离子液体中聚五元杂环化合物系列修饰电极的电化学制备及其在小分子催化领域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚苯胺、聚噻吩、聚吡咯等杂环聚合物是一类新兴的导电材料,具有优良的物理化学性能,它们可以在导体和绝缘体之间转换,同时也具有原料易得、制备简单、稳定性好等特点,被广泛地应用在电化学催化、电极材料、光学器件、传感器、金属防腐等领域,这类化合物对人们日常生活及当代科技的发展都产生了重大影响。
     过去对杂环化合物的电化学制备是在水溶液或有机溶剂中进行的,聚合物的电导率有时会受到水的影响。离子液体作为一类新型的环境友好试剂具有溶解能力强、电化学窗口宽、无蒸气压、在电化学反应中可同时作为溶剂和支持盐使用的优点,被成功地应用到了许多化学反应中。
     本论文结合了导电聚合物和离子液体两种具有发展前景的材料和溶剂的优点,制备了聚3-甲基噻吩、聚吡咯、聚苯胺均聚物和共聚物修饰电极,对所制备的电极都进行了物理和化学方面的表征,并将聚合物膜修饰电极应用到邻苯二酚、对苯二酚、抗坏血酸、多巴胺等小分子的氧化还原催化反应,以及CO_2的电化学还原中,结果表明,聚合物修饰电极具有独特的催化特性,它本身能够导电并提供更大的表面,能够在小分子催化领域发挥作用。
     具体的工作内容如下:
     一、3-甲基噻吩在[BMIM]PF_6离子液体中的电化学聚合
     聚3-甲基噻吩(PMT)可以通过循环伏安、恒电位和恒电流的方法制得,所用溶剂为1-丁基-3-甲基咪唑六氟磷酸盐([BMIM]PF_6)离子液体,工作电极为Pt电极和ITO电极。采用傅立叶变换红外光谱(FTIR)分析了聚合物的结构和基团;采用扫描电镜(SEM)分析了聚合物膜的结构。采用电化学技术分析了聚合物修饰电极的电化学特征,发现在离子液体中得到的聚合物膜,循环伏安图(CV)显示PMT膜修饰电极掺杂和去掺杂的过程很明显,并且氧化还原的可逆性很好,得到的聚合物膜很稳定。将得到的聚合物膜修饰电极应用在邻苯二酚、对苯二酚、抗坏血酸和多巴胺的分离检测中,通过CV图发现PMT膜修饰电极对邻苯二酚和对苯二酚的氧化还原具有催化作用。通过微分脉冲伏安图(DPV)发现PMT膜修饰电极能够很好地把抗坏血酸和多巴胺的氧化峰分离,这一性质对于上述两种物质的检测具有一定的应用价值。在电色效应的研究中,单电位和双电位阶跃分别用在变色响应的实验中,结果表明,在单电位阶跃过程中聚合物修饰电极能够在0.0001 s内从氧化态的蓝黑色变换到还原态的棕红色,具有良好的电致变色响应。
     二、3-甲基噻吩、苯胺在[HMIM]BF_4离子液体中的电化学共聚
     以离子液体1-甲基咪唑四氟硼酸盐([HMIM]BF_4)为溶剂和支持电解质,电化学方法实现了苯胺和3-甲基噻吩的均聚和共聚,用循环伏安法(CV)、交流阻抗法(EIS)、红外光谱(FT-IR)、紫外光谱(UV)、原子力显微镜(AFM)研究了聚合物的性质,以验证是否生成了不同于均聚物的物质。同时考察了聚合物修饰电极对对苯二酚的催化作用。通过对聚合过程中的循环伏安图、红外、紫外的比较,证明在离子液体[HMIM]BF_4中苯胺和3-甲基噻吩能够实现共聚。交流阻抗显示了不同电位下聚合物的导电情况,氧化掺杂态显示出了好的导电性。通过比较均聚物和共聚物对对苯二酚的催化效果,证明聚苯胺和共聚物的催化效果要好于聚3-甲基噻吩。
     三、离子液体中3-甲基噻吩在TiO_2电极上的电化学聚合及其性质研究
     采用溶胶凝胶法制成了TiO_2电极,在离子液体[BMIM]PF_6中将其应用于3-甲基噻吩的电化学聚合,采用循环伏安法(CV),在线紫外可见光谱(in situUV-Vis),扫描电镜(SEM)和电化学阻抗谱(EIS)对TiO_2/聚3-甲基噻吩(TiO_2/PMT)复合膜进行了表征并研究了其电化学性质。实验证明,不论是用循环伏安法,恒电位,还是恒电流方法,都能在电极上得到聚3-甲基噻吩(PMT)膜,并伴随有明显的掺杂和去掺杂过程。对应的在线紫外可见光谱上,也出现了氧化和还原两种不同的吸收状态,还原(去掺杂)过程中在480 nm处有一个吸收峰,而氧化(掺杂)过程中此峰消失,取而代之的是一个可见光区的逐渐增强的吸收。PMT膜是p型半导体,TiO_2是n型半导体,两者之间能够形成p-n异质结,使吸收波长红移至600 nm。SEM给出了TiO_2电极和聚合物修饰的TiO_2的形貌图,电极的交流阻抗谱则从一个角度说明了聚合物膜修饰电极的导电性。
     四、吡咯在[BMIM]PF_6离子液体中的电化学聚合及表征
     以离子液体[BMIMPF_6及[BMIM]TFSI作为溶剂和支持电解质,分别在铂电极和导电玻璃电极上电化学聚合得到了聚吡咯(PPy),聚合过程中发现,在离子液体中聚合的循环伏安图,其电流的变化和传统有机溶剂中的不同,不同离子液体中吡咯聚合时的循环伏安图也不同,电流的变化受粘度影响很大。通过交流阻抗技术研究了修饰电极的电化学性质,采用在线紫外、拉曼、红外谱对聚吡咯进行了光谱表征,得到了聚吡咯的特征峰,采用扫描电镜研究了聚合物的形貌。最后将修饰电极应用于对苯二酚的催化反应当中,显示了一定的催化作用。
     五、聚吡咯修饰电极对抗坏血酸和多巴胺的电催化作用
     在离子液体[BMIM]PF_6中制备了聚吡咯(PPy)修饰的玻碳电极,扫描电镜(SEM)显示修饰电极具有菜花状结构。将修饰电极应用在多巴胺(DA)和抗坏血酸(AA)的检测中,结果表示,在裸的玻碳电极上,DA和AA的氧化峰重叠在一起,而在PPy修饰电极上,两者则显示了明显的分开的氧化峰。氧化峰电位之差ΔE=200 mV,并且在修饰电极上两者的氧化电位都有正移,同时修饰电极上可以达到最大的电流值。实验中还考察了溶液体系的pH值及聚合物膜厚度对电化学催化效果的影响。结果表明:当pH=6.2时,循环伏安聚合2个循环或3个循环时的催化效果最好
     六、CO_2在聚吡咯、金属配合物/聚吡咯及聚吡咯/金属配合物-碳纳米管修饰电极上的电化学还原
     制备了聚吡咯(PPy)、酞箐钴(CoPc)、酞箐钴/聚吡咯(CoPc/PPy)以及聚吡咯/酞箐钴-单壁碳纳米管(PPy/CoPc-SWCNT)修饰电极,并将其应用到电化学催化还原CO_2的反应中,反应的溶液体系为含0.1 mol·L~(-1)高氯酸锂(LiClO_4)的乙腈/水混合溶液。实验证明,在裸的玻碳电极上,在0.4~-1.4 V之间,循环伏安图上没有发生任何关于CO_2还原的反应。以PPy以及CoPc为基础的修饰电极对电化学还原CO_2有催化作用。CoPc修饰电极不稳定,催化剂很快便进入到溶液中去,PPy、CoPc/PPy、PPy/CoPc-SWCNT电极都具有较好的稳定性,其中以PPy/CoPc-SWCNT电极的稳定性最好。与PPy电极相比,CoPc/PPy电极在循环伏安图上显示了更好的催化效果,CO_2的还原过电位正移了160 mV,还原峰电流增大。还原过程中的反应机理为H~+还原生成吸附H(H_(ads)),吸附H与CO_2反应,达到还原CO_2的目的。
As a kind of new material,poly(hetrocyclic compounds)such as polyaniline, polythiophene,polypyrrole have many advantage physical and chemical properties and have considerable impact on both everyday life and the development of many fields of modern science and technology.These polymers have high flexibility and environmental stability,and also can transfer between nonconductor and conductor. Conducting polymers have been widely applied to the electrochemical catalytical areas,electrode materials,light-emitting diode,sensors and mesoporphyrin protection areas.
     5-membered cyclic compound polymers used to be prepared in organic or water solution.The conductivity of the polymer may be influenced by the existence of water. Ionic liquids are a kind of new solvents,which has no volatility,high conductivity, wide electrochemical potential windows and can dissolve many chemicals.They have been successfully used as solvents and electrolytes in many reactions.
     This thesis combine the conducting polymers and ionic liquids together and obtained several conducting polymers,such as poly(3-methylthiophene),polyaniline, polypyrrole and poly(3-methylthiophene-anline)copolymers.Besides the physical and chemical characterizations,these polymer modified electrodes were applied to the electrochemical catalysis of catechol,hydroquinone and the detection of ascorbic acid and dopamine.The electrochemical reduction of CO_2 was also investigated at polymer based electrodes.Modified electrodes show good electrocatalytical effects to the oxidation or reduction of above compounds.
     The detail researches are as follows:
     1、Electrochemial polymerization of 3-methylthiophene in ionic liquid
     Poly(3-methylthiophene)(PMT)was synthesized in the room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM]PF_6)by constant potential,constant current and cyclic voltammetry respectively.The structure, morphology and stability of PMT films were characterized by Fourier transform spectroscopy(FTIR),scanning electron micrographs(SEM).The undoped(reduction) and doped(oxidation)forms of PMT film prepared in ionic liquid were reversible and stable.PMT film has strong electrocatalytical effect to the redox reaction of catechol and hydroquinone.It also has obvioius electrocatalytical effect to the detection and separation of ascorbic acid and dopamine.Two methods of potential steps were used to observe the response time of the film and the film was found to have perfect electrochromic response.
     2、Electrochemical copolymerization of 3-methylthiophene and aniline in ionic liquid
     Electrochemical polymerization of aniline and 3-methylthiophene has been accomplished in 1-methylimidazium tetrafluoroborate([HMIM]BF_4)ionic liquid. Homopolymer and copolymers of aniline and 3-methylthiophene were obtained successfully.The copolymer was studied by cyclic voltammetry and electrochemical impedance spectroscopy.The formation of copolymer has been confirmed by FTIR and UV-vis spectra.The atomic force microscope(AFM)was used for morphology analysis.Both the homopolymer and the copolymer had the electrocatalytical activity for the hydroquinone,while the electrocatalytical effect at copolymer and polyaniline modified electrodes are better than that at PMT modified electrode.
     3、Electrochemical polymerization of 3-methylthiophene at TiO_2 electrode in ionic liquid
     TiO_2 electrode was prepared by sol-gel method,and then applied the electrode to the electropolymerization of 3-methylthiophene in[BMIM]PF6 ionc liquid.The properties of the composite film were studied by cyclic voltammetry,UV-vis absorption spectra,SEM and electrochemical impedance spectrum. Poly(3-methylthiophene)(PMT)film was obtained successfully and showed obvious doping an d dedoping process.The in situ UV-vis spectra showed the tran sition peaks of oxidation an d reduction states.In the reduction(dedoping)process,the electrode exhibited an absorption peak at 480 nm,while the peak disappeared in the oxidation(doping)process,replaced by an increasing visible light absorption.The p-n heterojunction existed in the TiO_2/PMT film electrode,which Can improve the photon-electron conversion efi ciency.The EIS spectrum presents the conductivity of the composite film.
     4、Electrochemical polymerization of pyrrole in ionic liquid
     Polypyrrole(PPy)films were electropolymerized on Pt and indium-tin-oxide (ITO)electrodes in both[BMIM]PF_6 and[BMIM]TFSI ionic liquid.The ionic liquid was used as both the growth medium and the supporting electrolyte.The cyclic voltammetry(CV)shows that the growth of polymer,prepared in ionic liquid was not similar to that prepared in traditional organic media.The current was affected by the viscosity of the solvents.The polymer was further characterized via AC impedance,in situ UV-Visible spectroscopy,SEM,Raman and FTIR.Both Raman and FTIR spectroscopy results show the characteristic peak of PPy.SEM shows the morphology differences between the both sides of the polymer.The electrocatalytic effect of the PPy modified electrode was investigated in hydroquinone solution and the result exhibited electrocatalytic properties for hydroquinone by the PPy modified electrode.
     5、Electrocatclytical effect to the detection of dopamine and ascorbic acid at PPy modified electrode
     Polypyrrole(PPy)was electropolymerized on a glassy carbon(GC)electrode in [BMIM]PF_6 ionic liquid and then was used for the detection of dopamine(DA)in the presence of ascorbic acid(AA)by differential pulse voltammetery(DPV).The results showed that PPy electrode displayed high electrocatalytic effect towards the oxidation of DA and AA with well separated anodic peaks(△E=200 mV at pH 6.2),negative shifted potentials and enhanced oxidation currents.The oxidation peak potentials and currents were affected by the pH valuation and the film thicknesses.
     6、Electrocatalytical reduction of CO_2 at PPy based electrodes
     PPy,cobalt phthalocyanine(CoPc),cobalt phmalocyanine/polypyrrole (CoPc/PPy)and polypyrrole/cobalt phthalocyanine-single walled carbonnanotube (PPy/CoPc-SWCNT)modified electrodes have been developed in the request for diminishment of the overpotential required for the electrochemical reduction of CO_2. Compared with pure PPy electrode,cyclic voltammograms(CV)at these modified electrodes showed clear and better electrocatalytic performances with some positive shifts of the decomposition potential for CO_2 reduction in 0.1 M LiClO_4 /acetonitrile(ACN)-H_2O electrolyte.The CoPc electrode was not very stable,while PPy/CoPc-SWCNT electrode showed highest stability.The mechanism study suggests that the pathway of the reduction of CO_2 is stepwise hydrogenation by H_(ads),and H_2O is necessary in the whole process.The incorporation of CoPc onto PPy polymer matrix could enhance the catalytic activity for the formation of H_(ads),providing extra advantages for the reduction of CO_2.
引文
[1]David,E.S.;Su,M.P.J.Electrochem.Soc.1998,135,2254.
    [2]Wu,S.H.;Brain,K.H.;Alan,G M.D.J.Chem.Soc.Faraday Trans.1 1986,82,2385.
    [3]Liu,B.Y.;Xu,D.Q.;Xu,Z.Y.Chin.J.Chem.2005,23,803.
    [4]Zhao,P.;Sun,Q.;Wang,H.;Lu,J.X.;He,M.Y.Chin.J.Chem.2005,23,365.
    [5]Bazzaoui,E.A.;Aeiyach,S.;Lacaze,P.C.J.Electroanal.Chem.1994,364,63.
    [6]Zhang,W.B.;Dong,S.J.Acta Chim.Sinica 1992,50,427(in Chinese).
    [7]Kei,S.;Mahito,A.;Toshio,F.Electrochem.Commun.2002,4,881.
    [8]Zhou,M.;Heinze,J.R.Electrochim.Acta 1999,44,1733.
    [9]Geetha,S.;Trivedi,D.C.Mater.Chem.Phys.2004,88,388.
    [10]Ferreiral,C.A.;Domenech,S.C;Lacaze,P.C.J.Appl.Electrochem.2001,31,49.
    [11]Talu,M.;Sari,B.Syngh.Met.1998,95,2221.
    [12]Sari,B.;Talu,M.;Yildirim,F.;Balci,E.K.Appl.Surf.Sci.2002,205,27.
    [13]Yohannes,T.;Solomon,T.;Carlberg,J.C.;Inganas,O.Synth.Met.1997,88,15.
    [14]Talu,M.;Kabasakaloglu,M.;OsKoui,H.R.J.Polym.Sci.A-Polym.Chem.1996,34,2981.
    [15]Susanne,V.;Rudolf,H.Electrochim.Acta 2005,50,1587.
    [16]Kowalik,J.;Tolbert,L.M.;Naranyan,S.;Abhiraman,A.S.Macromolecules 2001,54,5471.
    [17]Berner,D.;Travers,J.P.;Delabouglise,D.Synth.Met.1999,101,311.
    [18]MacDiamid,A.G.;Chiang,J,C.;Halpern,M.;Huang,W.S.;Mu,S.L.;Nanaxakkara,L.D.;Wu,S.W;Yaniger,S.Mol.Cryst.Liq.Cryst.1985,121,173.
    [19]Zhang,A.J.;Qi,X.M.;Du,Y.F.;Luo,Y.W.;Fang,H.J.;Lu,J.X.Chin.J.Chem.2006,24,609.
    [20]Gordon,C.M.;Holbrey,J.D.;Kennedy,A.R.,Seddon,K.R.J.Mater.Chem.1998,8,2627.
    [21]Su,B.M.;Zhang,S.;Zhang,Z.C.J.Phys.Chem.B 2004,108,19510.
    [22]Jairton,D.;Gledison,S.F;Alexandre,P.U.;Paulo,F.P.;Sergio,R.T.J.Am.Chem.Soc.2002,124,4228.
    [23]Paulo A.Z.;Suarez,V.M.;Selbach,J.E.;Dullius,L.;Sandra,E.;Clarisse,M.S.;Piatnicki,D.S.;Roberto,F.S.;Jairton,D.Electrochim.Acta 1997,42,2533.
    [24]Zhu,H.P.;Yang,F.;Tang,J.;He,M.Y.Green Chem.2003,5,38.
    [25]Mohilner,D.M.;Adams,R.N.;Argersinger,Jr.W.J.J.Am.Chem.Soc.1962,84,3618.
    [26]Dong,B.;Xu,J.K.;Zheng,L.Q.Hou,J.J.Electroanal.Chem.2009,628,60.
    [27]B.Dong,Y.H.Xing,J.K.Xu,L.Q.Zheng,J.Hou,F.Zhao,Electrochim.Acta 2008,5745,53.
    [28]Epstein,A.J.;Ginder,J.M;Zuo,F.;Bigelow,R.W.;Woo,H.S.;Tanner,D.B.;Richter,A.F.;Huang,W.S.;MacDiarmid,A.G.Synth.Met.1987,18,303.
    [29]McManus,P.M.;Yang,S.C;Cushman,R.J.J.Chem.Soc.Chem.Commun.1985,1556.
    [30]Li,D.;Jiang,Y.D.;Wu,Z.M;Chen,X.D.;Li,Y.R.Thin Solid Films 2000,360,24.
    [31]Kang,E.T.;Neoh,K.G.;Tan,K.L.Prog.Polym.Sci.1998,23,277.
    [32]Zhang,C.Q.;Li,G.C.;Peng,H.R.Mater.Lett.2009,63,592.
    [33]Serhat V.;Metin,A.;Cihangir,T.;Idris,M.A.;Levent,T.Solid State Sci.2006,8,1477.
    [34]Alakhras,F.;Holze,R.Synth.Met.2007,157,109.
    [35]Huang,W.S.;Humphrey,B.D.;MacDiarmid,A.G.J.Chem.Soc.Faraday,Trans.I,1986,82,2385.
    [36]Stilwell,D.E.;Park,S.M.J.Electrochem.Soc.1998,135,2254.
    [37]Udum,Y.A.;Pekmez,K.;Yildiz,A.Eur.Polym.J.2005,41,1136.
    [38]Evelyn,B.;Rudolf,H.J.Electroanal.Chem.2001,508,150.
    [39]Dui(?),L.;Grigic,S.Electrochim.Acta 2001,46,2795.
    [1]Rfaff,G.;Reynders,P.Chem.Rev.1999,99,1963.
    [2]Fujishima,A.;Honda,K.Nature 1972,37,238.
    [3]Fujishima,A.;Rao,T.N.;Tryk,D.A.J.Photochem.Photobiol.C 2000,1,1.
    [4]Gr(a|¨)tzel,M.Nature 2001,414,338.
    [5]Hagfeldt,A.;G r(a|¨)tzel,M.Chem.Rev.1995,95,49.
    [6]Alivisatos,A.P.Science 1996,271,933.
    [7]Chen,X.B.;Mao,S.S.Chem.Rev.2007,107,2891.
    [8]Zhou,M.;Heinze,J.Electrochim.Acta 1999,44,1733.
    [9]Jeong,S.K.;Suh,J.S.;Park,Y.W.;Kim,C.Y.;Micdiarmid,A.G.Synth.Met.1995,69,171.
    [10]Abaci,S.;Yildiz,A.J.Electroanal.Chem.2004,569,161..
    [11]Shi,J.-H.;Sun,-X.;Yang,C.-H.;Gao,Q.-Y.;Li,Y.-F.Chin.Chem.Lett.2002,13,306.
    [12]Pringlea,J.M.;Efthimiadisb,J.;Howletta,P.C.;Efthimiadisb,J.;MacFarlanea,D.R.;Chaplinc,A.B.;Hallc,S.B.;Officerc,D.L.;Wallaced,G.G.;Forsyth,M.Polymer 2004,45,1447.
    [13]Sekiguchi,K.;Atobe,M.;Fuchigami,T.Electrochem.Commun.2002,4,881.
    [14]Huddleston,J.G.;Visser,A.E.;Reichert,M.W.;Willauer,H.D.;Broker,G.A.;Rogers,R.D.Green Chem.2001,3,156.
    [15]褚道葆;沈广霞;周幸福;林昌健;林华水高等学校化学学报 2002,23,678.
    [16]褚道葆;沈广霞;周幸福;林昌健应用化学 2002,19,633.
    [17]Waltam,R.J.;Bargon,J.Can.J.Chem.1986,64,76.
    [18]Gergely,A.;Inzelt,G.Electrochem.Commun.2001,12,753.
    [19]Abaci,S.;Yildiz,A.J..Electroanal.Chem.2004,569,161.
    [20]Sekiguchi,K.;Atobe,M.;Fuchigami,T.Electrochem.Commun.2002,4,881.
    [21]Koura,N.;Ejiri,H.;Takeishi,K.J.Electrochem.Soc.1993,140,602.
    [22]Li,M.C.;Ma,C.A.;Liu,B.Y.;Jin,Z.M.Electrochem.Commun.2005,7,209.
    [23]张文斌;董绍俊化学学报1992,50,437.
    [24]石家华,杨春和,高青雨,李永舫,化学物理学报2004,17,503.
    [25]Mazur,M.Thin Solid Films 2005,472,1.
    [26]郝彦忠,武文俊,化学学报 2005,63,215.
    [27]Otero,T.F.;Delarreta,E.J.Electroanal.Chem.1988,244,311.
    [28]Jonson,B.W.;Read,D.C.;Christensen,P.;Hamnett,A.;Armstrong,R.D.J.Electroanal.Chem.1994,364,103.
    [29]Refacy S.A.M.Synth.Met.2004,140,87.
    [30]Bard,A.J.;Faulker,L.R.Electrochemical Methodes:Fundamentals and Applications,2~(nd) Edn[M].Jhon Wiley&Sons,2001,386.
    [31]Momma,T.;Liu,X.J.;Osaka,T.;Ushio,Y.;Sawada,Y.J.Power Sources 1996,60,249.
    [32]Depaoli,M.A.;Perbs,R.C.D.;Ranero,S.;Scrosati,B.Electrochim.Acta 1992,37,117.
    [1]Diaz,A.F.;Kanazawa,K.K.;Gardini,G.P.J.Chem.Soc.Chem.Commun.1979,635.
    [2]Dang,X.D.;Intelmann,C.M.;Rammelt,U.;Plieth,W.J.Solid State Electrochem.2004,5,727.
    [3]Wang,J.S.;Wang,J.X.;Wang,Z.;Wang,S.C.Synth.Met.2006,156,610.
    [4]Wang,P.;Li,Y.R J Electroanal.Chem.1996,408,77.
    [5]Street,G.B.;Clarke,T.C.;Krounbi,M.;Kanazawa,K.K.;Lee,V.;Pfluger,P.;Scott,J.C.;Weiser,G.Mol.Cryst.Liq.Cryst.1982,83,253.
    [6]Bazzaoui,M.;Martins,J.I.;Machnikova,E.;Bazzaoui,E.A.;Martins,L.Eur.Polym.J.2007,43,1347.
    [7]Zhou,M.;Heinze,J.Electrochim.Acta 1999,44,1733.
    [8]Lu,W.;Fadeev,A.G.;Qi,B.H.;Smela,E.;Ding,J.;Spinks,G.M.;Mazurkiewicz,J.;Zhou,D.;Wallace,G.G.;MacFarlance,D.R.;Forsyth,S.A.;Forsyth,M.Science,2002,297:983.
    [9]Boxall,D.L.;Osteryoung,R.A.J.Electrochem.Soc.2004,151,E41.
    [10]Wei,D.;Kvarnstrom,C.;Lindfors,T.;Ivaska,A.Electrochem.Commun.2006,8,1563.
    [11]Sekiguchi,K.;Atobe,M.;Fuchigami,T.Electrochem.Commun.2002,4,881.
    [12]Geetha,S.;Trivedi,D.C.Mater.Chem.Phys.2004,88,388.
    [13]Huddleston,J.G.;Visser,A.E.;Reichert,W.M;Willauer,H.D.;Broker,G.A;Rogers,R.D.Green Chem.,2001,3,156.
    [14]Geetha,S.;Trivedi,D.C.Mater.Chem.Phys.2004,88,388.
    [15]Ding,H.;Pan,Z.;Pigani,L.;Seeber,R.;Zanardi,C.Electrochim.Acta 2001,46,2721.
    [16]Ferreiral,C.A.;Domenech,S.C.;Lacaze,P.C.J.Appl.Electrochem.2001,31,49.
    [17]Ghosh,S.;Bowmaker,G.A.;Cooney,R.P.;Seakins,J.M.Synth.Met.1998,95,63.
    [18]Liu,Y.C.J.Electroanal.Chem.2004,571,255.
    [19]Pringle, J.M.; Ngamna, O.; Chen, J.; Wallace, G G; Forsyth, M.; MacFarlane, D.R.Synth Met.2006,156,979.
    [20]Pringlea, J.M.; Efthimiadis, J.; Howlett, P.C; Efthimiadis, J.MacFarlane, D.R.; Chaplin, A.B.; Hall, S.B.; Officer, D.L.; Wallace, G G; Forsyth, M.Polymer 2004, 45,1447.
    [21]Evelyn, B.; Rudolf, H.J.Electroanal.Chem.2001,508,150.
    [22]Pournaghi-Azar, M.H.; Ojian, R.Talanta 1995, 42,657.
    [1]Vasantha,V.S.;Chen,S.M.J.Electroanal.Chem.2006,592,77.
    [2]Raj,C.R.;Okajima,T.;Ohsaka,T.J.Electroanal.Chem.2003,543,127.
    [3]Shervedani,R.K.;Bagherzadeh,M.S.;Mozaffari,A.Sens.Actuat.B 2006,115,614.
    [4]Zhao,H.;Zhang,Y.Z.;Yuan,Z.B.Electroanalysis 2002,1/4,1031.
    [5]Zhang,Y.Z.;Jin,G.Y;Yang,Z.S.Sensors 2003,3,443.
    [6]Malinauskas,A.;Garjonyte,R.;Mazeikiene,R.;Jureviciute,I.Talanta 2004,64,121.
    [7]Saraceno,R.A.;Pack,J.G.;Ewing,A.G.;J.Electroanal.Chem.1996,197,265.
    [8]Erdogdu,G.;Karagozler,A.E.;Talanta 1997.44,2011.
    [9]Liu,A.;Wei,M.;Honma,I.;Zhou,H.Adv.Funct.Mater.2006,16,371.
    [10]Li,J.;Lin,X.Q.Anal.Chim.Acta 2007,596,222.
    [11]Kalakodimi,R.P;Nookala,M.Anal.Chem.2002,74,5531.
    [12]Atta,N.F.;Marawi,I.;Petticrew,K.L.;Zimmer,H.;Mark,H.B.;Galal,A.J.Electroanal.Chem.1996,408,47.
    [13]Lyons,M.E.G.;Breen,W.;Cassidy,J.J.Chem.Soc,Faraday Trans.1991,87,115.
    [14]Mera,A.;Bard,A.J.;J.Am.Chem.Soc.1978,100,3222.
    [15]Lu,W.;Fadeev,A.G.;Qi,B.H.;Smela,E.;Ding,J.;Spinks,G.M.;Mazurkiewicz,J.;Zhou,D.;Wallance,G.G.;MacFarlance,D.R.;Forsyth,S.A.;Forsyth,M.Science 2002,297,983.
    [16]Boxall,D.L.;Osteryoung,R.A.J.Electrochem.Soc.2004,151,E41.
    [17]Wei,D.;Kvarnstrom,C;Lindfors,T.;Ivaska,A.Electrochem.Commun.2006,8,1563.
    [18]Su,B.M.;Zhang,S.Z.;Zhang,C.J.Phys.Chem.B.2004,108,19510.
    [19]Jairton,D.;Gledison,S.F.;Alexandre,P.U.;Paulo,F.P.;Sergio,R.T.J.Am.Chem.Soc.2002,124,4228.
    [20]Sekiguchi,K.;Atobe,M.;Fuchigami,T.J.Electroanal.Chem.2003,557,1.
    [21]Zhang, A.J.; Qi, X.M.; Du, Y F.; Luo, Y.W.; Fang, H.J.; Lu, J.X.Chin.J.Chem.2006, 24,609.
    [22]Zhang, A.J.; Zhang, G R.; Yang, G D.; Ao, F.G; Lu, J.X.Chin.J.Chem.2007, 25,268.
    [23]Huddleston, J.G; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G A.; Rogers, R.D.Green Chem.2001,3,156.
    [24]Sekiguchi, K.; Atobe, M.; Fuchigami, T Electrochem.Commun.2002,4, 881.
    [25]Pringle, J.M.; Efthimiadis, J.; Howlett, P.C; Efthimiadis, J.; MacFarlane, D.R.; Chaplin, A.B.; Hall, S.B.; Officer, D.L.; Wallace, G G; Forsyth, M.Polymer 2004, 45,1447.
    [26]Shi, J.H.; Yang, C.H.; Gao, Q.Y; Li, Y F.Chin.J.Chem.Phys.2004,17, 503.
    [1]Tao, Y.C; Wu, S.H.; Zhang, X.Chemistry, 2001,5,272.
    [2]J.Costamagna, G.Ferraudi, J.Canales, J.Vargas Coord.Chem.Rev.1996, 148, 221.
    [3]Arakawa, H.; Aresta, M.; Armor, J.N.; Barteau, M.A.; Beckman, E.J.; Bell, A.T.; Bercaw, J.E.; Creutz, C; Dinjus, E.; Dixon, D.A.; Domen, K.; DuBois, D.L.;Eckert, J.; Fujita, E.; Gibson, D.H.; Goddard, W.A.; Goodman, D.W.; Keller, J.;Kubas, G.J.; Kung, H.H.; Lyons, J.E.; Manzer, L.E.; Marks, T.J.; Morokuma,K.; Nicholas, K.M.; Periana, R.; Que, L.; Rostrup-Nielson, J.; Sachtler, W.M.H.;Schmidt, L.D.; Sen, A.; Somorjai, G.A.; Stair, P.C; Stults, B.R.; Tumas, W.Chem.Rev.2001,101, 953.
    [4]E.Lamy, L.Nadjo, M.Saveant, J.Electroanal.Chem.1977, 78,403.
    [5]Akihiko, K.; Shiniji, N.; Akira, T.; Tadayoshi, S.J.Electrochem.Soc.1993,140,1541.
    [6]Yoshio, H.; Akira, M.; Ryutaro, T.; Shin, S.J.Chem.Soc.Commun.1988,18.
    [7]Goren, Z.; Willner, I.; Nelson, A.J.; Frank, A.J.J.Phys.Chem.1990, 94, 3784.
    [8]Tanase, T.; Nitta, S.; Yoshikawa, S.; Kobayashi, K.; Sakurai, T.; Yano, S.Inorg.chem.1992,31,1058.
    [9]Terrence, R.O.; Lawrence, D.M.; T, D.W.; William, J.V.; Royce, W.M.; Thomas,J.M.J.Chem.Soc.Chem.Commun.1985,1416.
    [10]Tsukasa, Y; Takeaki, I.J.Electroanal.Chem.1993,344, 355.
    [11]Hurrell, H.C; Mogstad, A.L.; Usifer, D.A.; Potts, K.T.; Abruna, H.D.Inorg.Chem.1989,28,1080.
    [12]Mare, B.; Jean-Paul, C; Romain, R.; Jean-Pierre, S.J.Am.Chem.Soc.1986,108,7461.
    [13]Eiichi, K.; Senji, W.; Mitsuhiko, S.; Yohko, O.Inorg.Chem.1994,33, 770.
    [14]Fabio, A.; Giancarlo, D.S.; Luigi, F.; Maurizio, L.Inorg.Chem.1994, 33,1366.
    [15]Atoguchi, T.; Aramata, A.; Kazusaka, A.; Enyo, M.J.Electroanal.Chem.1991,318, 309.
    [16]Bolinger, C.M.; Story, N.; Sullivan, B.P.; Meyer, T.J.Inorg.Chem.1988, 27, 4582.
    [17]Hammouche, M; Lexa, D.; Momenteau, M.; Saveant, J.M.J.Am.Chem.Soc.1991,113, 8455.
    [18]Rollmann, L.D.; Iwamoto, R.T.J.Am.Chem.Soc.1968, 90,1455.
    [19]Kapusta, S.; Hackerman, N.J.Electrochem.Soc.1984,131, 1511.
    [20]Christensen, P.A.; Hamnett, A.; Muir, A.V.G.J.Electroanal.Chem.1988, 241,361.
    [21]Scibioh, M.A.; Viswanathan, B.Proc.Indian Natn.Sci.Acad.2004, 70,407.
    [22]Ogura, K.; Endo, N.; Nakayama, M.; Ootsuka, H.J.Electrochem.Soc.1995,142,4026.
    [23]Nakayama, M.; lino, M; Ogura, K.J.Electroanal.Chem.1997, 440, 125.
    [24]Ogura, K.; Endo, N.; Nakayama, M.J.Electrochem.Soc.1998,145, 3801.
    [25]Ogura, K.; Sugihara, H.; Yano, J.Higasa, M.J.Electrochem.Soc.1994,141,419.
    [26]Ogura, K.j Nakayama, M.; Kusumoto, C.J.Electrochem.Soc.1996,143, 3606.
    [27]Nakayama, M.; lino, M.; Ogura.K.J.Electroanal.Chem.1997, 440, 251.
    [28]Endo, N.; Miho, Y.; Ogura, K.J.Molec.Cata.A: Chemical 1997,127,49.
    [29]Aydin, R.; Koleli, F.J.Electroanal.Chem.2002, 535,107.
    [30]K(o|¨)leli, F.; Ropke, T.; Hamann, C.H.Electrochim.Acta 2003,48,1595.
    [31]Aydin, R.; Koleli, F.Synth.Met.2004,144, 75.
    [32]Heinze, J.; Rasche, A.; Pagels, M.; Geschke, B.J.Phys.Chem.B 2007, 111, 989.
    [33]Zhou, M.; Heinze, J.Electrochim.Acta 1999, 44,1733.
    [34]Hurrell, H.C; Mogstad, A.L.; Usifer, D.A.; Potts, K.T.; Abruna, H.D.Inorg.Chem.1989, 28,1080.
    [35]O'Toole, T.R.; Margerum, L.D.; Westmoreland, D.; Vining, W.J.; Murray, R.W.; Meyer, T.J.J.Chem.Soc.Chem.Commun.1985, 1416.
    [36]Chardon-Nobalt, S.; Deronzier, A.; Hartl, F.; Slageren, J.V.; Mahabiersing T.Eur.J.Inorg.Chem.2001, 613.
    [37]Lieber, C.M.; Lewis, N.S.J.Am.Chem.Soc.1984,106, 5033.
    [38]Yoshida, T.; Iida, T.J.Electroanal.Chem.1993, 344, 355.
    [39]Abe, T.; Taguchi, F.; Yoshida, T.; Tokita, S.; Schnurpfeil, G.; Wohrle, D.; Kaneko,M.J.Mol.Catal.A: Chem.1996,112, 55.
    [40]Abe,T.;Imaya,H.;Yodhida,T.;Tokita,S.;Schlettwein,D.;Wohrle,D.;Kaneko,M.J.Porphyrins Phthalocyanines 1997,1,1315.
    [41]Abe,T.;Yoshida,T.;Tokita,S.;Taguchi,F.;Imaya,H.;Kaneko,M.J.Electroanal Chem.1996,412,125.
    [42]Zhang,J.;Pietro,W.J.;Lever,A.B.P.J.Electroanal.Chem.1996,403,93.
    [43]Ogura,K.;Higasa,M;Yano,J.;Endo,N.J.Electroanal.Chem.1994,379,373.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700