统一电能质量调节器(UPQC)的分析与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,各种精密仪器和设备越来越多地得到使用,电力用户对电能质量的要求也越来越高。为改善配电系统电能质量问题,自上世纪八十年代末以来,基于电力电子技术的面向配电系统的FACTS技术(DFACTS)/用户电力技术(CUSPOW)得到了电力科研工作者的广泛关注。一系列的DFACTS元件相继得到研究和开发,其中由串、并联双变流器组成的统一电能质量调节器(UPQC)具有综合的电能质量调节能力,不仅可以改善电网输入电流的电能质量问题,也可以改善负载输入电压的电能质量问题,被认为是最有前途的电能质量调节器。本文针对三相四线制的UPQC,开展了以下一些研究工作,为此类电能质量调节器在配电系统中的实际应用进行了一些有益的探索。
     分析了三相四线UPQC的工作原理,指出UPQC的并联变流器受控为正弦电压源,而串联变流器受控为正弦电流源就可以实现UPQC对电能质量的综合调节。基于系统的理想控制作用及其等效电路模型,较深入地阐明了UPQC的静态工作特性,对串联变流器输出的补偿电压、并联变流器输出的补偿电流、不同工况下系统各部分吸收、发出有功功率/无功功率的情况以及串、并联变流器的伏安容量进行了详细分析,指出了在忽略串联变压器漏感的情况下补偿电压完全由负载电压及电网输入电压的幅值决定,补偿电流则受电网输入电压、负载电压及负载偏移角的影响,而变流器伏安容量则与负载功率因数、负载电流谐波畸变率、负载电压与电网输入电压的比值等因素有关。此外讨论了UPQC不同的主电路拓扑结构,指出其不同的应用场合及优缺点,并且基于三相三线制系统及三相四线制系统分析了串联变压器付方不同接法的适用性,指出了具有中线的串联变压器付方星型接法适用于三相四线制的UPQC系统。另外还介绍了一种基于MATLAB SIMULINK仿真环境的电路模型仿真技术,为后述的分析研究提供了有效的验证手段。
     分别在静止ABC及同步旋转dq0坐标系下建立了三相四线串联变流器及并联变流器的数学模型,指出了三桥臂构成的四线制串联变流器/并联变流器在三相坐标系下具有ABC三相独立而在dq0坐标系下具有dq轴耦合、0轴独立于dq轴的特性。
     研究了串联变流器的单独运行及其输入电流的控制。通过对非理想输入电压下串联变流器的分析,指出不平衡输入电压会在直流母线端电压中产生二次谐波的波动,反过来该二次谐波会在输入电流中产生三次谐波;而输入电压的N次谐波会在母线端电压中产生N-1及N+1次谐波,在输入电流中则产生相应次的谐波影响。为抑制输入电压不平衡及谐波的影响,本文提出了两种较为有效的控制策略:三相ABC独立控制及dq0轴控制,指出了两种控制策略下获取电流指令及设计电流控制器的一些特殊考虑。此外分析了直流母线端两组电容电压不平衡的原因,并提出了一种简单有效的抑制方法。仿真及实验结果表明针对串联变流器所提的各种控制方法是有效的。
     研究了并联变流器的单独运行及其输出电压的控制。首先讨论了非理想负载特性,指出负载的不平衡及非线性必然导致并联变流器输出电压的不平衡及谐波畸变。其次提出了一种适用于三相四线制变流器的三维空间矢量调节技术,克服了传统二维空间矢量调节技术在三相四线系统中应用的局限,仿真验证了该调节技术的可行性。最后对比了三相ABC独立控制及dq0轴电压电流双环控制的控制效果,指出采用所提的两种控制方法均可以获得较理想的平衡、稳定的电压输出,然而对输出电压中的负序分量及谐波的抑制能力有限。为此在dq0轴双环控制的基础上引入负序控制和谐波控制,或者在ABC独立控制中引入重复控制,则可以进一步消除输出电压中的负序分量和谐波。仿真及部分实验结果验证了所提控制方法的有效性。
     详细讨论了10kVA三相四线制UPQC实验装置的硬件电路设计和控制系统设计,给出了系统功率电路硬件参数的设计过程,以及串联变流器、并联变流器协调控制的双DSP控制系统原理及软件流程,提出了一种有效的系统投入与退出运行的策略。基于串、并联变流器的协调控制策略,对三相四线UPQC在各种工况下的运行进行了较全面的仿真研究及实验,详细分析验证了UPQC的系统性能,实验结果表明所提串、并联变流器的协调控制策略是有效的,较好地实现了UPQC对电网输入电流及负载输入电压的综合电能质量调节。
DFACTS/CUSPOW, based on the power electronics technology for power distribution system, has drawn more attention since 1988. Unified Power Quality Conditioner (UPQC), composed of a parallel and series conversion system, is the most promising among all the DFACTS devices. It cannot only improve the network current quality but also the load voltage quality. This dissertation is dedicated to investigate the application of three-phase four-wire UPQC system in distribution network.
     The operation principle of three-phase four-wire UPQC system is analyzed. It shows that the combined power quality regulation of UPQC can be achieved by controlling the series converter as a sinusoidal current source and the parallel converter as a sinusoidal voltage source. The static operation principle is deeply analyzed based on the ideal control and the equivalent circuit model. The equations of system power flow, compensated voltage and current are established. The active and reactive power flow among two converters, power network and load are investigated under different operated conditions. Furthermore, the factors influencing system VA capability are also discussed. Two difference topologies are compared, including their application, merits and drawbacks. Moreover, the different connection types for secondary side of series transformer are analyzed in the three-phase three-wire or three-phase four-wire system. The analysis indicates that the Y-type connection with neutral line for series transformer is suitable for the three-phase four-wire UPQC system. A new simulation strategy based on Matlab Simulink environment is also introduced.
     Mathematical models of the three-phase four-wire series converter and parallel converter are established in ABC frame and dq0 frame respectively. The models show that each phase of the series/parallel converter is individual in ABC frame and 0 axis is independent of dq axis in dq0 frame. The current control strategies for series converter of UPQC are studied under ideal and non-ideal input voltage conditions. The influences of non-ideal input voltage are analyzed. The output dc voltage has the second harmonic and input current has the third harmonic due to the unbalanced supply. Nth input voltage harmonic results in the (N+1)th and (N-1)th harmonics in the dc voltage and Nth harmonic in the input current. In order to suppress the influence of non-ideal input voltage, two effective control methods are introduced. One is three-phase ABC individual control and the other is dq0 axis control. Special treatments and considerations for current controller are also indicated. The voltage unbalance between the two group capacitors is analyzed and a simple and valid method is provided. Simulation and experimental results verified the validity of the two control methods.
     The voltage control strategies for parallel converter of UPQC are investigated. The non-ideal load characteristics are discussed and their influences on output voltage are also indicated. Furthermore, a three-dimensional space vector modulation technique is introduced and its validity in three-leg four-wire converter is verified by simulation results. Several control methods are compared in order to suppress the influences of non-ideal load. These methods include three-phase ABC individual control, dq0 axis voltage and current dual loop control, dq axis negative sequence control, dq axis harmonics control, combined repetitive algorithms ABC control. Simulation and experimental results verified the effectiveness of these control methods.
     A 10kVA prototype of the three-phase four-wire UPQC is designed and built. The parameters of power circuit are designed and the coordinated control systems based on two digital signal processors (DSP) for series and parallel converter are introduced. Program flows are also provided. The instantaneous circuit simulation model of the whole system is built with Matlab Simulink. The basic characteristics of the UPQC are well verified by a large number of simulation and experimental results under fluctuating utility voltages and various linear and non-linear loads.
引文
[1] Narain G. Hingorani. High Power Electronics and Flexible AC Transmission System. IEEE Power Engineering Review, 1988, 8(7): 3~4
    [2] Narain G. Hingorani. Flexible AC Transmission. IEEE Spectrum, 1993, (3): 40~45
    [3] Narain G. Hingorani. Introducing Custom Power. IEEE Spectrum, 1995, 32(6): 41~48
    [4] M.Aredes.E.W. New Control Algorithms for Series and Shunt Three-Phase Four-Wire Active Power Filters. IEEE Trans. Power Delivery, 1995,10(3):1649~1656
    [5] Dugan RC. Electrical Power Systems Quality. New York, McGraw-Hill, 1996
    [6] H.Akggi. New Trends in Active Filters for Power Conditioning, IEEE Trans. Industry Applications, 1996, 32(6):1312~1322
    [7] W.Edward Reid. Power Quality Issues-Standards and Guidelines. IEEE Trans. Industry Applications, 1996, 32(3):625~632
    [8] IEEE Working Group on Nonsinusoidal Situations: Effects on Meter Performance and Definitions of Power. Practical Definitions for Power in Systems with Nonsinusoidal Waveforms and Unbalanced Loads: A Discussion. IEEE Trans. Power Delivery, 1996, 11(1):79~101
    [9] Johan H-R.Enslin. Unified Approach to Power Quality Mitigation. IEEE ISIE Conf. Rec., 1998, 1: 8~20
    [10] Michael D.Stump, Gerald J.Keane. The Role of Custom Power Products in Enhancing Power Quality at Industrial Facilities. IEEE EMPD Conf. Rec., 1998, 2: 507~517
    [11] Bhim Singh, Kamal AI-Haddad, Ambrish Chardra. A Review of Active Filters for Power Quality Improvement. IEEE Trans. Industrial Electronics, 1999, 46(5): 960~971
    [12] Fang Z.Peng, Donald J.Adams. Harmonic Sources and Filtering Approaches. IEEE IAS Conf. Rec., 1999, 448~455
    [13] M.EI-HabrouK, M.K.Darwish, P.Mehta. Active Power Filters: A Review. IEE Proc. Electronics Power Appl, 2000, 147(5):403~413
    [14] Lie Xu, Olimpo Anaya-Lara. Development of Prototype Custom Power Devices for Power Quality Enhancement. ICHQP, 2000, 3: 775~783
    [15] Arnold. Solutions to the Power Quality Problems. IEE Power Engineering Journal, 2001, 65~73
    [16] Diego Soto, Tim C.Green. A Comparison of High Power Converter Topologies for the Implementation of FACTS Controllers. IEEE Trans. Industrial Electronics, 2002, 49(5):1072~1080
    [17] 何大愚. 柔性交流输电技术和用户电力技术的新进展. 电力系统自动化. 1999, 23(6):8~13
    [18] 韩英铎, 严干贵, 姜齐荣等. 信息电力与 FACTS 及 DFACTS 技术. 电力系统自动化. 2000, (19):1~7
    [19] 雷宪章, D.Retzmann, M.Weinhold. 利用电能质量调节器改善配电网络的电能质量. 电网技术. 2000, 24(8):8~12
    [20] 林海雪. 现代电能质量的基本问题. 电网技术. 2001, 25(10):5~12
    [21] 朱桂萍. 王树民. 电能质量控制技术综述. 电力系统自动化. 2002, 26(19):28~31
    [22] 陈坚. 电力电子学—电力电子变换和控制技术. 北京:高等教育出版社,2002
    [23] L. Gyugyi. Unified power-flow control concept for flexible AC transmission systems. IEE Proceedings-C, 1992, 139(4): 323~331
    [24] L. Gyugyi, T. R. Rietman, A. Edris et al. The Unified Power Flow Controller: A New Approach to Power Transmission Control. IEEE Trans. Power Delivery, 1995, 10(2): 1085~1097
    [25] A.Nabani-Niaki, M.R.Iravani. Steady-state and dynamic models of unified power flow controller (UPFC) for power system studies. IEEE Trans. Power Systems, 1996, 11(4):1937~1943
    [26] C.D.Schauder, L.Gyugyi, M.R.Lund. Operation of the unified power flow controller (UPFC) under practical constraints. IEEE Trans. Power Delivery, 1998, 13(2):630~639
    [27] Kalyan K.sen, Eric J.Stacey. UPFC-unified power flow controller theory modeling and applications. IEEE Trans. Power Delivery, 1998, 13(4):1453~1460
    [28] A.J.F.Keri, X.Lombard, A.A.Edris. Unified power flow controller (UPFC): modeling and analysis. IEEE Trans. Power Delivery, 1999, 14(2):648~654
    [29] H.Fujita, Y.Watanabe, H.Akagi. Control and analysis of a unified power flow controller. IEEE Trans. Power Electronics, 1999, 14(6):1021~1027
    [30] HaiFeng Wang. A unified model for the analysis of FACTS devices in damping power system oscillations-Part III: Unified power flow controller. IEEE Trans. Power Delivery, 2000, 15(3):978~983
    [31] H.Fujita, Y.Watanabe, H.Akagi. Transient analysis of a unified power flow controller and its application to design of the DC-link capacitor. IEEE Trans. Power Electronics, 2001, 16(5):735~740
    [32] H.Fujita, H.Akagi. The Unified Power Quality Conditioner: The Integration of Series and Shunt Active Filters. IEEE Trans. Power Electronics, 1998, 13(2):315~322
    [33] Zhang Changjiang, Wong Manchung. Universal custom power conditioner (UCPC) in distribution networks. IEEE PEDS Conf. Rec., 1999, 2: 1067~1072
    [34] H.Akagi, H.Fujita. A new power line conditioner for harmonic compensation in power systems. IEEE Trans. Power Delivery, 1995, 10(3):1570~1575
    [35] M.Aredes, K.Heumann, Edson H.Watanabe. An universal active power line conditioner. IEEE Trans. Power Delivery, 1998, 13(2):545~551
    [36] B.N.Singh, Ambrish Chandra. Fuzzy control algorithm for universal active filter. IEEE PQ, 1998, 73~80
    [37] M.Vilathgamuwa, Y.H.Zhang, S.S Choi. Modelling, analysis and control of unified power quality conditioner. IEEE ICHQP, 1998, 2: 1035~1040
    [38] T.Ise, J.Ishii, S. Kumagai. Compensation of harmonics and negative sequence components in line current and voltage by a SuperSMES. IEEE Trans. Applied Superconductivity, 1999, 9(2):334~337
    [39] S.A.O. da Silva, P.F. Donoso-Garcia, P.C. Cortizo. A Three-Phase Series-Parallel Compensated Line-Interactive UPS System with Sinusoidal Input Current and Sinusoidal Output Voltage. IEEE IAS Conf. Rec., 1999, 826~832
    [40] R.Li, A.T.Johns, M.M.Elkateb. Control concept of Unified Power Line Conditioner. IEEE PES Conf. Rec., 2000, 2594~2599
    [41] H.Elmitwally, S.Abdelkader, M.Elkateb. Universal power quality manager with a new control scheme. IEE Proc.-Gener. Transm. Distrib., 2000, 147(3):183~189
    [42] A.Elnady, M.M.A.Salama. New functionalities of the unified power quality conditioner. IEEE PES Conf. Rec., 2001, 415~420
    [43] Bong-Hwan Kwon, Jin-Ha Choi, Tae-Won Kim. Improved Single-Phase Line-Interactive UPS. IEEE Trans. Industrial Electronics, 2001, 48(4): 804~811
    [44] M.Basu, S.P.Das, Gopal K.D. Experimental investigation of performance of a single phase UPQC for voltage sensitive and non-linear loads. IEEE PEDS Conf. Rec., 2001, 218~222
    [45] Leon M. Tolbert, Fang Zheng Peng, Thomas G. Habetler. A Multilevel Converter-Based Universal Power Conditioner. IEEE Trans. Industry Application, 2000, 36(2): 596~603
    [46] Beom-Seok Chae, Woo-Cheol Lee. A fault protection scheme for unified power quality conditioners.IEEE PEDS Conf. Rec., 2001, 66~71
    [47] M.Tarafdar Haque, T.ISE, S.H.Hosseini. A novel control strategy for unified power quality conditioner (UPQC). IEEE PESC Conf. Rec., 2002, 94~98
    [48] Janime Prieto, Patricio S. A series-parallel configuration of active power filters for var and harmonic compensation. IEEE IECON Conf. Rec., 2002, 2945~2950
    [49] L.H.Tey, P.L.So, Y.C.Chu. Neural network-controlled unified power quality conditioner for system harmonies compensation. IEEE TDCE Conf. Rec., 2002, 1038~1043
    [50] Fermin Barrero, Salvador Martinez, Fernando Yeves, et al. Universal and reconfigurable to UPS active power filter for line conditioning. IEEE Trans. Power Delivery, 2003, 18(1):283~290
    [51] A.Nasiri, A.Emadi. Different topologies for single-phase unified power quality conditioners. IEEE IAS Conf. Rec., 2003, 2: 976~981
    [52] J.M.Correa, S.Chakraborty, F.A.Farret. single phase high frequency AC microgrid with an unified power quality conditioner. IEEE IAS Conf. Rec., 2003, 2: 956~962
    [53] Luis F.C.Monteiro, Mauricio Aredes, Joao A.Moor Neto. A control strategy for unified power quality conditioner. IEEE ISIE Conf. Rec., 2003, 1: 391~396
    [54] V.Khadkikar, P.Agarwal, A.Chandra, et al. A simple new control technique for unified power quality conditioner (UPQC). ICHQP Conf. Rec., 2004, 289~294
    [55] Cristian A.S, Jose R.E, Luis A.Moran, et al. Analysis and design of a linear control strategy for three-phase UPQCs. IEEE IES Conf. Rec., 2004, 3060~3065
    [56] Hong-Je Ryoo, Geun-Hie Rim, Tae-Jin Kim, et al. Digital-controlled single-phase unified power quality conditioner for nonlinear and voltage sensitive load. IEEE IES Conf. Rec., 2004, 24~29
    [57] Ahmad Esfandiari, Mostafa Parniani, Hossein Mokhtari. Mitigation of electric arc furnace disturbances using the unified power quality conditioner. IEEE IES Conf. Rec., 2004, 1469~1474
    [58] Y.Y.Kolhatkar, R.R.Errabelli, S.P.Das. A sliding mode controller based optimum UPQC with minimum VA loading. IEEE Power Engineering Society General Meeting, 2005, 1~5
    [59] Shu Hongchun, Liang Zuquan, Yu Jilai, et.al. A Novel Control Strategy for UPQC. IEEE PES Conf. Rec., 2005, 1~4
    [60] B.Han, B.Bae, H.Kim, S.Baek. Combined Operation of Unified Power-Quality Conditioner With Distributed Generation. IEEE Trans. Power Delivery, 2005, 1~9
    [61] Seong-Jeub Jeon, Gyu-Hyeong Cho. A Series-Parallel Compensated Uninterruptible Power Supply with Sinusoidal Input Current and Sinusoidal Output Voltage. IEEE PESC Conf. Rec., June, 1997
    [62] F. Kamran, T.G. Habetler. A Novel On-Line UPS with Universal Filtering Capabilities. IEEE Trans. Power Electron., 1998, 13(3): 410~418
    [63] F. Kamran, T.G. Habetler. Combined Deadbeat Control of a Series-Parallel Converter Combination Used as a Universal Power Filter. IEEE Trans. Power Electron., 1998, 13(1): 160~168
    [64] S.A.O. da Silva, P.F. Donoso-Garcia, P.C. Cortizo, et al. A Comparative Analysis of Control Algorithms for Three-Phase Line-Interactive UPS Systems with Series-Parallel Active Power-Line Conditioning Using SRF Method. IEEE PESC Conf. Rec., 2000, 1023~1028
    [65] A.Ellmitwally, M.S.Kandil, M.Elkateb. A fuzzy-controlled versatile system for harmonics, unbalance and voltage sag compensation. IEEE PES Conf. Rec., 2000, 1439~1444
    [66] Su Chen, Geza Joos. A unified series-parallel deadbeat control technique for an active power quality conditioner with full digital implementation. IEEE IAS Conf. Rec., 2001, 172~178
    [67] S.A.O. da Silva, P.F. Donoso-Garcia, P.C. Cortizo, et al. A Three-Phase Line-Interactive UPS System Implementation With Series-Parallel Active Power-Line Conditioning Capabilities. IEEE Trans. Ind. Appl., 2002, 38(6): 1581~1590
    [68] Xun Li, Pengcheng Zhu, Yinfu Yang, et al. A New Controlled Scheme for Series-Parallel Compensated UPS System. IEEE IEMDC Conf. Rec., 2003, 2: 1133~1136
    [69] Xun Li, Pengcheng Zhu, Yinfu Yang, et al. Experimental Investigation of a Three-Phase Series-Parallel Compensated UPS for Non-Linear Load. IEEE IECON Conf. Rec., 2003,1: 794~799
    [70] 李勋,戴珂,杨荫福等. 双变流器串-并联补偿式 UPS 控制策略研究. 中国电机工程学报,2003,23(10):104~108
    [71] 李勋,朱鹏程,戴珂等. 双变流器串-并联补偿式 UPS 控制系统. 电气传动,2003,33(6):35~38
    [72] 朱鹏程, 李勋, 康勇等. 统一电能质量控制器控制策略研究. 中国电机工程学报, 2004, 24 (8): 67-73
    [73] Pengcheng Zhu, Xun. Li, Yong Kang, et al. Control scheme for universal power quality manager in a two-phase synchronous rotating frame. IEE Proceedings Generation, Transmission & Distribution, 2004, 151 (5): 590-596
    [74] Y.W.Li, D.M.Vilathgamuwa, P.C.Loh. Micro-Grid Power Quality Enhancement Using A Three-Phase Four-Wire Grid-Interfacing Compensator. IEEE IAS Conf. Rec., 2004, 1439~1446
    [75] Peng-cheng Zhu, Xun Li, Yong Kang, et al. Analysis and Experimental Verification of a Control Scheme for Unified Power Quality Conditioner. International Journal of Energy Technology and Policy, 2005, 3 (3): 253-268
    [76] Soren Rathmann, Henry A.Warner. New generation UPS technology, the delta conversion principle. IEEE IAS Conf. Rec., 1996, 2389~2395
    [77] R.Faranda, I.Valade. UPQC compensation strategy and design aimed at reducing losses. IEEE ISIE Conf. Rec., 2002, 1264~1270
    [78] A.Pievatolo, E.Tironi, I.Valade, et al. UPQC reliability analysis. IEEE PQ, 2003, 390~397
    [79] 戴珂. 双三相电压源 PWM 变换器串并联补偿式 UPS 控制技术研究: [博士学位论文]. 武汉:华中科技大学图书馆, 2003
    [80] 刘凤君. Delta 逆变技术及其在交流电源中的应用. 北京: 机械工业出版社, 2003
    [81] 陈坚. 交流电机数学模型及调速系统. 北京:国防工业出版社,1989
    [82] M.E.Fraser, C.D.Manning, B.M.Weus. Transformerless four-wire PWM rectifier and its application in AC-DC-AC converters. IEE Proc.-Electr. Power Appl., 1995, 142(6):410~416
    [83] M.E.Fraser, C.D.Manning. True average current predictive controller for four-wire PWM reversible rectifiers. IEE Proc.-Electr. Power Appl., 1997, 144(6):397~400
    [84] Ching-Lung Chu. a three phase four wire unity power factor ac-dc converter with dual dc output voltage control. INT.J.Electronics, 1997, 83(5):685~702
    [85] V.Soares. P.Verdelho. Voltage regulation system design for the four-wire voltage-converter with split DC link capacitor. IEEE ISIE Conf. Rec., 2002, 4: 1091~1096
    [86] Pedro Verdelho, G.D.Marques. Four-wire current-regulated PWM voltage converter. IEEE Trans. Industrial Electronics, 1998, 45(5):761~770
    [87] 熊健. 三相电压型高频 PWM 整流器研究:[博士学位论文]。武汉:华中科技大学图书馆,1999
    [88] 刘平. 用于超导磁储能系统的高性能电压源变换器控制技术研究:[博士学位论文]。武汉:华中科技大学图书馆,2000
    [89] Chun T.Rim, Nam S.Choi, Guk C.Cho, et al. A complete DC and AC analysis of three-phase controlled-current PWM rectifier using circuit D-Q transformation. IEEE Trans. Power Electronics, 1994, 9(4):390~396
    [90] Hengchun Mao, Dushan Boroyerich, FredC.Y.Lee. Novel reduced-order small-signal model of a three-phase PWM rectifier and its application in control design and system analysis. IEEE Trans.Power Electronics, 1998, 13(3):511~521
    [91] YangYe, Mehrdad Kazerani, Victor H.Quintana. Modeling, control and implementation of three-phase PWM converters. IEEE Trans. Power Electronics, 2003, 18(3):857~864
    [92] Rolando P.Burgos, Eduardo P.W, Joachim Holtz. Complex state-space modeling and nonlinear control of active front-end converters. IEEE Trans. Industrial Electronics, 2005, 52(2):363~377
    [93] Marian P.Kazmierkowski, Luigi Malesani. Current control techniques for three-phase voltage-source PWM converters a survey. IEEE Trans. Industrial Electronics, 1998, 45(5):691~703
    [94] Bong-Hwan Kwon, Jang-Hyoun Youm, Tee-Wso Lim. A line-voltage-sensorless synchronous rectifier. IEEE Trans. Power Electronics, 1999, 14(5):966~972
    [95] Dong-Choon Lee, Dae-Sik Lim. AC voltage and current sensorless control of three-phase PWM rectifiers. IEEE Trans. Power Electronics, 2002, 17(6): 883~890
    [96] Muhammad H.Rashid, Alii.Maswood. Analysis of three-phase AC-DC converters under unbalanced supply conditions. IEEE Trans. Industry Applications, 1988, 24(3):449~455
    [97] Prasad N.Enjeti, Phoivos D.Ziogas, Mehrdad Ehsani. Unbalanced PWM converter analysis and corrective measures. IEEE IAS Conf. Rec., 1989, 1: 861~870
    [98] Luis Moran, Phoivos D.Ziogas, Geza Joos. Design aspects of synchronous PWM rectifier-inverter systems under unbalanced input voltage conditions. IEEE Trans. Industry Applications, 1992, 28(6):1286~1293
    [99] Prasad N.Enjeti, Shamin A.Choudhury. A new control strategy to improve the performance of a PWM AC to DC converter under unbalanced operating conditions. IEEE Trans. Power Electronics, 1993, 8(4):493~500
    [100] Pascal Rioual, Herve Pouliquen, Jean-Paul Louis. Regulation of a PWM rectifier in the unbalanced network state using a generalized model. IEEE Trans. Power Electronics, 1996, 11(3):495~502
    [101] Y.K.Lo, C.L Chen. Three-phase four wire voltage controlled AC line conditioner with unity input power factor and minimised output voltage harmonics. IEE Proc.-Electr. Power Appl., 1995, 142(1):43~49
    [102] M.E.Fraser, C.D.Manning. A Proposed Predictive Average Current Controller For Four-wire Boost Rectifiers. IEE Power Electronics and Variable Speed Drives, 1996, Conference Publication, 144~149
    [103] Ana Vladan Stankovic, Thomas A.Lipo. A novel control method for input output harmonic elimination of the PWM boost type rectifier under unbalanced operating conditions. IEEE Trans. Power Electronics, 2001, 16(5):603~611
    [104] B.R.Lin, Y.C.Lee, T.Y.Yang. Experimental verification of a three-phase multilevel rectifier with reduced number of power switches. IEE Proc.-Electr. Power Appl., 2003, 150(5):600~606
    [105] B.R.Lin, Y.C.Lee. Analysis and implementation of a three-phase four-wire switching mode rectifier based on a switch-clamped scheme. IEE Proc.-Electr. Power Appl., 2004, 151(3):268~275
    [106] B.R.Lin, T.Y.Yang. Experimental verification of three-phase four-wire current-regulated PWM converter. IEE Proc.-Electr. Power Appl., 2005, 152(3):677~685
    [107] Navid R.Zargari, Geza Joos. Performance investigation of a current-controlled voltage-regulated PWM rectifier in rotating and stationary frames. IEEE Trans. Industrial Electronics, 1995, 42(4):396~401
    [108] Tkataoka, T Zshizuka, K Nezu, et al. Current Control of Voltage-type PWM Rectifier Introducing Resonance-based Controller. IEEE Power Electronics and Variable Speed Drives Conf. Rec., 1996, 519~524
    [109] Yukihiko Sato, Tomotsugu Zshizuka, Kazuyoshi Nezu. A new control strategy for voltage-type PWM rectifiers to realize zero steady-state control error in input current. IEEE Trans. Industry Applications,1998, 34(3):480~486
    [110] Shoji Fukuda, Takehito Yoda. A novel current-tracking method for active filters based on a sinusoidal internal model. IEEE Trans. Industry Applications, 2001, 37(3):888~895
    [111] Shoji Fukuda, Ryota Imamura. Application of a sinusoidal internal model to current control of three-phase utility-interface converters. IEEE Trans. Industrial Electronics, 2005, 52(2):420~426
    [112] Robert Gannett. Control Strategies for High Power Four-Leg Voltage Source Inverters. Dissertation, Virginia Tech, 2001
    [113] Hong-Seok Song, Kwanghee Nam. Dual current control scheme for PWM converter under unbalanced input voltage conditions. IEEE Trans. Industrial Electronics, 1999, 46(5):953~959
    [114] Yongsug Swh, Valentintijeras, Thomas A.Lipo. A nonlinear control of the instantaneous power in dq synchronous frame for PWM AC-DC converter under generalized unbalanced operating conditions. IEEE IAS Conf. Rec., 2002, 2: 1189~1196
    [115] Sung-chan Ahn, Dong-Seok Hyun. New control scheme of three-phase PWM AC-DC converter without phase angle detection under the unbalanced input voltage conditions. IEEE Trans. Power Electronics, 2002, 17(5):616~622
    [116] Hong-Seok Song, In-Won Joo, Kwanghee Nam. Source voltage sensorless estimation scheme for PWM rectifiers under unbalanced conditions. IEEE Trans. Industry Electronics, 2003, 50(6):1238~1245
    [117] Yu-Kang Lo, Tzu-Hemg Song, Huang-Jen Chiu. Analysis and elimination of voltage imbalance between the split capacitors in half-bridge boost rectifiers. IEEE Trans. Industry Electronics, 2002, 49(5):1175~1177
    [118] Loubna Yacoubi, Kamal Al-Haddad. A DSP-based implementation of a new nonlinear control for a three-phase neutral point clamped boost rectifier prototype. IEEE Trans. Industry Electronics, 2005, 52(1):197~205
    [119] P.W.Lehn. Exact Modeling of The Voltage Source Converter. IEEE Trans. Power Delivery, 2002, 17(1):217~222
    [120] 彭力. 基于状态空间理论的 PWM 逆变电源控制技术研究: [博士学位论文]. 武汉: 华中科技大学图书馆, 2004
    [121] Richard Zhang. High Performance Power Converter Systems for Nonlinear and Unbalanced Load/Source. Dissertation, Virginia Tech, 1998
    [122] O.Ogasawara, H.Akagi, A.Nabel. A Novel PWM Scheme of Voltage Source Inverters Based on Space Vector Theory. EPE, European Conf. Power Electronics and Applications, 1989, 1197~1202
    [123] A.M.Trzynadlowski, R.L.Kirlin, S.F.Legowski. Space Vector PWM Technique with Minimum Switch Losses and A Variable Pulse Rate[for VSI]. IEEE Trans. Industrial Electronics, 1997, 44(2):173~181
    [124] Keliang Zhou, Danwei Wang. Relationship between space-vector modulation and three-phase carrier-based PWM a comprehensive analysis three-phase inverters. IEEE Trans. Industrial Electronics, 2002, 49(1):186~196
    [125] M.G.Villalva, M.E. de Dliveeira Filho, Ernesto R.F. Detailed implementation of a current controller with 3D space vectors for four wire active filters. IEEE PEDS Conf. Rec., 2003, 1: 536~541
    [126] Changjiang Zhan, Atputharajah A, N.Jenkins. Four-wire dynamic voltage restorer based on a three-dimensional voltage space vector PWM algorithm. IEEE Trans. Power Electronics, 2003, 18(4):1093~1102
    [127] N.Y.Dai, M.C.Wong, Y.D.Han. Three-dimensional space vector modulation with DC voltage variation control in a three-leg centre-split power quality compensator. IEE Proc.-Electr. Power Appl., 151(2):198~204
    [128] Zhihong Ye, D.Boroyevich, KunXing, et al. Active common-mode filter for inverter power supplies with unbalanced and nonlinear load. IEEE IAS Conf. Rec., 1999, 3: 1858~1863
    [129] Man-Chung Wong, Zheng-Yi Zhao, Ying-Duo Han, et al. Three-dimensional pulse-width modulation technique in three-level power inverters for three-phase four-wired system. IEEE Trans. Power Electronics, 2001, 16(3):418~427
    [130] Richard Zhang, V.H. Prasad, D. Boroyevich, et al. Three-dimensional space vector modulation for four-leg voltage-source converters. IEEE Trans. Power Electronics, 2002, 17(3):314~326
    [131] Man-Chung Wong, Jing Tang, Ying-Duo Han. Cylindrical coordinate control of three-dimensional PWM technique in three-phase four-wired trilevel inverter. IEEE Trans. Power Electronics, 2003, 18(1):208~220
    [132] Mauel A.Perales, M.M.Prats, Ramon Portillo, et al. Three-dimensional space vector modulation in abc coordinates for four-leg voltage source converters. IEEE Power Electronics Letters, 2003, 1(4):104~109
    [133] Guijun Yao, Stephen Phillips, Lars Norurm. Three-phase inverters-analysis of ability to maintain symmetrical output voltages. IEEE IECON Conf. Rec., 1993, 2: 1033~1039
    [134] Naser Abdel-Rahim, John E.Quailoe, St.John’s. Three-phase voltage-source UPS inverter with voltage-controlled current-regulated feedback control scheme. 1994, 497~502
    [135] 康勇. 高频大功率 SPWM 逆变电源输出电压控制技术研究: [博士学位论文]. 武汉: 华中科技大学图书馆, 1994
    [136] J.A.D Vazquez, I.Valle Gonzalez, S.Lorenzo Matilla, et al. Converter control theory about three-phases unbalanced loads. IEEE ISIE Conf. Rec., 1995, 1: 133~137
    [137] Youichi Ito, Shoichi Kawauchi. Microprocessor based robust digital control for UPS with three-phase PWM inverter. IEEE Trans. Power Electronics, 1995, 10(2):196~204
    [138] Osman Kvikrer. Deadbeat control of a three-phase inverter with an output LC filter. IEEE Trans. Power Electronics, 1996, 11(1):16~23
    [139] Jae-Ho Choi, Byoung-Jin Kim. Improved digital control scheme of three phase UPS inverter using double control strategy. IEEE APEC Conf. Rec., 1997, 2: 820~824
    [140] M.Malengret, A.Farquharson, J.H.R.Enslin. Negative sequence current cancellation with DSP and space vector controlled PWM modulated inverter. IEEE COMSIG Conf. Rec., 1998, 237~242
    [141] Ping Hsu, Michael Bchnke. A three-phase synchronous frame controller for unbalanced load [invertor operation]. IEEE PESC Conf. Rec., 1998, 2: 1369~1375
    [142] Su Chen, Geza Joos. Transient performance of UPS system with synchronous-frame digital controller. IEEE INTELEC Conf. Rec., 2000, 533~540
    [143] C.B.Jacobina, M.B de R.C, R.F.Pinheiro, et al. Modeling and control of unbalanced three-phase systems containing PWM converters. IEEE Trans. Industry Applications, 2001, 37(6):1807~1816
    [144] F.Botteron, Humberto.P, HiltonA.G, et al. Digital voltage and current controllers for three-phase PWM inverter for UPS applications. IEEE IAS Conf. Rec., 2001, 2: 2667~2674
    [145] Michael J.Ryan, Rik W.De Doncker, Robert D.Lorenz. Decoupled control of a four-leg inverter via a new 4×4 transformation matrix. IEEE Trans. Power Electronics, 2001, 16(5):694~701
    [146] Uffe Borup, Prasad N.Enjeti, Frede Blaabjerg. A new space-vector-based control method for UPS systems powering nonlinear and unbalanced loads. IEEE Trans. Industry Applications, 2001, 37(6):1864~1870
    [147] R.A.Gannett, J.C.Sozio, D.Boroyevich. Application of synchronous and stationary frame controllers for unbalanced and nonlinear load compensation in 4-leg inverters. IEEE APEC Conf. Rec., 2002, 2: 1038~1043
    [148] Gerardo E.V, Aleksandar M.S, Paolo.M. Dissipativity-based adaptive and robust control of UPS in unbalanced operation. IEEE Trans. Power Electronics, 2003, 18(4):1056~1062
    [149] F.Botteron, R.F.de Camargo, H.L.Hey, et al. New limiting algorithms for space vector modulated three-phase four-leg voltage source inverters. IEE Proc.-Electr. Appl., 2003, 150(6):733~742
    [150] Annette V.J, Prasad N.Enjeti, Donald J.Lucas. DSP control of high-power UPS systems feeding nonlinear loads. IEEE Trans. Industry Electronics, 1996, 43(1):121~125
    [151] 张凯. 基于重复控制原理的 CVCF-PWM 逆变器波形控制技术研究:[博士学位论文]。武汉:华中科技大学图书馆,2000
    [152] Richard Zhang, Fred C.Lee, Dushan Boroyerich, et al. New high power, high performance power converter systems. IEEE Trans. Power Electronics, 2000, 15(3):456~463
    [153] P.Mattavelli, S.Fasolo. Implementation of synchronous frame harmonic control for high-performance AC power supplies. IEEE , 2000, 1988~1995
    [154] 郭卫农. CVCF-PWM VSI 输出波形瞬时控制技术研究:[博士学位论文]。武汉:华中科技大学图书馆,2001
    [155] Keliang Zhou, Danwei Wang. Digital repetitive learning controller for three-phase CVCF PWM inverter. IEEE Trans. Industrial Electronics, 2001, 48(4):820~830
    [156] Paolo Mattavelli. Synchronous-frame harmonic control for high-performance AC power supplies. IEEE Trans. Industry Applications, 2001, 37(3):864~872
    [157] 林新春. 康勇. 陈坚. UPS 逆变电源波形补偿技术研究. 电气传动. 2002, (6):35~37
    [158] 李剑. 单相 400Hz CVCF 逆变器模糊-重复混合控制技术研究:[博士学位论文]。武汉:华中科技大学图书馆,2002
    [159] 孔雪娟. 王荆江. 彭力. 基于内模原理的三相电压源型逆变电源的波形控制技术. 中国电机工程学报, 2003, 23(7):67~70
    [160] 朱鹏程. 用于 UPFC 的串、并联双变流器控制策略研究:[博士学位论文]。武汉:华中科技大学图书馆,2005
    [161] 陈道炼. DC-AC 逆变技术及其应用. 北京:机械工业出版社,2003
    [162] TMS320LF/LC240xA DSP Controllers Reference Guide. Texas Instruments Incorporated, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700