基于状态空间理论的PWM逆变电源控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一方面重要部门、用电设备对高品质的电源的需求日益增多,另一方面电力电子
    设备的大量使用、非线性负载的不断增加使得电网的谐波污染十分严重,形成了鲜明
    的供需矛盾,为此,近几年来高性能 PWM 逆变器的研究越来越受到关注,发展了多种
    波形控制技术,其中有些已得到广泛应用,有些仍在发展之中。本文在状态空间的统
    一理论下分析逆变器的几种常用控制策略的性能和控制器设计方法,为高性能逆变器
    的设计提供较为系统的理论依据,并提出了一些简便易用的性能改进方案。
     首先建立了单相 PWM 逆变器连续时间和离散时间的数学模型,比较了两者的差
    异。分析了死区、PWM 过调制、非线性负载对逆变器输出电压波形质量的影响,针对
    波形畸变主要因素非线性负载,推导了二极管整流负载情况下逆变器输出电压各次谐
    波响应表达式。建立三相逆变器在 abc 静止坐标系和 dqo 旋转坐标系下的数学模型,
    首次提出了 abcz 系-dqo 系三维空间坐标系概念,解决了两种坐标系之间的转换从数
    学到物理意义的统一;指出了影响三相逆变器性能的因素。
     针对逆变器电压单环 PID 控制系统性能不很理想的原因进行了分析,指出其原因
    是 PID 控制器参数设计方法欠佳。本文首次提出了基于极点配置的逆变器瞬时电压
    PID 控制器的设计方法,仿真与实验结果表明这种 PID 控制逆变器动态响应快速、非
    线性负载情况下输出电压 THD 低,稳态精度高。在理论上,首次基于状态空间的概念
    阐述了这种逆变器 PID 控制系统性能优良的本质,同时与逆变器双环系统进行了比
    较,说明了 PID 控制在电路结构、成本等方面更具优越性。
     将基于极点配置的设计方法用于逆变器电压电流双环控制系统,仿真分析表明这
    种逆变器电压电流双环控制系统比 PID 控制系统动态响应更快,特别是在非线性负载
    条件下可以获得更低 THD 的输出电压波形。另外,还对单相和三相电压型逆变器通过
    控制器实现输出限流功能的问题进行了探讨。逆变器电感电流内环电压外环双环控制
    系统一个特点是具有自动限流功能。本文首次提出三相逆变器在 dq 坐标系下采用电
    压电流双环控制方案,可以实现保持正弦输出波形的自动限流功能。双环控制系统适
    合于性能指标要求极高的逆变器系统。
     对基于极点配置设计的控制器实用化面临的几个问题进行研究。论述了系统参数
    大幅度变化时逆变器控制系统的鲁棒性;分析了 PWM 过程带来的两个主要非理想因素
    对系统的影响:控制延时、在三相逆变器中引入的零序谐波,在设计中对此均需给予
    考虑;讨论了反馈延时存在时控制器设计及系统性能改变情况。
     不平衡抑制是三相逆变器系统需要解决的问题,分析了三相不平衡时三相逆变器
     I
    
    
    输出非对称性产生的机理,由此推断输出不对称问题单靠控制器不能解决,还与逆变
    器主电路结构的固有特性相关,提出了保持输出对称性的设计原则,仿真和实验结果
    有效地验证了理论分析。
    为改善逆变电源数字控制器的效果,本文首次提出了一种逆变器状态增广系统数
    字控制方案,可解决常规控制策略采用数字方式控制时因控制系统阶数升高带来的性
    能大幅下降问题。分析指出逆变器电压、电流双环数字控制同样也是一种高性能逆变
    器的数字控制方案。
    逆变器控制目前较常用的控制策略有单电压环瞬时值反馈控制、多环反馈控制,
    实现方式有模拟和数字两种。即使同一种控制策略,不同设计者设计出的性能差异也
    很大。本文首次采用状态空间理论的极点配置技术,对逆变电源的几种控制策略进行
    了统一的分析和设计,首次提出控制器控制参数(可控自由度)与控制系统阶数(被
    控自由度)相等是高性能逆变器控制实现的基础,并通过极点配置这种统一的设计方
    法对各种控制器进行了设计和性能比较,分析了要考虑的一些非理想因素的影响,为
    逆变器控制方案的选择和设计提供了理论依据。
The important departments and electric equipments need more and more high quality
    power supply, but the utility power is stained strictly by harmonics which many electronic
    components and nonlinear loads bring on. The conflict is quite evident. In recent years the
    researches for high performance PWM inverter are taken more attention, and various
    waveform correction techniques have been proposed. Some of them have been applied
    abroad, and the others are developing. This dissertation analyses performance and
    controller design method of some PWM inverter based on uniform state-space theory. New
    systemic theory basis for high quality PWM inverter design is provided. Novel control
    schemes are proposed.
     Firstly, the continuous and discrete mathematical models of a single-phase PWM
    inverter are established, and their difference is compared. The influence of dead-time,
    PWM over modulation and nonlinear load on inverter output waveform is analyzed. With a
    diode rectifier load, the primary factor of output waveform distortion, output voltage
    harmonics are estimated. The mathematical models in abc and dq frame for three-phase
    inverter are established. The concept of abcz-dqo three-dimension space frame is firstly
    employed so as to get mathematic and physical unification for two frames conversion.
    Those influence three-phase inverter performance are discussed.
     Inverter with single loop PID controller usually woks not very well. It is due to PID
    controller parameters are not designed well. The design method of inverter instantaneous
    voltage PID controller based on pole-assignment is proposed for the first time in this paper.
    Simulation and experimental results indicates that this PID controlled inverter provides fast
    dynamic response, low output THD with nonlinear load and nice static characteristics.
    Theoretically, control essence of the PID controlled inverter is expounded with state space
    concept. The PID control scheme has advantage on circuit and cost, compared with
    dual-loop control inverter.
     The design method based on pole-assignment is employed to inverter voltage and
    current dual-loop control system. Simulation analysis presents the dual-loop control
    inverter has faster dynamic response, lower output THD with nonlinear load, compared to
    PID control inverter. Moreover, the output current limiting problem of single-phase and
    three-phase inverter controller is discussed. Another characteristic of inverter inner
    inductor current loop and outer voltage loop control system is auto current limiting
    function. Three-phase inverter with dual-loop controllers in dq frame can keep sinusoidal
     III
    
    
    output waveform when limiting current. Dual-loop control scheme adapts to fulfill higher
    standard inverter product.
     Some issues the controller designed based on pole-assignment faces in practice are
    studied. The inverter robustness to system parameters variations is discussed. Two primary
    influences of PWM process are analyzed. One is control delay, and the other is that
    zero-sequence harmonics are introduced in three-phase inverter. They are necessary to be
    considered when design a control system. When feedback delay occurs, controller design
    and the change of system performance are introduced.
     Output unbalance of three-phase inverter is required to be restrained. The mechanism
    producing unsymmetrical output voltages of a three-phase inverter under unbalanced operation
    is analyzed. As will be shown, the problem is related to not only controller characteristic but also
    the inherent nature of the inverter circuit. Design consideration is proposed to keep three-phase
    output voltages of an inverter in symmetry. Theoretical analysis is confirmed well through both
    simulation and experimental results.
     In order to improve digital controller effect of inverter, a digital control schemes,
    increasing-state feedback digital control inverter, is firstly proposed in this paper. It can resolve
    the problem that performance decline due to control syst
引文
[1] 陈坚. 电力电子学—电力电子变换和控制技术. 北京:高等教育出版社, 2002
    [2] 徐德鸿. 21 世纪电力电子技术的机遇与挑战. 第十五届全国电源技术年会论文集, 2003 年,
     33~35, 26
    [3] 黄俊,王兆安. 电力电子变流技术(第 3 版). 北京:机械工业出版社,1994
    [4] 林渭勋. 电力电子技术基础. 北京:机械工业出版社, 1990
    [5] B.K. 博斯. 电力电子学与变频传动. 姜建国译. 徐州:中国矿业大学出版社,1999
    [6] 王林兵,何湘宁. UPS 的分类、关键技术分析与发展动态预测. 电工技术杂志, 2003 年, (10):
     21~24
    [7] Liviu Mihalache. DSP Control Method of Single-Phase Inverters for UPS Applications. Proc.
     IEEE APEC, 2002, 590~596
    [8] Hiroshi Ohshima, Kazuto Kawakami. Large Capacity 3-Phase UPS with IGBT PWM Inverter.
     IEEE PESC Conf. Rec., 1991, 117~122
    [9] 龚幼民, 胡慎敏. 电力传动与变频电源. 第十五届全国电源技术年会论文集, 2003 年,
     736~738
    [10] L. Gyugyi, T. R. Rietman, and A. Edris et al. The Unified Power Flow Controller:A New Approach
     to Power Transmission Control. IEEE Trans. Power Delivery, 1995, 10 (2): 1085~1097
    [11] Hideaki Fujita, Yasuhiro Watanabe, and Hirofumi Akagi. Control and Analysis of a Unified Power
     Flow Controller. IEEE Trans. Power Electron. , 1999, 14 (6): 1021~1027
    [12] A. J. F. Keri, X. Lombard, and A. A. Edris et al. Unified Power Flow Controller (UPFC):Modeling
     and Analysis. IEEE Trans. Power Delivery, 1999, 14(2): 648~654
    [13] Bakari Mwinyiwiwa, Bin Lu, and Boon-Teck Ooi. Multi-terminal Unified Power Flow Controller.
     IEEE Trans. Power Electron. , 2000, 15 (6): 1088~1093
    [14] Boon Teck Ooi, and Bin Lu. C-UPFC:A New FACTS Controller with 4 Degrees of Freedom. IEEE
     PESC Conf. Rec., 2000
    [15] Hideaki Fujita, Yasuhiro Watanabe, and Hirofumi Akagi. Transient Analysis of a Unified Power
     Flow Controller and its Application to Design of the DC-Link Capacitor. IEEE Trans. Power
     Electron., 2001, 16 (5): 735~740
    [16] 曾志东, 杨君, 王跃等. 一种三相混合电力滤波器控制方法研究. 第十五届全国电源技术年
     会论文集, 2003 年, 347~349 页
    [17] Hideaki Fujita, Takahiro Yamasaki, and Hirofumi Akagi. A Hybrid Active Filter for Damping of
     Harmonic Resonance in Industrial Power Systems. IEEE TRANSACTIONS ON POWER
     ELECTRONICS, MARCH 2000, 15 (2)
    [18] 陈仲, 徐迎春, 王磊等. 三相四线并联有源电力滤波器的数字控制. 第十五届全国电源技术
     年会论文集, 2003 年, 350~353, 346
    [19] H. Akagi. Control strategy and site selection of a shunt active filter for damping of harmonic
     propagation in power distribution systems. IEEE Trans. on Power Delivery, Feb. 1997, 12:
     354~363
    [20] 王兆安, 杨君, 刘进军. 谐波抑制和无功功率补偿. 北京: 机械工业出版社, 1998
    [21] 李君, 徐德鸿, 郑家伟. 超导储能系统用多模块电流型变流器载波轮换均流方法. 第十五届
     111
    
    
    全国电源技术年会论文集, 2003 年, 375~379
    [22] C.-S. Hsu and W.-J. Lee. Superconducting magnetic energy storage for power system applications.
     IEEE Transactions on Industry Applications, Sept.–Oct. 1993, 29 (5): 990~996
    [23] V. Karasik, K. Dixon, C. Weber et al. SMES for power utility applications: a review of technical
     and cost considerations. IEEE Transactions on Applied Superconductivity, June 1999, 9 (2) part 1:
     541~546
    [24] 潘垣, 程时杰, 唐跃进等. 超导电力磁储能系统研究进展(一) 一超导储能装置. 电力系统自
     动化, 2001 年, 25 (12)
    [25] 李立春, 马维新, 郑丽. 超导储能装置提高电力系统暂态稳定性的研究. 清华大学学报(自然
     科学版), 2001 年, 41 (03)
    [26] 汤天浩. 新能源与电能变换:系统集成、技术融合及应用展望. 第十五届全国电源技术年会
     论文集, 2003 年, 757~761, 738
    [27] S. Muller, M. Deicke and R. W. D. Doncker. Doubly fed induction generator system for wind
     turbines. IEEE Trans. on Industry Applications, 2002, (3): 26~33
    [28] L. M. Tolbert and F. Z. Peng. Multilevel converters as a utility interface for renewable energy
     systems. Proceedings of IEEE Power Engineering Society Summer Meeting, Seattle, USA, July
     2000, 2:1271-1274
    [29] S. Hamilton. Fuel cell-MTG hybrid the most exciting innovation in power in the next 10 years.
     Proc. of IEEE Power Engineering Society Summer Meeting, Canada, July 1999, 1: 581~586
    [30] R. M. Moore. Indirect methanol and direct methanol fuel cell vehicles. Proceedings of 35th
     Intersociety Energy Conversion Engineering Conference, Las Vegas, NV, July, 2000, 1306~1316
    [31] 刘荣. 自然能供电技术. 北京:科学出版社,2000
    [32] Joachim Holtz. Pulsewidth Modulation - A Survey. IEEE Trans. Ind. Electron. , 1992, 39 (5):
     410~420
    [33] 李锡雄,陈婉儿. 脉宽调制技术. 武汉:华中理工大学出版社,1996 年
    [34] 李永东,倚鹏. 大功率高性能逆变器技术发展综述. 电气传动, 2000 年, (6): 3~8
    [35] Lee Yo Han, Suh Bum Seok, Hyun Dong-Seok. Novel PWM Scheme for a Three-level Voltage
     Source Inverter with GTO Thyristors. IEEE Trans. on IA, 1996, 32 (2)
    [36] Liu Hyo L, Choi Nam S, Cho Gyu H. DSP Based Space Vector PWM for Three-level Inverter with
     DC-link Voltage Balancing. IEEE-IECON, 1991
    [37] Fang Zheng Peng, John W. McKeever, Donald J. Adams. A Power Line Conditioner Using Cascade
     Multilevel Inverters for Distribution Systems. IEEE TRANSACTIONS ON INDUSTRY
     APPLICATIONS, NOVEMBER/DECEMBER 1998, 34(6): 1293~1298
    [38] 谢力华,苏彦民. 正弦波逆变电源的数字控制技术. 电力电子技术, 2001 年 12 月, 35(6):
     52~55,51,60
    [39] Atsuo Kawamura, et al. Deadbeat Control of PWM Inverter with Modified Pulse Patterns for
     Uninterruptible Power Supply. IEEE Trans. On Industrial Electronics, 1998, 35(2): 295~300
    [40] Gokhale, K. P., et al. Deadbeat Microprocessor Control of PWM Inverter for Sinusoidal Output
     Waveform Systhesis. PESC’85, 1985. 28~36
    [41] B. R. Lin. 逆变器模糊控制的分析. 电力牵引快报, 1996 年, 3: 35~43
    [42] IEEE-519. IEEE Recommended Practice and Requirements for Harmonic Control in Electrical
     112
    
    
    Power System. 1992
    [43] MASAAKI SAKUI, HIROSHI FUJITA,and MITSUO SHIOYA. A Method for Calculating
     Harmonic Currents of a Three-Phase Bridge Uncontrolled Rectifier with DC Filter. IEEE Trans.
     Ind. Electron. , 1989, 36 (3): 434~440
    [44] Masaaki Sakui and Hiroshi Fujita. An Analytical Method for Calculating Harmonic Currents of a
     Three-Phase Diode-Bridge Rectifier with dc Filter. IEEE Trans. Power Electron. , 1994, 9 (6):
     631~637
    [45] A. Mansoor, W. M. Grady, A. H. Chowdhury et al. An Investigation of Harmonics Attenuation and
     Diversity Among Distributed Single-Phase Power Electronic Loads. IEEE Transactions on Power
     Delivery, 1995, 10 (1): 467~473
    [46] 薛蕙,杨仁刚. 基于 FFT 的高精度谐波检测算法. 中国电机工程学报, 2001 年 12 月, 22
     (12):106-110
    [47] 孙佩石,胡长生. 在光伏逆变电源中应用的消谐波 SPWM 方法. 电气传动, 2001 年, (3): 38~41
    [48] 马莉,周景海,吕征宇等. 一种基于 dq 变换的改进型谐波检测方案的研究. 中国电机工程学
     报, 2000 年 10 月, 20(10): 55~58, 63
    [49] 刘进军,刘波,王兆安. 基于瞬时无功功率理论的串联混合型单相电力有源滤波器. 中国电
     机工程学报,1997 年,17 (1): 37-41
    [50] 陈国柱,吕征宇,钱照明. 有源电力滤波器的一般原理及应用. 中国电机工程学报,2000 年,
     20(9): 17-21
    [51] Luowei Zhou, Zicheng Li. A Novel Active Power Filter Based on the Least Compensation Current
     Method. IEEE Trans. Power Electron., July 2000, 15 (4): 655~659
    [52] 孙进, 卢家林, 苏彦民. 三相四线逆变电源解耦控制方法的研究. 电气传动, 2002 年, (4):
     3~5,12
    [53] Yao G, Phillips S, Norum L. Three-phase Inverter analysis of Ability to Maintain Symmetrical
     output Voltages. IEEE IECON, 1993, 1057~1062
    [54] Hse P, Behnke M. A Three-phase Synchronous Trame Controller for Unbalanced Load. Proceeding
     of the 1998 IEEE Power Electronics Specialists Conference, 1998, 2: 1369~1374
    [55] Ye Z, Boroyevich D, Lee F C. Modeling and Control of Zero-sequence Current in Parallel
     Multi-phase Converter. Proceeding of the 2000 IEEE Power Electronics Specialists Conference,
     2000, 2: 680~685
    [56] 林新春. UPS 无互联线并联控制技术研究:[博士学位论文]。武汉:华中科技大学图书馆,
     2003
    [57] 段善旭. 模块化逆变电源全数字化并联控制技术研究:[博士学位论文]。武汉:华中科技大
     学图书馆,1999
    [58] 林征宇,吴建德,何湘宁. 基于 DSP 带同步锁相的逆变器控制. 电力电子技术, 2001 年, (2):
     24~25, 28
    [59] 郭卫农. CVCF-PWM VSI 输出波形瞬时控制技术研究:[博士学位论文]。武汉:华中科技大
     学图书馆,2001
    [60] 田保峡, 苏宏业, 褚健. 基于状态估计的PID控制器整定方法研究. 仪器仪表学报, 2000年10
     月, 21(5): 476~480
    [61] Astrom, K. J. and Hagglund et al. PID Controllers: Theory, Design, and Tuning. Instrument.
     113
    
    
    Society of America, 1995.
    [62] Pascal Maussion, Marcel Grandpierre, Jean Faucher et al. Instantaneous Feedback Control of a
     Single-Phase PWM Inverter with Nonlinear Loads of Sine Wave Tracking. IEEE IECON Conf.
     Rec. , 1989, 130~135
    [63] 高军, 赵向华, 杨旭等. 正弦波逆变器电压微分反馈控制策略的研究. 电力电子技术, 2000 年,
     (10): 12~14
    [64] Ziogas P.D.. Optimum Voltage and Harmonic Control PWM Techniques for Three-phase Static
     UPS Inverters. IEEE Trans. Ind. Applicant, 1980, IA-16(4): 542~546
    [65] Rahim M.A. et al. Analysis and design of A Multiple Feedback Loop Control Strategy for the
     Single-phase Voltage source UPS inverters. IEEE Trans. Power Electron., 1996, 11(4): 532~541
    [66] Tsai Wen-Inne, Sun York-Yih. Design and implementation of three phase HIPWM inverters with
     instantaneous and average feedback. IEEE-IECON, 1993, 2: 800-805
    [67] Hiroshi Ohshima et al. Large capacity 3-phase UPS with IGBT PWM inverter. IEEE-PESC, 1991,
     117~122
    [68] Naser M. Abdel-Rahim and John E. Quaicoe. Analysis and Design of a Multiple Feedback Loop
     Control Strategy for Single-Phase Voltage-Source UPS Inverters. IEEE Trans. Power Electron. ,
     1996, 11 (4): 532~541
    [69] H. J. Jiang, Y. Qin, S. S Du et al. DSP Based Implementation of a Digitally-Controlled Single
     Phase PWM Inverter for UPS. IEEE INTELEC Conf. Rec. , 1998, 221~224
    [70] Michael J. Ryan, William E. Brumsickle, Robert D. Lorenz. Control Topology Options for
     Single-Phase UPS Inverters. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,
     MARCH/APRIL 1997, 33 (2): 439~501
    [71] 童杰, 冯培悌. 电流控制电压源逆变器滞环控制的一种改进. 电气传动, 1997 年, 5:3~6
    [72] Gokkhale K. P. et al. Deadbeat Microprocessor Control of PWM Inverter for Sinusoidal Output
     Waveform Synthesis. IEEE trans. on IA, 1987, 23(5)
    [73] Vukosavic Slobodan, Peric Ljiljana, Levi Emil et al. Reduction of the output impedance of PWM
     inverters for uninterruptible power supplies. IEEE-PESC, 1990, 2(2): 757~762
    [74] 高军,黎辉,杨旭等. UPS 逆变器数字化控制技术. 电工技术杂志, 2001 年, (12): 6~9
    [75] Hua C. Two-level switching pattern deadbeat DSP controlled PWM Inverter. IEEE Trans. Power
     Electr. 1995, 10(5): 310~317
    [76] Jung S, Tzou Y. DSP-Based digital control of a PWM inverter for sine wave tracking by optimal
     state feedback technique. IEEE-PESC’94 Conf. Rec. 1994. 546~551
    [77] 林新春, 康勇, 陈坚等. UPS 逆变电源波形补偿技术研究. 电气传动, 2002 年, 6: 35~37
    [78] 张凯. 基于重复控制原理的 CVCF-PWM 逆变器波形控制技术研究:[博士学位论文]。武汉:
     华中科技大学图书馆,2000
    [79] TOSHIMASA HANEYOSHI , ATSUO KAWAMURA , RICHARD G. HOFT. Waveform
     Compensation of PWM Inverter with Cyclic Fluctuating Loads. IEEE Trans. Power Electron. ,
     1988,24 (4): 582~589
    [80] Ying Yu Thou, Rong Shyang Ou, Shih Liang et al. High Performance Programmable AC Power
     Source with Low Harmonic Distortion Using DSP Based Repetitive Control Technique. IEEE
     Trans. Power Electronics. 1997, 12 (4): 715~725
     114
    
    
    [81] Tzou Ying-Yu, et al. Adaptive Repetitive Control of PWM Inverters for Very Low THD
     AC-Voltage Regulation with Unknown Loads. IEEE Trans. on Power Electronics, 1999, 14(5):
     971~981
    [82] Toshimasa, et al. Waveform Compensation of PWM Inverter Cyclic Fluctuating Loads. IEEE Trans.
     on Industry Application, 1988, 24(4): 582~589
    [83] Kim Byoung Jin, Choi Jae Ho, Kim Jae Sik et al. Digital Control Scheme of UPS Inverter to
     Improve the Dynamic Response. Proceedings of the 1996 Canadian Conference on Electrical and
     Computer Engineering, 1996, 318~321
    [84] Jung Shilh-Liang et al. Discrete Sliding Mode Control of a PWM Inverter for Sinusoidal Output
     Waveform Synthesis with Optimal Sliding Curve. IEEE Trans. on Power Electronics, 1996, 11(4):
     567~576
    [85] Jung Shih-Liang, et al. Self-Tuning Discrete Sliding Mode Control of a Closed-Loop Regulated
     PWM Inverter with Optimal Sliding Surface. Power Electronics Specialist Conference. PESC’96,
     27th Annual IEEE, 1996, (2): 1506~1521
    [86] 达飞鹏, 宋文忠. 基于模糊神经网络滑模控制器的一类非线性系统自适应控制. 中国电机工
     程学报, 2002 年 5 月, 22(5): 78~83
    [87] Utkin V I. Variable structure systems with sliding mode: A survey. IEEE Trans. Automat. Contr,
     1977, 22: 212~222
    [88] Slotine J J E. Sliding controller design for nonlinear systems. Int J. Contr, 1984, 40: 421~434
    [89] Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural
     networks. IEEE Trans. on Neural Networks, 1990, 1: 4~27
    [90] LIN C T, George C S. Neural-Networks-Based fuzzy logic control and decision system. IEEE
     Trans. Computers, 1991, 40: 1320~1336
    [91] 王丰尧. 滑模变结构控制. 北京:机械工业出版社,1995 年
    [92] 陈坚. 交流电机数学模型及调速系统. 北京: 国防工业出版社, 1989
    [93] 张昌凡, 王耀南. 滑模变结构的智能控制及其应用. 中国电机工程学报, 2001 年 3 月, 21 (3):
     27~29, 44
    [94] Lin F J, Shyu K K, Lin Y S. Variable structure adaptive control for PM synchronous servo motor
     drive. IEEE proc. Electr. Power Appl., 1999, 146 (2): 173~185
    [95] R. C. Hwang, T. J. Liang. J. W. Chen. Neural networks controlled PWM inverter. IEEE-INTELEC,
     1997, 201~206
    [96] 沈忠亭, 严仰光. 基于 DSP 的逆变器神经网络控制. 电力电子技术, 2002 年 10 月, 36(5):
     50~53
    [97] 王永骥, 涂健. 神经元网络控制. 北京: 机械工业出版社, 1998
    [98] Lin Bor Ren, et al. Real-Time Digital Control of PWM Inverter with Fuzzy Logic Compensator for
     Nonlinear Loads. IEEE-LAS’93, 1993, Part 2(of 3): 862~869
    [99] Tzou Ying-Yu, et al. Fuzzy Control of a Closed–Loop Regulated PWM Inverter under Large Load
     Variation. IEEE-IECON’93, 1993, (1): 267~272
    [100] 李剑, 康勇, 陈坚. 带模糊调节的重复控制器在逆变器中的应用. 电气传动, 2001 年, 6:
     30~34, 40
    [101] Paolo Mattavelli, Leopoldo Rossetto, Giorgio Spiazzi et al. General Purpose Fuzzy Controller for
     115
    
    
    DC-DC Converters. IEEE Trans. Power Electron., 1997, 12 (1): 79~86
    [102] Wing Chi So, Chi K. Tse, Yim Shu Lee. Development of a Fuzzy Logic Controller for DC/DC
     Converters: Dseign, Computer Simulation, and Experimental Evaluation. IEEE Trans. Power
     Electron., 1996, 11(1): 24~32
    [103] G. Escobar, A. M. Stankovic, P. Mattavelli. Dissipativity-Based Adaptive and Robust Control of
     UPS in Unbalanced Operation. PESC Record - IEEE Annual Power Electronics Specialists
     Conference, 2001, 4: 1862~1867
    [104] GREGORIO ANDRIA, ANTONIO DELL’AQUILA, LUIGI SALVATORE. Analysis of Distorted
     Unbalanced Waveforms in Inverter Drives. IEEE TRANSACTIONS ON POWER
     ELECTRONICS, APRIL, 1989, 4(2): 298~310
    [105] Miroslav Chomat, Ludek Schreier. Compensation of Unbalanced Three-Phase Voltage Supply in
     Voltage Source Inverter. IECON Proceedings, 2002, 2: 950~955
    [106] Jai P.Agrawal. Power Electronic Systems Theory and Design. 北京:清华大学出版社,2001
    [107] Koosuke HARADA, Akihiko, KATSUKI, Martin MBOUENDA et al. COMPENSATION
     METHOD FOR PHASE DIFFERENCE UNBALANCE OF OUTPUT VOLTAGE IN THE
     THREE-PHASE TRIPORT UPS SYSTEM. INTELEC, International Telecommunications Energy
     Conference Proceedings, 1988, 542~544
    [108] Gene F. Franklin, J. David Powell, Michae Workman. Digital Control of Dynamic Systems (Third
     Edition). 北京:清华大学出版社,2001
    [109] Frank Bodi. DISTRIBUTED POWER SYSTEMS. INTELEC, International Telecommunications
     Energy Conference Proceedings, 1988, 143~150
    [110] L R. Lewls, B.H.Cho, F.C.Lee et al. MODELING, ANALYSIS AND DESIGN OF
     DISTRIBUTED POWER SYSTEMS. : PESC Record - IEEE Power Electronics Specialists
     Conference, 1989, 1: 152~159
    [111] F.Frebel, X.Breuer, U.De Pra. ADDED VALUE OF LOCAL SUPERVISION IN DISTRIBUTED
     INVERTER SYSTEM. : INTELEC, International Telecommunications Energy Conference
     Proceedings, 1999, 4-3
    [112] M.C.Chandorkar, D.M.Divan, Y.Hu et al. NOVEL ARCHITECTURES AND CONTROL FOR
     DISTRIBUTED UPS SYSTEMS. Conference Proceedings - IEEE Applied Power Electronics
     Conference and Exposition - APEC, 1994, 2: 683~689
    [113] Katsuichi YOTSUMOTO, Seiichi MUROYAMA, Shoji MATSUMURA et al. DESIGN FOR A
     HIGHLY EFFICIENT DISTRIBUTED POWER SUPPLY SYSTEM BASED ON RELIABILITY
     ANALYSIS. INTELEC, International Telecommunications Energy Conference Proceedings,
     1988, 545~550
    [114] Bekiarov S B, Emadi A. Uninterruptible power supplies: classification, operation, dynamics, and
     control. Applied Power Electronics Conference and Exposition, 2002 APEC. Seventeenth Annual
     IEEE, 2002, 1:597~604
    [115] Lin Xinchun, Chen Xikun, Kang Yong et al. Parallel three-phase UPS inverters with a new control
     technique. Power Electronics Specialists Conference, 2002. pesc 02, 2002 IEEE 33rd Annual,
     2002, 2:905~908
    [116] Rech C, Pinheiro H, Grundling H A, et al. Analysis and design of a repetitive predictive-PID
     116
    
    
    controller for PWM inverters. Power Electronics Specialists Conference. 2001. PESC. 2001 IEEE
     32nd Annual, 2001, 2:986~991
    [117] Botteron F, Pinheiro H, Grundling H A et al. Digital voltage and current controllers for
     three-phase PWM inverter for UPS application. Industry Applications Conference. 2001.
     Thirty-Sixth IAS Annual Meeting. Conference Record of the 2001, IEEE, 2001, 4:2667~2674
    [118] Cassiano Rech, Humberto Pinheiro, Hilton Abilio Grundling et al. Comparison of Digital Control
     Techniques With Repetitive Integral Action for Low Cost PWM Inverters. IEEE
     TRANSACTIONS ON POWER ELECTRONICS, JANUARY 2003, 18(1): 401~410
    [119] Youichi Ito and Shoichi Kawauchi. Microprocessor-Based Robust Digital Control for UPS with
     Three-Phase PWM Inverter. IEEE TRANSACTIONS ON POWER ELECTRONICS, MARCH
     1995, 10(2): 196~204
    [120] Takao Kawabata, Takeshi Miyashita, Yushin Yamamoto. Digital Control of Three-Phase PWM
     Inverter with LC Filter. IEEE TRANSACTIONS ON POWER ELECTRONICS, JANUARY
     1991, 6(1): 62~72
    [121] Raymond B.Sepe, Jaffrey H.Lang. Inverter Nonlinearities And Discrete-Time Vector Current
     Control. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, JANUARY/FEBRUARY
     1994, 30(1):62~70
    [122] Liviu Mihalache. DSP Control Method of Single-Phase Inverters for UPS applications.
     Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2002, 1:
     590~596
    [123] Christian Fritsche, Peter Schmitt, Dr.Christian Gerster. Microprocessor-Based Control System for
     High-Speed Three-Phase Voltage Source Inverters with LC Output Filter. PESC Record - IEEE
     Annual Power Electronics Specialists Conference, 1999, 1: 527~532
    [124] Jae-Ho Choi, Byoung-Jin Kin. Improved Digital Control Scheme of Three Phase UPS Inverter
     Using Double Control Strategy. Proceedings - IEEE Applied Power Electronics Conference and
     Exposition - APEC, 1997, 2: 820~824
    [125] Shih-Liang Jung, Hsiang-Sung Huang, Meng-Yueh Chang. DSP-Based Multiple-Loop Control
     Strategy for Single-Phase Inverters Used in AC Power Sources. PESC Record - IEEE Annual
     Power Electronics Specialists Conference, 1997, 1: 706~712
    [126] Byoung-Jin Kim, Jac-Ho Choi, Jae-Sik Kim. Digital Control Scheme of UPS Inverter to Improve
     the Dynamic Response. CCECE’96
    [127] Shih-Liang Jung, Lien-Hsun Ho, Hsing-Chung Yeh et al. DSP-Based Digital Control of a PWM
     Inverter for Wave Tracking by Optimal State Feedback Technique. PESC Record - IEEE Annual
     Power Electronics Specialists Conference, 1994, 1: 546~551
    [128] Youichi Ito, Makoto Iwata, Shoichi Kawauchi. Digital Control of Three-Phase PWM Inverters for
     UPSs Using Dead-Beat Observer. PCC-Yokohama’93, 1993, 79~84
    [129] Pascal Maussion, Marcel Grandpierre, Jean Faucher et al. INSTANTANEOUS FEEDBACK
     CONTROL OF A SINGLE-PHASE PWM INVERTER WTTH NONLINEAR LOADS BY SINE WAVE TRACKING. :
     IECON Proceedings, 1989, 1: 130~135
    [130] Han-Ju Cha, Shin-Sup Kim, Min-Gu Kang et al. Real-Time Digital Control of PWM Inverter with
     PI Compensator for Uninterruptible Power Supply. : IECON Proceedings (Industrial Electronics
     117
    
    
    Conference), 1990, 2: 1124~1128
    [131] Atsuo KAWAMURA, Kiyoshi ISHIHARA. HIGH FREQUENCY DEADBEAT CONTROL OF
     THREE PHASE PWM INVERTER USED FOR UNINTERRUPTIBLE POWER SUPPLY.
     PESC’88 RECORD, 1988, 644~649
    [132] Atsuo KAWAMURA, Kiyoshi ISHIHARA. REAL TIME DIGITAL FEEDBACK CONTROL OF
     THREE PHASE PWM INVERTER WITH QUICK TRANSIENT RESPONSE SUITABLE FOR
     UNINTERRUPTIBLE POWER SUPPLY. Conference Record - IAS Annual Meeting, 1988,
     35(6):728~734
    [133] Ernane Antonio Alves Coelho, Porfirio Cabaleiro Cortizo, Pedro Francisco Donoso Garcia.
     Small-Signal Stability for Parallel-Connected Inverters in Stand-Alone AC Supply Systems. IEEE
     TRANSACTIONS ON INDUSTRY APPLICATIONS, MARCH/APRIL 2002, 38(2): 533~542
    [134] C.Rech, H.Pinheiro, H.A.Grundling et al. Analysis and Design of a Repetitive Predictive-PID
     Controller for PWM Inverters. PESC Record - IEEE Annual Power Electronics Specialists
     Conference, 2001, 2: 986~991
    [135] J.H, Aylor, R.L. Ramey and G.Cook. Design and application of a microprocessor PID predictor
     controller. IEEE Trans. on Ind. Electronics and Control Instrumentation, Aug. 1980, 27(3):
     133~137,
    [136] C.L.Phillips and J.M.Parr. Robust design of a digital PID predictor Controller. IEEE Trans. on
     Industrial Electronics, Nov. 1984, 31(4): 328~332
    [137] C. Rech, H. A. Grundling and J. R. Pinheiro. A modified discrete control law for UPS
     Applications. IEEE Power Electronics Specialists Conference Rec., 2000, 3: 1476~1481
    [138] 黎坚, 杨耕, 窦曰轩. 数字控制时延对扰动观测器性能的影响. 电气传动, 2003 年, 2: 18-20
    [139] 郭卫农, 陈坚. 基于状态观测器的逆变器数字双环控制技术研究. 中国电机工程学报, 2002
     年 9 月, 22(9): 64~68
    [140] Ryan M J, Brumsickle W E, Lorenz R D. Control topology options for single-phase UPS inverters.
     IEEE Transactions on Industry Applications, 1997, 33 (2): 493~501
    [141] Wu Hongying, Lin Dong, Zhang Dehua et al. Current-mode control technique with instantaneous
     inductor-current feedback for UPS inverters. IEEE-APEC’ 99, 1999, 2: 951~957
    [142] Youichi Ito, Shoichi Kawauchi. Microprocessor-based robust digital control for UPS with
     three-phase PWM inverter. IEEE Transactions on Power Electronics, 1995, 10 (2): 196~204
    [143] Yokoyama T, Kawamura A. Disturbance observer based fully digital controlled PWM inverter for
     CVCF operation. IEEE Transactions on Power Electronics, 1994, 9 (5): 473~480
    [144] 绪方胜彦. 离散时间控制系统. 西安:西安交通大学出版社,1990
    [145] Takaji Umeno, Tom oaki Kaneko, Yoichi Hori. Robust Servosystem Design with Two Degrees of
     Freedom and its Application to Novel Motion Control of Robot Manipulators. IEEE TRANSA
     CTIONS ON INDUSTRIAL ELECTRONICS, 1993, 40 (5)
    [146] 陶永华. 新型 PID 控制及其应用(第 2 版). 北京:机械工业出版社,2002
    [147] Morris Driels. Linear Control Systems Engineering. 北京:清华大学出版社,2000
    [148] 马晓军,姜齐荣,王仲鸿等. 静止同步补偿器的分相不对称控制. 中国电机工程学报, 2001,
     21 (1): 52-56
    [149] A.M.Cross, P.D.Evans and A.J.Forsyth. DC link current in PWM inverters with unbalanced and
     118
    
    
    non-linear loads. IEE Proceedings-Electr.Appl., November 1992, 146 (6): 620-626
    [150] Guijun Yao, Stephen Phillips, Lars Norum. Three-Phase Inverters-Analysis of Ability to Maintain
     Symmetrical Output Voltages. IEEE Proceeding of the IECON’93, November 1993, 1033-1039
    [151] 张桂斌,徐政,王广柱. 基于空间矢量的基波正序、负序分量及谐波分量的实时检测方法.
     中国电机工程学报, 2001, 21(10): 1-5
    [152] 孔雪娟,王荆江,彭力等. 基于内模原理的三相电压源型逆变电源的波形控制技术. 中国
     电机工程学报, 2003, 23 (7): 67-70
    [153] Ping Hsu, Michael Behnke. A Three-Phase Synchronous Frame Controller for Unbalanced Load.
     IEEE-PESC’98 Record, May 1998, 2: 1369-1374
    [154] Uffe Borup, Prasad N. Enjeti, Frede Blaabjerg. A New Space-vector-Based Control Method for UPS
     Systems Powering Nonlinear and Unbalanced Loads. IEEE Trans. Ind. Appl., Nov./Dec. 2001, 37:
     1864-1870
    [155] Said Ei-Barbari, W. Hofmann. Digital Control of a Four Leg Inverter for Standalone Photovoltaic
     Systems with Unbalanced Load. IEEE Proceeding of the IECON, 2000, 1: 729-734
    [156] Alfredo Nava-Segura, Gerardo Mino-Aguilar. A Novel Four-Branches-Inverter-Based-Active-Filter for
     Harmonic Suppression and Reactive Compensation of an Unbalanced 3-Phase 4-Wires Electrical
     Distribution Systems, FeedingAC/DC Loads. IEEE-PESC’2000 Record, 2000, 3: 1155-1160
    [157] R.A.Gannett, J.C.Sozio, D.Boroyevich. Application of Synchronous and Stationary Frame Controllers for
     Unbalanced and Non-Linear Load Compensation in 4-Leg Inverters. Pro. IEEE-APEC’2002, 2000, 2:
     1038-1043
    [158] Karl J. Astrom, Bjorn Witternmark. 计算机控制系统—原理与设计(第三版). 周兆英,林喜
     荣,刘中仁等译. 北京:电子工业出版社,2001
    [159] 薛定宇. 控制系统计算机辅助设计—MATLAB 语言及应用. 北京:清华大学出版社,1996
    [160] 姜桂宾, 裴云庆, 王兆安. 带电容电流反馈的高性能 SPWM 逆变电源控制策略. 第十五届
     全国电源技术年会论文集, 2003 年, 644~648
    [161] 李剑. 单相 400HzCVCF 逆变器模糊—重复混合控制技术研究:[博士学位论文]。武汉:华
     中科技大学图书馆,2002
    [162] 康勇. 高频大功率 SPWM 逆变电源输出电压控制技术研究:[博士学位论文]。武汉:华中
     科技大学图书馆,1994
    [163] 陈伯时. 电力拖动自动控制系统(第二版). 北京:机械工业出版社,1992
    [164] 庞富胜. 线性多变量系统. 武汉:华中理工大学出版社,1992
    [165] 胡寿松. 自动控制原理(第三版). 北京:国防工业出版社,1994
    [166] 吴麒. 自动控制原理(上下册). 北京:清华大学出版社,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700