PWM逆变电源瞬时值反馈控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在不允许供电中断的重要用电场合,大量使用着UPS系统。而逆变器是UPS系统的核心部件,要求它具有高质量的输出电压波形。尤其是在带非线性负载情况下仍然要有接近正弦的输出波形。因此,发展了多种多样的逆变器波形控制技术。本文的主要内容是PWM逆变电源瞬时值反馈控制技术,瞬时值反馈控制是根据当前误差对逆变器的输出波形进行有效的实时控制,如果控制器设计合理,既可以保证系统具有很好的稳态性能,同时也可以保证系统有快速的响应速度。全文围绕电压单环瞬时值控制技术及电容电流内环和电压外环双环瞬时值控制技术这两种控制方法,进行了理论分析,同时结合仿真和实验来探讨如何提高PWM逆变电源的静、动态性能,改善输出波形质量。
     基于状态空间平均法和线性化技术给出了PWM逆变器的传递函数形式和状态方程形式的数学模型,详细分析了死区效应、过调制和非线性负载对单相全桥逆变器输出电压的影响,指出引入输出电压瞬时值反馈控制来解决非线性负载带来的扰动,抑制谐波是合理的方案。
     对于逆变电源的控制策略,可以采用重复控制、无差拍控制、滑模变结构控制或者PID控制,由于采用PID控制容易兼顾控制系统的稳态性能和动态性能。而且算法简单、易于实现、可靠性高,已经成为迄今为止最通用的控制方法。本文研究了基于极点配置的PID控制器的设计方法,仿真结果显示这种PID控制器性能优越,同时还提出一种PI调节器结合电压微分反馈的调节方式,并指出这种调节方式和PID调节其实是等效的,而且是一种简化的双环形式,因此是一种简单而有效的调节方式。对现今普遍采用的电压电流双环控制,分为电感电流内环电压外环和电容电流内环电压外环两类进行了分析比较,重点研究了单相逆变器电容电流内环电压外环双环控制系统特性,并对其内、外环调节器的选取及其设计做了大量仿真,仿真结果显示电容电流内环电压外环双环控制系统具有比电压单环瞬时值反馈控制系统更优越的性能。
     本文最后在一台样机上实现了电容电流内环电压外环双环控制,实验结果与理论分析相符,能够得到较满意的动态和稳态波形。
Uninterruptible Power Supply(UPS)systems are widely used for supplying critical loads which can not afford utility power failure. A inverter is the core of a UPS system. High quality output voltage waveform is required for these inverters. To achieve nearly sinusoidal output voltage even with nonlinear loads, many waveform correction techniques have been proposed. This dissertation focuses on the research of the instantaneous feedback technology of PWM inverters. Since the instantaneous feedback technology is a real-time control according to the current error of the output waveform .Once the controller is designed properly, it can improve system dynamic response with nice static characteristics. Analysis and simulations are centered on two control approaches which are single loop controller with instantaneous voltage feedback and dual-loop control with voltage and current feedback to discuss how to improve both dynamic and static characteristics, thereby to reform the output waveform of PWM inverter.
     Based on the state-space averaging and linearization technique, the mathematical model is given in form of transfer function and states equations. The influence of dead-time, over- modulation and nonlinear loads on output voltage in single-phase full-bridge inverters is analyzed in detail. The method which brings output voltage feedback in the control loop to eliminate the disturbance of nonlinear load is reasonable. Of all sorts of strategies, there are repetitive control, deadbeat control, sliding-mode control and PID control. The PID control method is in favor of balancing the dynamic and static characteristics of the control system, easy to be calculated and realized. Above all it is reliably, and thus it is becoming the most universal control method. The design method of PID controller based on pole-assignment is proposed in this paper. The simulations indicate that this PID controlled inverter provides nice characteristics. A method of PI controller combined with instantaneous differential voltage is also proposed, which is equivalent to PID control in essence and can be seen as a simplified dual-loop form. Accordingly it is a simple but effective adjustment.
     The voltage and current dual-loop control system is divided into inductor-current feedback and capacitor-current feedback. The comparison of both is given in the paper. The characteristics of the inverter with the dual-loop control using capacitor-current feedback and voltage are obtained and analyzed. A mass of simulations are made to design both the inner and outer controller. The simulations indicate that this voltage and current dual-loop control system is superior to single loop controller with instantaneous voltage feedback in characteristics.
     Finally, a single-phase inverter applying output voltage and capacitor-current feedback control is researched in the paper and the experimental results accord with theoretic analyze. And it can get nice static characteristic and well dynamic response.
引文
[1] 陈坚. 电力电子学—电力电子变换和控制技术. 北京:高等教育出版社,2002
    [2] 黄俊,王兆安. 电力电子变流技术(第 3 版). 北京:机械工业出版社,1994
    [3] 林渭勋. 电力电子技术基础. 北京:机械工业出版社,1990
    [4] J. D. V. Wyk, “Power Electronics Technology at the Dawn of a New Century – Past achievements and Future Expectations”, IPEMC2000, Beijing, p.9-20
    [5] B. K. Bose, “Recent Advances in Power Electronics”, IEEE Transactions on Power Electronics”, Vol.7, No.1, January 1992, p.2-15
    [6] Robert W. Erickson, Fundamentals of Power Electronics, Chapman & Hall, Ltd., 1997
    [7] S. Ogasawana, H. Akagi, A. Nabae, “A novel PWM scheme of voltage source inverter based on space vector theory”, European Power Electronics Conference Record, Aachen, Germany, 1989, p.1197-1202
    [8] Toshimasa Haneyoshi, Atsuo Kawamura, Richard G. Hoft, “Waveform compensation of PWM inverter with cyclic fluctuating loads”, IEEE Transactions on Industry Applications, vol.24, no.4, July 1988, p.582-589
    [9] Ying-Yu Tzou, Rong-Shyang Ou, Shih-Liang Jung, Meng-Yueh Chang, “High-performance programmable AC power source with low harmonic distortion using DSP-based repetitive control technique”, IEEE Transactions on Power Electronics, vol.12, no.4, July 1997
    [10] Ying-Yu Tzou, Shih-Liang Jung, Hsin-Chung Yeh, “Adaptive repetitive control of PWM inverters for very low THD AC-voltage regulation with unknown loads”, IEEE Transactions on Power Electronics, vol.14, no.5, Sep 1999, p.973-981
    [11] A. V. Jouanne, P. N. Enjeti, D. J. Lucas, “DSP Control of High-Power UPS Systems Feeding Nonlinear Loads”, IEEE Transactions on Industrial Electronics, Vol.43, No.1, February 1996, p.121-125
    [12] 张凯. 基于重复控制原理的 CVCF-PWM 逆变器波形控制技术研究:[博士学位论文]。武汉:华中科技大学图书馆,2000
    [13] TOSHIMASA HANEYOSHI,ATSUO KAWAMURA,RICHARD G. HOFT. Waveform Compensation of PWM Inverter with Cyclic Fluctuating Loads. IEEE Trans. Power Electron. , 1988,24 (4)p 582-589
    [14] Ying Yu Thou, Rong Shyang Ou, Shih Liang et al. High Performance Programmable AC Power Source with Low Harmonic Distortion Using DSP Based Repetitive Control Technique. IEEE Trans. Power Electronics. 1997, 12 (4)p. 715-725
    [15] 邹云屏,李潇,信号变换与处理,华中理工大学出版社,1994 年,武汉
    [16] 王兆安,杨君,刘劲军,谐波抑制和无功补偿, 机械工业出版社,1998 年,北京
    [17] 田保峡, 苏宏业, 褚健. 基于状态估计的 PID 控制器整定方法研究. 仪器仪表学报, 2000 年10 月, 21(5),p.476-480
    [18] Astrom, K. J, Hagglund et al. PID Controllers: Theory, Design, and Tuning. Instrument. Society of America, 1995.
    [19] Naser M. Abdel-Rahim John E. Quaicoe. Analysis and Design of a Multiple Feedback LoopControl Strategy for Single-Phase Voltage-Source UPS Inverters. IEEE Trans. Power Electron. , 1996, 11 (4),p.532-541
    [20] H. J. Jiang, Y. Qin, S. S Du et al. DSP Based Implementation of a Digitally-Controlled Single Phase PWM Inverter for UPS. IEEE INTELEC Conf. Rec. , 1998 p.221-224
    [21] Michael J. Ryan, William E. Brumsickle, Robert D. Lorenz. Control Topology Options for Single-Phase UPS Inverters. IEEE Transactions on industry applications, march/appil1997, 33 (2),p.439-501
    [22] 童杰, 冯培悌. 电流控制电压源逆变器滞环控制的一种改进. 电气传动, 1997 年, 5,p3-6
    [23] A. Kawamura, R. Hoft, “Instantaneous Feedback Controlled PWM Inverter with Adaptive Hysteresis”, IEEE Transactions on Industry Application, Vol.IA20, No.4, July/August 1984, p.769-775
    [24] Vukosavic Slobodan, Peric Ljiljana, Levi Emil et al. Reduction of the output impedance of PWM inverters for uninterruptible power supplies. IEEE-PESC, 1990, 2(2),p757-762
    [25] 高军,黎辉,杨旭等. UPS 逆变器数字化控制技术. 电工技术杂志, 2001 年, (12),p6-9
    [26] Hua C. Two-level switching pattern deadbeat DSP controlled PWM Inverter. IEEE Trans. Power Electr. 1995, 10(5),p310-317
    [27] Jung S, Tzou Y. DSP-Based digital control of a PWM inverter for sine wave tracking by optimal state feedback technique. IEEE-PESC’94 Conf. Rec. 1994,p.546-551
    [28] 林新春, 康勇, 陈坚等. UPS 逆变电源波形补偿技术研究. 电气传动, 2002 年, 6,p35-37
    [29] Jung Shilh-Liang et al. Discrete Sliding Mode Control of a PWM Inverter for Sinusoidal Output Waveform Synthesis with Optimal Sliding Curve. IEEE Trans. on Power Electronics, 1996, 11(4),p.567-576
    [30] Jung Shih-Liang, et al. Self-Tuning Discrete Sliding Mode Control of a Closed-Loop Regulated PWM Inverter with Optimal Sliding Surface. Power Electronics Specialist Conference. PESC’96, 27th Annual IEEE, 1996, (2):p.1506-1521
    [31] 达飞鹏, 宋文忠. 基于模糊神经网络滑模控制器的一类非线性系统自适应控制. 中国电机工程学报, 2002 年 5 月, 22(5),p.78-83
    [32] Utkin V I. Variable structure systems with sliding mode: A survey. IEEE Trans. Automat. Contr, 1977, 22,p.212-222
    [33] Slotine J J E. Sliding controller design for nonlinear systems. Int J. Contr, 1984, 40,p.421-434
    [34] Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Trans. on Neural Networks, 1990, 1:p.4-27
    [35] LIN C T, George C S. Neural-Networks-Based fuzzy logic control and decision system. IEEE Trans. Computers, 1991, 40,p.1320-1336
    [36] 王丰尧. 滑模变结构控制. 北京:机械工业出版社,1995 年
    [37] 陈坚. 交流电机数学模型及调速系统. 北京: 国防工业出版社, 1989
    [38] 张昌凡, 王耀南. 滑模变结构的智能控制及其应用. 中国电机工程学报, 2001 年 3 月, 21 (3),p.27-29, 44
    [39] Lin F J, Shyu K K, Lin Y S. Variable structure adaptive control for PM synchronous servo motor drive. IEEE proc. Electr. Power Appl., 1999, 146 (2),p.173-185
    [40] R. C. Hwang, T. J. Liang. J. W. Chen. Neural networks controlled PWM inverter. IEEE-INTELEC, 1997,p.201-206
    [41] 沈忠亭, 严仰光. 基于 DSP 的逆变器神经网络控制. 电力电子技术, 2002 年 10 月, 36(5),p.50-53
    [42] 王永骥, 涂健. 神经元网络控制. 北京: 机械工业出版社, 1998
    [43] Lin Bor Ren, et al. Real-Time Digital Control of PWM Inverter with Fuzzy Logic Compensator for Nonlinear Loads. IEEE-LAS’93, 1993, Part 2(of 3),p.862-869
    [44] Tzou Ying-Yu, et al. Fuzzy Control of a Closed–Loop Regulated PWM Inverter under Large Load Variation. IEEE-IECON’93, 1993, (1),p.267-272
    [45] 李剑, 康勇, 陈坚. 带模糊调节的重复控制器在逆变器中的应用. 电气传动, 2001 年, 6, p.30-34, 40
    [46] Paolo Mattavelli, Leopoldo Rossetto, Giorgio Spiazzi et al. General Purpose Fuzzy Controller for DC-DC Converters. IEEE Trans. Power Electron., 1997, 12 (1),p.79-86
    [47] Wing Chi So, Chi K. Tse, Yim Shu Lee. Development of a Fuzzy Logic Controller for DC/DC Converters: Dseign, Computer Simulation, and Experimental Evaluation. IEEE Trans. Power Electron., 1996, 11(1),:p.24-32
    [48] Munoz, A.R.; Lipo, T.A On-line dead-time compensation technique for open-loop PWM-VSI drives. IEEE Transations on Power Electronics, 1999,1(4),p.83-689
    [49] Zhigan Wu; Jianping Ying A novel dead time compensation method for PWM inverter. The Fifth International Conference on Power Electronics and Drive Systems 2003,11(3),:p.258-1263
    [50] Urasaki N,Senjyu T, Uezato K, Funabashi T, Sekine H. Dead-time An adaptive dead-time compensation strategy for voltage source inverter fed motor drives. IEEE Transactions on Power Electronics, 2005,9(20),p.1150-1160
    [51] Kusko D.Galler and N.Medora. Output Impedance of PWM Inverter-Feedback vs.Filters.IEEE-LAS’90,10(2) ,p.1044-1048
    [52] 彭力 基于状态空间理论的 PWM 逆变电源控制技术研究: [博士学位论文]。武汉:华中科技大学图书馆,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700