26-27):4259-4272.
    [122] De Paoli M-A, Peres R C D, Panero S, et al. Properties of electrochemically synthesized polymer electrodes--X. Study of polypyrrole/dodecylbenzene sulfonate. Electrochimica Acta, 1992, 37(7):1173-1182.
    [123] Ozyilmaz A T, Erbil M, Yazici B. Investigation of corrosion behaviour of stainless steel coated with polyaniline via electrochemical impedance spectroscopy. Progress In Organic Coatings, 2004, 51(1):47-54.
    [124] Tüken T. Polypyrrole films on stainless steel. Surface and Coatings Technology, 2006, 200(16-17):4713-4719.
    [125] Grgur B N, Krstaji? N V, Vojnovi M V, et al. The influence of polypyrrole films on the corrosion behavior of iron in acid sulfate solutions. Progress In Organic Coatings, 1998, 33(1):1-6.
    [126]张鉴清.富锌涂层的电化学阻抗谱特性.中国腐蚀与防护学报, 1996, 16(3):175-180.
    [127] Mansfeld F. Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings. Journal of Applied Electrochemistry, 1995, 25(3):187-202.
    [128] Walter G W. A review of Impedance plot methods used for corrosion performance analysis of painted metals. Corrosion Science, 1986, 26(9):681-703.
    [129] Mostany J, Scharifker B R. Impedance spectroscopy of undoped, doped and overoxidized polypyrrole films. Synthetic Metals, 1997, 87(3):179-185.
    [130] Paasch G, Micka K, Gersdorf P. Theory of the electrochemical impedance of macrohomogeneous porous electrodes. Electrochimica Acta, 1993, 38(18):2653-2662.
    [131] Grzeszczuk M, Zabinska-Olszak G. Effects of the secondary counterions in theelectrochemistry of polypyrrole. Journal of Electroanalytical Chemistry, 1997, 427(1-2):169-177.
    [132] Gabrielli C, Haas O, Takenouti H. Impedance analysis of electrodes modified with a reversible redox polymer film. Journal of Applied Electrochemistry, 1987, 17:82-90.
    [133] Deslouis C, Musiani M M, Tribollet B, et al. Comparison of the AC impedance of conducting polymer films studied as electrode-supported and freestanding membranes Journal of The Electrochemical Society, 1995, 142:1902 - 1908.
    [134] Deslouis C, Musiani M M, Tribollet B. Ac Impedance Study of Transport Processes in Polyaniline Membranes. The Journal of Physical Chemistry, 1994, 98(11):2936-2940.
    [135] Ro?berg K, Dunsch L. Electrochemical impedance spectroscopy on conducting polymer membranes. Electrochimica Acta, 1999, 44(12):2061-2071.
    [136] Vorotyntsev M A, Daikhin L I, Levi M D. Modelling the impedance properties of electrodes coated with electroactive polymer films. Journal of Electroanalytical Chemistry, 1994, 364(1-2):37 - 49.
    [137] Vorotyntsev M A, Deslouis C, Musiani M M, et al. Transport across an electroactive polymer film in contact with media allowing both ionic and electronic interfacial exchange. Electrochimica Acta, 1999, 44(12):2105-2115.
    [138] Horvat-Rado?evi? V, Kvastek K, Kralji?-Rokovi? M. Impedance spectroscopy of oxidized polyaniline and poly(o-ethoxyaniline) thin film modified Pt electrodes. Electrochimica Acta, 2006, 51(17):3417-3428.
    [139] Ozyilmaz A T, Tüken T, Yazici B, et al. The electrochemical synthesis and corrosion performance of polyaniline on copper. Progress In Organic Coatings, 2005, 52(2):92-97.
    [140] Su W, Iroh J O. Electrodeposition mechanism, adhesion and corrosion performance of polypyrrole and poly(N-methylpyrrole) coatings on steel substrates. Synthetic Metals, 2000, 114(3):225-234.
    [141] Herrasti P, Ocón P. Polypyrrole layers for steel protection. Applied Surface Science, 2001, 172(3-4):276-284.
    [142] Krstaji? N V, Grgur B N, Jovanovi? S M, et al. Corrosion protection of mild steel by polypyrrole coatings in acid sulfate solutions. Electrochimica Acta, 1997, 42(11):1685-1691.
    [143] Grgur B N, Krstaji? N V, Vojnovi? M V, et al. The influence of polypyrrole films on the corrosion behavior of iron in acid sulfate solutions. Progress InOrganic Coatings, 1998, 33(1):1-6.
    [144] Kinlen P J, Menon V, Ding Y. A mechanistic investigation of polyaniline corrosion protection using the scanning reference electrode technique. Journal of The Electrochemical Society, 1999, 146(10):3690-3695.
    [145] Rohwerder M, Michalik A. Conducting polymers for corrosion protection: What makes the difference between failure and success? Electrochimica Acta, 2007, 53:1300-1313.
    [146] Zhang T, Zeng C L. Corrosion protection of 1Cr18Ni9Ti stainless steel by polypyrrole coatings in HCl aqueous solution. Electrochimica Acta, 2005, 50(24):4721-4727.
    [147]徐友龙,杰王,孙孝飞.一种高密度聚吡咯膜防腐涂层的制备工艺.中国. C25D 13/08, 200710017299. 2007-01-25.
    [148] Beck F, Schroetz M. Thin polyheteroaromatic interlayers on commodity metals for corrosion protection. Materials Science Forum, 1998, 289-292(pt 2):1217-1228.
    [149] Idla K, Talo A, Niemi H E M, et al. An XPS and AFM study of polypyrrole coating on mild steel. Surface And Interface Analysis, 1997, 25(11):837-854.
    [150] Nguyen Thi Le H, Bernard M C, Garcia-Renaud B, et al. Raman spectroscopy analysis of polypyrrole films as protective coatings on iron. Synthetic Metals, 2004, 140(2-3):287-293.
    [151] Truong V T, Lai P K, Moore B T, et al. Corrosion protection of magnesium by electroactive polypyrrole/paint coatings. Synthetic Metals, 2000, 110(1):7-15.
    [152] Nguyen Thi Le H, Garcia B, Deslouis C, et al. Corrosion protection of iron by polystyrenesulfonate-doped polypyrrole films. Journal of Applied Electrochemistry, 2002, 32(1):105-110.
    [153] Nguyen T D, Nguyen T A, Pham M C, et al. Mechanism for protection of iron corrosion by an intrinsically electronic conducting polymer. Journal of Electroanalytical Chemistry, 2004, 572(2):225-234.
    [154] Tallman D E, Pae Y, Chen G, et al. Studies of electronically conducting polymers for corrosion inhibition of aluminum and steel. In: Conference Proceedings at Antec'98: Plastics on My Mind. Atlanta, GA, USA: Soc Plastics Engineers, Brookfield, CT, USA, 1998, 1234-1237.
    [155] He J, Gelling V J, Tallman D E, et al. Conducting polymers and corrosion III. A scanning vibrating electrode study of poly(3-octyl pyrrole) on steel and aluminum. Journal of The Electrochemical Society, 2000, 147(10):3667-3672.
    [156] Nguyen T D, Keddam M, Takenouti H. Device to study electrochemistry of iron at a defect of protective coating of electronic conducting polymer. Electrochemical and Solid-State Letters, 2003, 6(8):B25-B28.
    [157] Michalik A, Rohwerder M. Conducting polymers for corrosion protection: A critical view. Zeitschrift fur Physikalische Chemie, 2005, 219(11):1547-1559.
    [158] Barisci J N, Lewis T W, Spinks G M, et al. Conducting polymers as a basis for responsive materials systems. Journal of Intelligent Material Systems and Structures, 1999, 9(9):723-731.
    [159] Kendig M, Hon M, Warren L. `Smart' corrosion inhibiting coatings. Progress In Organic Coatings, 2003, 47(3-4):183-189.
    [160] Paliwoda-Porebska G, Stratmann M, Rohwerder M, et al. On the development of polypyrrole coatings with self-healing properties for iron corrosion protection. Corrosion Science, 2005, 47(12):3216-3233.
    [161] Lehr I L, Saidman S B. Electrodeposition of polypyrrole on aluminium in the presence of sodium bis(2-ethylhexyl) sulfosuccinate. Materials Chemistry And Physics, 2006, 100(2-3):262-267.
    [162] Redondo M I, Breslin C B. Polypyrrole electrodeposited on copper from an aqueous phosphate solution: Corrosion protection properties. Corrosion Science, 2007, 49(4):1765-1776.
    [163] Mastragostino M, Arbizzani C, Soavi F. Polymer-based supercapacitors. Journal of Power Sources, 2001, 97-98:812-815.
    [164] Arbizzani C, Mastragostino M, Soavi F. New trends in electrochemical supercapacitors. Journal of Power Sources, 2001, 100(1-2):164-170.
    [165] Rudge A, Davey J, Raistrick I, et al. Conducting polymers as active materials in electrochemical capacitors. Journal of Power Sources, 1994, 47:89-107.
    [166]漆海波,周啸,姜翠玲,等.碳纳米管-聚吡咯复合材料在超电容器中的应用.电子元件与材料, 2002, 21(12):30-32.
    [167] Qian R, Li Y, Yan B, et al. Electrochemical aspects of polypyrrole. Synthetic Metals, 1989, 28(1-2):51-58.
    [168]薛晓康,郭兴蓬,余成平.电位型聚吡咯pH传感器的制备.应用化学, 2005, 22(4):435-439.
    [169] Ikariyama Y, Heineman W R. Polypyrrole electrode as a detector for electroinactive anions by flow injection analysis. Analytical Chemistry, 1986, 58(8):1803-1806.
    [170]董绍俊,孙志胜.新型导电聚合物-聚吡咯溴离子化学传感器.化学学报,1990, 48(4):337-343.
    [171] Gardner J W, Bartlett P N. Design of conducting polymer gas sensors: Modelling and experiment. Synthetic Metals, 1993, 57(1):3665-3670.
    [172]刘百祥,李青山.固定有四硫富瓦烯.四氰基奎诺二甲烷的杂聚吡咯膜微葡萄糖电极.分析化学, 1998, 26(11):1365-1368.
    [173]薛怀国,沈之荃,李永舫.胺氧化酶修饰聚苯胺电极的生物电化学响应特性.高等学校化学学报, 2002, 23(4):730-733.
    [174]田承云,朱建中.基于聚吡咯的平面型葡萄糖传感器的研究.分析化学, 1998, 26(7):854-857.
    [175]程发良,莫金垣.聚吡咯为基质的脲酶传感器生物电化学响应.高分子学报, 1999, (4):417-421.
    [176]李建平,彭图治.聚吡咯固定胆固醇氧化酶/普鲁士蓝安培传感器的研制.分析化学, 2003, 31(6):669-673.
    [177]任丽,成国祥,朱嫦娥,等.聚吡咯作锂/聚合物二次电池正极的研究.高分子材料科学与工程, 2006, 22(1):222-225.
    [178] Zinger B, Miller L L. Timed release of chemicals from polypyrrole films. Journal of The American Chemical Society, 1984, 106(22):6861-6863.
    [179] Jerome C, Labaye D, Bodart I, et al. Electrosynthesis of polyacrylic/polypyrrole composites: Formation of polypyrrole wires. Synthetic Metals, 1999, 101(1-3):3-4.
    [180] Smela E. Microfabrication of PPy microactuators and other conjugated polymer devices. Journal of Micromechanics And Microengineering, 1999, 9(1):1-18.
    [181] Van Schaftinghen T, Deslouis C, Hubin A, et al. Influence of the surface pre-treatment prior to the film synthesis, on the corrosion protection of iron with polypyrrole films. Electrochimica Acta, 2006, 51(8-9):1695-1703.
    [182] Aeiyach S, Zaid B, Lacaze P C. A one-step electrosynthesis of PPy films on zinc substrates by anodic polymerization of pyrrole in aqueous solution. Electrochimica Acta, 1999, 44(17):2889-2898.
    [183] Iroh J O, Su W. Corrosion performance of polypyrrole coating applied to low carbon steel by an electrochemical process. Electrochimica Acta, 2000, 46(1):15-24.
    [184] Saidman S B. The effect of pH on the electrochemical polymerisation of pyrrole on aluminium. Journal of Electroanalytical Chemistry, 2002, 534(1):39-45.
    [185] Saidman S B, Quinzani O V. Characterisation of polypyrrole electrosynthesised on aluminium. Electrochimica Acta, 2004, 50(1):127-134.
    [186] Lucio García M A, Smit M A. Study of electrodeposited polypyrrole coatings for the corrosion protection of stainless steel bipolar plates for the PEM fuel cell. Journal of Power Sources, 2006, 158(1):397-402.
    [187] Saidman S B, Vela M E. Electropolymerisation of pyrrole onto aluminium from alkaline solutions containing a surfactant. Thin Solid Films, 2005, 493(1-2):96-103.
    [188] Tallman D E, Vang C K, Dewald M P, et al. Electron transfer mediated deposition of conducting polymers on active metals. Synthetic Metals, 2003, 135(1-3):33-34.
    [189] Tallman D E, Vang C, Wallace G G, et al. Direct Electrodeposition of polypyrrole on Aluminum and Aluminum alloy by electron transfer mediation. Journal of The Electrochemical Society, 2002, 149(3):C173-C179.
    [190] Naoi K, Takeda M, Kanno H, et al. Simultaneous electrochemical formation of Al2O3/polypyrrole layers (I): effect of electrolyte anion in formation process. Electrochimica Acta, 2000, 45(20):3413-3421.
    [191] Stejskal J, Omastova M, Fedorova S, et al. Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study. Polymer, 2003, 44(5):1353-1358.
    [192] Kaplin D A, Qutubuddin S. Electrochemically synthesized polypyrrole films: effects of polymerization potential and electrolyte type. Polymer, 1995, 36(6):1275-1286.
    [193] Zhong C J, Tian Z Q, Tian Z W. In situ ESR and Raman spectroscopic studies of the electrochemical process of conducting polypyrrole films. Journal of Physical Chemistry, 1990, 94(5):2171-2175.
    [194] Zhou Q-X, Kolaskie C J, Miller L L. The incorporation of electrolyte cations into polypyrrole and poly-3-methylthiophene during electrochemical reduction. Journal of Electroanalytical Chemistry, 1987, 223(1-2):283-286.
    [195] Katsuhiko N, Mary L, William H S. Quartz crystal microbalance study: ionic motion across conducting polymers. Journal of The Electrochemical Society, 1991, 138(2):440-445.
    [196] Pei Q, Ingan?s O. Electrochemical applications of the bending beam method. 2. Electroshrinking and slow relaxation in polypyrrole. Journal of Physical Chemistry, 1993, 97(22):6034-6041.
    [197] Beck F, Dahlhaus M. Evaluation of the first discharge redox process of doped polypyrrole. Journal of Electroanalytical Chemistry, 1993, 357(1-2):289-300.
    [198] Jager E W H, Smela E, Inganas O. On-chip microelectrodes for electrochemistry with moveable PPy bilayer actuators as working electrodes. Sensors and Actuators B: Chemical, 1999, 56(1-2):73-78.
    [199] Shimoda S, Smela E. The effect of pH on polymerization and volume change in PPy(DBS-). Electrochimica Acta, 1998, 44(2-3):219-238.
    [200] Li Y, Qian R. On the nature of redox processes in the cyclic voltammetry of polypyrrole nitrate in aqueous solutions. Journal of Electroanalytical Chemistry, 1993, 362(1-2):267-272.
    [201] Li Y, Qian R, Imaeda K, et al. Behavior of the high temperature conductivity of polypyrrole nitrate films. Polymer Journal, 1994, 26(5):535-538.
    [202] Li Y, Ouyang J, Yang J. Two doping structures and structural anisotropy revealed by the mass loss and shrinkage of polypyrrole films on alkali treatment. Synthetic Metals, 1995, 74(1):49-53.
    [203] Li Y, He G. Effect of preparation conditions on the two doping structures of polypyrrole. Synthetic Metals, 1998, 94(1):127-129.
    [204] Syritski V, Opik A, Forsen O. Ion transport investigations of polypyrroles doped with different anions by EQCM and CER techniques. Electrochimica Acta, 2003, 48(10):1409-1417.
    [205] Nguyen Thi Le H, Garcia B, Deslouis C, et al. Corrosion protection and conducting polymers: polypyrrole films on iron. Electrochimica Acta, 2001, 46(26-27):4259-4272.
    [206] Li Y, Liu Z. Electrochemical quartz crystal microbalance studies on the two reduction processes of conducting polypyrrole nitrate films in aqueous solutions. Synthetic Metals, 1998, 94(1):131-133.
    [207]甘复兴,钟莲,肖书虎,等.聚苯胺对1Cr13不锈钢无氧钝化的作用机理.材料保护, 2006, 39(4):6-9.
    [208] Zhong L, Zhu H, Hu J, et al. A passivation mechanism of doped polyaniline on 410 stainless steel in deaerated H2SO4 solution. Electrochimica Acta, 2006, 51(25):5494-5501.
    [209] Brusic V, Angelopoulos M, Graham T. Use of polyaniline and its derivatives in corrosion protection of copper and silver. Journal of The Electrochemical Society, 1997, 144(2):436-442.
    [210] Genies E M, Syed A A. Polypyrrole and poly N-methylpyrrole - An electrochemical study in an aqueous medium. Synthetic Metals, 1984, 10(1):21-30.
    [211] Otero T F, Santamaria C. Polypyrrole electrogeneration at different potentials : "Ex situ" microgravimetric control. Journal of Electroanalytical Chemistry, 1991, 312(1-2):285-291.
    [212] Tüken T, Yazici B, Erbil M. The corrosion behaviour of polypyrrole coating synthesized in phenylphosphonic acid solution. Applied Surface Science, 2006, 252(6):2311-2318.
    [213] Scienza L C, Thompson G E. Preparation and surface analysis of PPy/SDBS films on Aluminum substrates. Polímeros: Ciência e Tecnologia, 2001, 11(3):142-148.
    [214] Dong S, Ding J. Study on polypyrrole film by electrochemical polymerization in aqueous solution. Synthetic Metals, 1987, 20(1):119-124.
    [215] De La Plaza M A, Izquierdo M C, Sánchez De La Blanca E, et al. Electrosynthesis, electrochemical behavior and structure of poly[bis(phenoxyphosphazene)]-polypyrrole doped composite film. Synthetic Metals, 1999, 106(2):121-127.
    [216] Cascalheira A C, Aeiyach S, Lacaze P C, et al. Electrochemical synthesis and redox behaviour of polypyrrole coatings on copper in salicylate aqueous solution. Electrochimica Acta, 2003, 48(17):2523-2529.
    [217] Feldberg S W. Reinterpretation of polypyrrole electrochemistry. Consideration of capacitive currents in redox switching of conducting polymers. Journal of The American Chemical Society, 1984, 106(17):4671-4674.
    [218] Suematsu S, Oura Y, Tsujimoto H, et al. Conducting polymer films of cross-linked structure and their QCM analysis. Electrochimica Acta, 2000, 45(22-23):3813-3821.
    [219] Waltman R J, Bargon J, Diaz A F. Electrochemical studies of some conducting polythiophene films. The Journal of Physical Chemistry, 1983, 87(8):1459-1463.
    [220] Hammache H, Makhloufi L, Saidani B. Corrosion protection of iron by polypyrrole modified by copper using the cementation process. Corrosion Science, 2003, 45(9):2031-2042.
    [221] Tietje-Girault J, Ponce De Leon C, Walsh F C. Electrochemically deposited polypyrrole films and their characterization. Surface and Coatings Technology, 2007, 201(12):6025-6034.
    [222] Panero S, Prosperi P, Scrosati B. Properties of electrochemically synthesized polymer electrodes--IX. The effects of surfactants on polypyrrole films.Electrochimica Acta, 1992, 37(3):419-423.
    [223]南安普顿电化学小组(柳厚田,徐品弟等译).电化学中的仪器方法.上海:复旦大学出版社, 1992, 209.
    [224] Skothem T A, Elsenbaumer R L, Renolds J R. Handbook of Conducting Polymers. 2nd. New York: Marcel Dekker, Inc., 1998, 538-540, 914.
    [225] Zor S, Dogan P, Yazier B. Inhibition of acidic corrosion of iron and aluminium by SDBS at different temperatures. Corrosion Reviews, 2005, 23(2-3):217-232.
    [226] Ghavami R K, Rafiei Z. Performance improvements of alkaline batteries by studying the effects of different kinds of surfactant and different derivatives of benzene on the electrochemical properties of electrolytic zinc. Journal of Power Sources, 2006, 162(2):893-899.
    [227] Luo H, Guan Y C, Han K N. Inhibition of mild steel corrosion by sodium dodecyl benzene sulfonate and sodium oleate in acidic solutions. Corrosion, 1998, 54(8):619-627.
    [228] Saidman S B, Bessone J B. Electrochemical preparation and characterisation of polypyrrole on aluminium in aqueous solution. Journal of Electroanalytical Chemistry, 2002, 521(1-2):87-94.
    [229] Tan C K, Blackwood D J. Corrosion protection by multilayered conducting polymer coatings. Corrosion Science, 2003, 45(3):545-557.
    [230] Pud A A, Shapoval G S, Kamarchik P, et al. Electrochemical behavior of mild steel coated by polyaniline doped with organic sulfonic acids. Synthetic Metals, 1999, 107(2):111-115.
    [231] Ocon P, Cristobal A B, Herrasti P, et al. Corrosion performance of conducting polymer coatings applied on mild steel. Corrosion Science, 2005, 47(3):649-662.
    [232] Paliwoda-Porebska G, Rohwerder M, Stratmann M, et al. Release mechanism of electrodeposited polypyrrole doped with corrosion inhibitor anions. Journal of Solid State Electrochemistry, 2006, 10(9):730-736.
    [233] Li Y, Qian R. Effect of anion and solution pH on the electrochemical behavior of polypyrrole in aqueous solution. Synthetic Metals, 1989, 28(1-2):127-132.
    [234] Zhu R, Li G, Huang G. Two-step electrosynthesis of polypyrrole for corrosion protection of stainless steel. Materials and Corrosion, 2008, 59(DOI: 10.1002/maco.200805031).
    [235] Evrim H, Bereket G, Sahin Y. Corrosion performance of self-doped sulfonated polypyrrole coatings on stainless steel. Materials Chemistry And Physics, 2006,100(1):19-25.
    [236] Koene L, Hamer W J, De Wit J H W. Electrochemical behaviour of polypyrrole coatings on steel. Journal of Applied Electrochemistry, 2006, 36(5):545-556.
    [237] Christopher E D C, Royce W M. Redox capacity and direct current electron conductivity in electroactive materials. The Journal of Physical Chemistry, 1986, 90:1479-1484.
    [238] Tanguy J, Baudoin J L, Chao F, et al. Study of the redox mechanism of poly-3-methylthiophene by impedance spectroscopy. Electrochimica Acta, 1992, 37:1417-1428.
    [239] Konen L, Hamer W J, Witd J H W. Electrochemical behaviour of polypyrrole coatings on steel. J. Appl.Electrochem., 2006, (36):545-556.
    [240] Brug G J, Van Den Eeden a L G, Sluyters-Rehbach M, et al. The analysis of electrode impedances complicated by the presence of a constant phase element. Journal of Electroanalytical Chemistry, 1984, 176(1-2):275-295.
    [241]吴浩青,戚小鹤.锂在共轭双健高分子中的电化学嵌入反应.化学学报, 1987, 45:631-635.
    [242] Diaz A F, Castillo J I, Logan J A, et al. Electrochemistry of conducting polypyrrole films. Journal of Electroanalytical Chemistry, 1981, 129(1-2):115-132.
    [243] Nechtschein M, Devreux F, Genoud F, et al. Polarons, bipolarons and charge interactions in polypyrrole: Physical and electrochemical approaches. Synthetic Metals, 1986, 15(1):59-78.
    [244] Kinlen P J, Silverman D C, Jeffreys C R. Corrosion protection using polyaniline coating formulations. Synthetic Metals, 1997, 85(1-3):1327-1332.
    [245] Khomenko V G, Barsukov V Z, Katashinskii A S. The catalytic activity of conducting polymers toward oxygen reduction. Electrochimica Acta, 2005, 50(7-8):1675-1683.
    [246] Genz O, Lohrengel M M, Schultze J W. Potentiostatic pulse and impedance investigations of the redox process in polyaniline films. Electrochimica Acta, 1994, 39(2):179-185.
    [247] Pei Q, Qian R. Protonation and deprotonation of polypyrrole chain in aqueous solutions. Synthetic Metals, 1991, 45(1):35-48.
    [248] Pei Q, Qian R. Electrode potentials of electronically conducting polymer polypyrrole. Electrochimica Acta, 1992, 37(6):1075-1081.
    [249]张文斌,丁杰.聚吡咯电化学掺杂过程的拉曼光谱研究.发光学报, 1993,14(2):193-196.
    [250]张光敏,阎康平.本征导电高分子材料的进展.电子元件与材料, 1999, 18(4):41-42.
    [251]余晴春,朱沁伟,吴益华.导电高分子电解质电导率测定的研究.电源技术, 1999, 23(S1):106-108.
    [252]易德莲,秦晓蓉,刘娟,等.聚苯胺修饰铂电极的研究.武汉科技大学学报:自然科学版, 2006, 29(1):59-62.
    [253]吴辉煌,许一婷,戴李宗,等.聚苯胺衍生物膜修饰电极的电化学和催化性质.物理化学学报, 2003, 19(6):564-568.
    [254]井新利,赵卫兵,郑茂盛.掺杂态聚苯胺的性能研究.石化技术与应用, 2001, 19(4):225-228.
    [255]郭兴蓬,薛晓康,李胜.聚吡咯H+选择电极的性能研究.华中科技大学学报(自然科学版), 2005, 33(5):122-124.
    [256]高劲松,陈菁,陈衍珍,等.现场拉曼光谱研究聚吡咯的去质子化和氧化降解.电化学, 1995, 1(4):389-396.
    [257] Münstedt H. Properties of polypyrroles treated with base and acid. Polymer, 1986, 27(6):899-904.
    [258] Bull R A, Fan F-R F, Bard A J. Polymer Films on Electrodes. Journal of The Electrochemical Society, 1982, 129(5):1009-1015.
    [259] Frutos F J G, Otero T F, Romero A J F. Structural reorganization of the PPy/DBS films caused by the reduction branch of potentiodynamic polymerization. Electrochimica Acta, 2007, 52(11):3621-3629.
    [260] Li Y, Qian R. Electrochemical overoxidation of conducting polypyrrole nitrate film in aqueous solutions. Electrochimica Acta, 2000, 45(11):1727-1731.
    [261] Lewis T W, Wallace G G, Kim C Y, et al. Studies of the overoxidation of polypyrrole. Synthetic Metals, 1997, 84(1-3):403-404.
    [262] Ge H, Qi G, Kang E-T, et al. Study of overoxidized polypyrrole using X-ray photoelectron spectroscopy. Polymer, 1994, 35(3):504-508.
    [263] Beck F, Braun P, Schloten F. Anodic release of anions from polypyrrole. Journal of Electroanalytical Chemistry, 1989, 267(1-2):141-148.
    [264] Christensen P A, Hamnett A. In situ spectroscopic investigations of the growth, electrochemical cycling and overoxidation of polypyrrole in aqueous solution. Electrochimica Acta, 1991, 36(8):1263-1286.
    [265] Li P, Tan T C, Lee J Y. Corrosion protection of mild steel by electroactive polyaniline coatings. Synthetic Metals, 1997, 88(3):237-242.
    [266]王青武,王庚超.苯胺共聚物/环氧共混体系防腐蚀行为的研究.电化学, 2004, 10(2):222-228.
    [267] Akundy G S, Rajagopalan R, Iroh J O. Electrochemical deposition of polyaniline-polypyrrole composite coatings on aluminum. Journal of Applied Polymer Science, 2002, 83(9):1970-1977.
    [268] Ingram M D, Staesche H, Ryder K S. 'Activated' polypyrrole electrodes for high-power supercapacitor applications. Solid State Ionics, 2004, 169(1-4):51-57.
    [269] Hashmi S A, Kumar A, Tripathi S K. Investigations on electrochemical supercapacitors using polypyrrole redox electrodes and PMMA based gel electrolytes. European Polymer Journal, 2005, 41(6):1373-1379.
    [270] Iroh J O, Levine K. Capacitance of the polypyrrole/polyimide composite by electrochemical impedance spectroscopy. Journal of Power Sources, 2003, 117(1-2):267-272.
    [271] Iroh J O, Rajagopalan R. Electrochemical synthesis of polyaniline-polypyrrole composite coatings on carbon fibres in aqueous toluene sulphonate solution. Surface Engineering, 2000, 16(6):481-486.
    [272] Abruna H D, Denisevich P, Umana M, et al. Rectifying interfaces using two-layer films of electrochemically polymerized vinylpyridine and vinylbipyridine complexes of ruthenium and iron on electrodes. Journal of The American Chemical Society, 1981, 103(1):1-5.
    [273] Gao Z, Bobacka J, Ivaska A. Electrochemical study on the polypyrrole-polyaniline bilayers. Synthetic Metals, 1993, 55(2-3):1477-1482.
    [274]陈宏,陈劲松,周海晖,等.纳米纤维聚苯胺在电化学电容器中的应用.物理化学学报, 2004, 20(6):593-597.
    [275]陆珉,吴益华,姜海夏.导电聚苯胺(Pani)的特性及应用.功能材料, 1998, 29(4):353-356.
    [276] Gao Z, Bobacka J, Ivaska A. Electrochemical study of bilayer conducting polymers: Polypyrrole/polyaniline system. Journal of Electroanalytical Chemistry, 1994, 364(1-2):127-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700