基于子频带分解的多通道有源电力滤波与无功补偿
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,电力系统的结构日益复杂,电能质量已成为突出和需要迫切解决的问题。其中,无功和谐波对系统的稳定性及生产、传输、利用效率的影响尤为严重,因此已成为交流输电系统的重要研究内容之一。针对谐波治理与无功补偿研究中存在的问题,本文开展了以下四个方面的研究工作。
     首先,针对谐波和无功的频谱特性,本文利用小波包方法实现了多通道有源电力滤波与无功补偿。在同步旋转坐标变换的基础上,该方法利用小波包分解与重构技术将补偿容量实时分解到不同子频带内,避免了系统输出波形质量与单一器件工作频率之间的矛盾,有效提高了整个无功补偿和谐波抑制装置的系统容量。该方法是一种系统的多模块多重化技术,着眼于整个系统的谐波治理与无功补偿目标,为大容量、高性能补偿系统提供了一种可行解决方案。同时提出基于锁相环控制循环缓存深度的数据处理手段,较好的解决了小波分析与重构造成的延迟问题,使分解后的指令电流实时跟踪畸变电流的变化。理论分析和仿真结果验证了多通道子带滤波与无功补偿系统的有效性及其动静态性能。
     其次,讨论了基于提升格式的小波包算法的特性,继而探讨了提升小波包在多通道子带滤波与无功补偿应用的可行性。完善了一种快速提升结构的小波包分解与重构算法,这种结构通过翻转算法改进了传统提升格式离散小波变换的实现,达到了优化关键路径和硬件资源占用率的目的。本文还探讨了基于VLSI技术实现翻转结构的9/7小波包分解与重构算法方案,为实现多通道有源电力滤波与无功补偿的控制器做出了初步探索。
     此外,本文讨论了实时检测三相电压频率和相位信息的三相锁相环方法,解决了有源电力滤波与无功补偿控制算法中的同步问题。并且分析了三相锁相环在谐波、直流偏移、不平衡等情况下的检测误差。为解决复杂的控制算法和日益提高的控制速度与精度要求之间的矛盾,本文提出并设计了基于FPGA技术的有源电力滤波器的控制器,并详细研究了畸变电流检测、低通滤波器和电流矢量双滞环控制的设计和优化方法。受益于硬件结构的并行运算特性,采用FPGA控制器的有源电力滤波装置能够取得良好的动静态实验结果。
     最后,本文提出一种适用于STATCOM的直接电流控制方法。针对无功补偿电流的基频特性,建立起计算参考电压的数学模型,并完成了相关仿真和实验研究。同时提出一种简化的SVPWM方案,该算法将传统SVPWM算法的复杂运算全部转化为简单的整数操作,优化了控制器的工作频率和资源占用率,并成功应用在高性能STATCOM控制器的设计中。另外,本文建立了基于电压电流双环STATCOM控制系统的数学模型,推导出PI控制器参数的计算准则,并设计了基于FPGA控制器的动态无功补偿实验平台,完成动态无功补偿的相关实验。实验结果表明采用电压电流双环控制的动态无功补偿系统的动静态性能良好。
Recently, the distribution power system has become much more complex, and it requires more stable and higher quality for power generation, distribution, and consumption. Harmonic and reactive power currents in distribution power system will bring about serious problems. How to use of specialized equipments to cancel the harmonic and reactive power current becomes more and more important. Therefore, active power filter and reactive power compensator have been considered as an effective solution for these problems. To solve the problems existed in the research field of harmonic suppression and reactive power compensation, this paper works in the four areas as listed below.
     First, a novel wavelet packet (WP) based sub-bands approach for multichannel harmonic suppression and reactive power compensation is presented and analyzed. This technique distributes power rating into separated channels in frequency domain according to the characteristics of reactive power current and dominant harmonics. Based on this approach, the multiple power modules avoid the conflict between power rating and switching frequency of power electronic unit. Therefore, the proposed approach is suitable to implement harmonic suppression and reactive power compensation in high power applications. The influence of system frequency fluctuating on circle buffer realized periodized extension scheme is analyzed. Then an approach using phase-lock loop (PLL) controlled circle buffer to overcome this problem is presented. Simulation results show good steady-state and dynamic performance of the proposed approach, even when the distorted currents are three-phase unbalanced.
     Second, the characteristic of lifting-based discrete wavelet transform and the possibility of adopting this transform into the sub-bands decomposition is discussed. An efficient flipping structure for lifting-based discrete wavelet transform is introduced and analyzed. It can improve and possibly minimize the critical path and hardware resource requirement of the lifting-based discrete wavelet transform by flipping conventional lifting structures. An efficient flipping 9/7 WP-based structure is designed using very large scale integration (VLSI) technology. Though the paper could not complete the whole control design, it makes a useful exploration of the sub-bands decomposition based multi-channels algorithm realization for future harmonic suppression and reactive power compensation application.
     Third, according to the synchronization problem of active power filter, three phase phase-locked loop is introduced in this paper. Moreover, the control error of this system is discussed under harmonic, offset, and unbalance conditions. Addressing the architecture optimization, the algorithmic strength reduction, folded architecture and pipling method are adopted to design the controllers, including synchronous reference frame theory based distortion detection, infinite impulse response (IIR) low-pass filter, three-phase phase-lock loop, and hysteresis current controller. As a result, the entire control scheme of shunt active power filter is synthesized on a single medium scale field programmable gate arrays (FPGA) using VerilogHDL. Experimental results achieved from an shunt active power filter system show the steady-state and dynamic performance with realtime and accurate control.
     At last, to reduce the switching frequency and current error of a static synchronous compensator (STATCOM) for reactive power compensation, a novel direct current control (DCC) strategy is proposed. The proposed controller outputs the optimum switching pattern according to the double band hysteresis threshold scheme. By using reference current derivative transform instead of predictive method, the scheme accurately detects the location of reference voltage vector in stationary reference frame. This technique can achieve a stable and fast response, while maintaining the switching frequency lower than other conventional current control techniques. Meanwhile, a compact algorithm of space vector pulse width modulation (SVPWM) for three-phase inverters is proposed and developed in this paper. Simplified by the proposed method, the conventional SVPWM is decomposed into fast integer operations entirely by using an intermediate vector, which will properly counteract the redundant calculations of the remaining procedures. This concept can not only simplify a two-level scheme, but is also suited for multilevel implementation. Since it can be implemented without any multiplier or divider, the fast algorithm is especially suitable for FPGA applications. Then an area- and speed-efficient IP-core based on this algorithm is built and tested. It ensures lower hardware resource usage, and at the same time, operates several times faster than some reported examples. An voltage and current control of STATCOM is proposed by using the simplified SVPWM-based controller. Experimental results are investigated to demonstrate the STATCOM performance using the design controller under steady state and dynamic operation.
引文
[1] IEEE. IEEE recommended practices and requirements for harmonic control in electrical power systems. IEEE Std 519-1992, 1992
    [2] 中国国家标准GB/T14549-93.电能质量公用电网谐波.北京:中国国家标准出版社,1994
    [3] Narain G. Hingorani. Flexible AC transmission. IEEE SPECTRUM. 1993
    [4] 王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,1998.1 edn.
    [5] Jou Hurng-Liahng, Wu Jinn-Chang, Chang Yao-Jen. A novel active power filter for harmonic suppression. Power Delivery, IEEE Transactions on. 2005, 20(2): 1507-1513
    [6] L. Gyugyi, E. C. Strycula. Active AC Power Filter. IEEE Transon PAS. 1976, 95(6): 529-535
    [7] H. Akagi, Y. Kanazawa, A. Nabae. Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Trans Ind Applicat. 1984, IA(20): 625-630
    [8] J. H. Marks, T. C. Green. Predictive transient-following control of shunt and series active power filters. IEEE Transactions on Power Electronics. 2002, 17(4): 574-584
    [9] M. Basu, S. P. Das, G. K. Dubey. Parallel converter scheme for high-power active power filters. Electric Power Applications, IEE Proceedings-. 2004, 151 (4): 460-466
    [10] S. Bhattacharya, T. M. Prank, D. M. Divan, B. Banerjee. Active filter system implementation. Industry Applications Magazine, IEEE. 1998, 4(5): 47-63
    [11] Joep Jacobs, Dirk Detjen, Claus-Ulrich Karipidis, Rik W. De Doncker. Rapid Prototyping Tools for Power Electronic Systems: Demonstration With Shunt Active Power Filters. IEEE Transactions on Power Electronics. 2004, 19(2): 500-507
    [12] P. H. Henning, H. D. Fuchs, A. D. Le Roux, H. du T. Mouton. Development of a 1.5 MW, Seven Level Series-stacked Converter as an APF and Regeneration Converter for a DC Traction Substation. Power Electronics Specialists, 2005 IEEE 36th Conference on. 2005, 2270-2276
    [13] J. B. Choo, J. S. Yoon, B. H. Chang. Development of FACTS operation technology to the KEPCO power network-detailed EMTDC model of 80 MVA UPFC. IEEE Transmission and Distribution Conference and Exhibition. 2002, vol. 2, 354-358
    [14] G. Reed, J. Paserba, T. Croasdaile. SDG & E Talega STATCOM project-system analysis, design, and configuration. IEEE Transmission and Distribution Conference and Exhibition. 2002, vol. 2, 1393-1398
    [15] Li Hongyu, Zhuo Fang, Wang Zhaoan. A novel time-domain current-detection algorithm for shunt active power filters. IEEE Trans Power Syst. 2005, 20(2): 644-651
    [16] 卓放,何益宏,李红雨,王兆安.大容量有源电力滤波器实现方法的研究.电力电子技术.2001
    [17] 陈仲.并联有源电力滤波器实用关键技术的研究.Ph.D.thesis,浙江大学,2005
    [18] 钟洪浩.新型混合有源电力滤波器研究.Ph.D.thesis,浙江大学,2005
    [19] 朱鹏程.用于UPFC的串并联双变流器控制策略研究.Ph.D.thesis,华中科技大学,2005
    [20] Li Dayi, Chen Qiaofu, Jia Zhengchun, Ke Jianxing. A novel active power filter with fundamental magnetic flux compensation. Power Delivery, IEEE Transactions on. 2004, 19(2): 799-805
    [21] 姜齐荣,刘文华,韩英铎等.±20M var STATCOM控制器设计.电力系统自动化.2000,23(7):24-28
    [22] 朱永强,崔文进,胡东辰,滕乐天,王伟,俞旭峰.±50Mvar静止补偿器接入系统运行策略仿真研究.电力系统自动化.2004,28(21):77-80
    [23] 刘文华,宋强,张东江,陈天锦,滕乐天,郑东润.50 MVA静止同步补偿器链节的等价试验.中国电机工程学报.2006,26(12):73-78
    [24] T. C. Green, J. H. Marks. Control techniques for active power filters. IEE Proc Electr Power Appl. 2005, 152(2): 369-381
    [25] A. M. Massoud, S. J. Finney, B. W. Williams. Practical issues of three-phase, three-wire, voltage source inverter-based shunt active power filters. Harmonics and Quality of Power, 2004. 11th International Conference on. 2004, 436-441
    [26] Bhim Singh, Kamal Al-Haddad, Ambrish Chandra. A review of active filters for power quality improvement. IEEE Transactions on Industry electronics. 1999, 46(5): 960
    [27] Po-Tai Cheng. Use of dominant harmonic active filters in high power applications. Electrical engineering, UNIVERSITY OF WISCONSIN, 1999
    [28] H. Akagi. Active harmonic filters. Proceedings of the IEEE. 2005, 93(12): 2128-2141
    [29] 李战鹰,任震,杨泽明.有源滤波装置及其应用综述.电网技术.2004,28(22):40-43
    [30] Luis A. Moran, Luciano Fernandez, Juan W. Dixon. A simple and low-cost control strategy for active power filters connected in cascade. IEEE Transcions on Industrial Electronics. 1997, 44(5): 621-629
    [31] Y. S. Kim, J. S. Kim, S. H. Ko. Three-phase three-wire series active power filter, which compensates for harmonics and reactive power. Electric Power Applications, IEE Proceedings-. 2004, 151(3): 276-282
    [32] B. Hart, B. Bae, H. Kim, S. Baek. Combined operation of unified power-quality conditioner with distributed generation. Power Delivery, IEEE Transactions on. 2006, 21(1): 330-338
    [33] J. L. Willems. A new interpretation of the Akagi-Nabae power components for nonsinusoidal three-phase situations. IEEE Transactions on Instrumentation and Measurement. 1992, 41(4): 523-527
    [34] M. A. E Alali, Y. A. Chapuis, L. Zhou. Advanced Corrector with FPGA-Based PLL to Improve Performance of a Series Active Filter Compensating all Voltage Disturbances. In Proc. 9th Eur. Power Electronic Conf. Gratz, Austria, 2001, 1-10
    [35] M. Karimi-Ghartemani, H. Mokhtari, M. R. Iravani. A signal Processing system for extraction of harmonics and reactive current of single-phase systems. IEEE Transactions on Power Delivery. 2004, 19(3): 979-986
    [36] J. M. M. Ortega, M. P. Esteve, M. B. Payan. Reference current computation methods for active power filters: accuracy assessment in the frequency domain. IEEE Transactions on Power Electronics. 2005, 20(2): 446-456
    [37] P. Mattavelli. A closed-loop selective. harmonic compensation for active filters. Industry Applications, IEEE Transactions on. 2001, 37(1): 81-89
    [38] Yang Jun, Wang Yue, Duan Yong. A three-phase comprehensive reactive power and harmonics compensator based on a comparatively small rating APF. Applied Power Electronics Conference and Exposition, 2004. APEC'04. Nineteenth Annual IEEE. 2004, vol. 1, 204-209
    [39] 罗安,付青,王丽娜等.变电站谐波抑制与无功补偿的大功率混合型电力滤波器.中国电机工程学报.2004,24(9):115-123
    [40] S. J. Chiang, W. J. Ai, F. J. Lin. Parallel operation of capacity-hmited three-phase four-wire active power filters. IEE Proc Electr Power Appl. 2002, 149(5): 329-336
    [41] Jianlin Li, Changsheng Hu, Liqiao Wang. APF based on multilevel voltage source cascade converter with carrier phase shifted SPWM active power filter. TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region. 2003, vol. 1, 264-267
    [42] H. Miranda, V. Cardenas, J. Perez. A hybrid multilevel inverter for shunt active filter using space-vector control. Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual. 2004, vol. 5, 3541-3546
    [43] Geng Wang, Yongdong Li, Xiaojie You. A Novel Control Algorithm for Cascade Shunt Active Power Filter. 35th Annual IEEE Power Electronics Speciulisrs Confere. Aachen, Cermuny, 2004
    [44] R. I. Bojoi, G. Griva, V. Bostan, M. Guerriero, F. Farina, F. Profumo. Current control strategy for power conditioners using sinusoidal signal integrators in synchronous reference frame. IEEE Transactions on Power Electronics. 2005, 20(6): 1402-1412
    [45] J. Allmeling. A control structure for fast harmonics compensation in active filters. IEEE Transactions on Power Electronics. 2004, 19(2): 508-514
    [46] P. Mattavelli, F. P. Marafao. Repetitive-based control for selective harmonic compensation in active power filters. Industrial Electronics, IEEE Transactions on. 2004, 51(5): 1018-1024
    [47] G. Sinha, T. A. Lipo. A four-level inverter based drive with a passive front end. IEEE Transactions on Power Electronics. 2000, 15(2): 285-294
    [48] 张永昌,赵争鸣.基于快速空间矢量调制算法的多电平逆变器电容电压平衡问题研究.中国电机工程学报.2006,26(18):71-76
    [49] N. V. Nho, M. J. Youn. Comprehensive study on space-vector-PWM and carrier-based-PWM correlation in multilevel invertors. Electric Power Applications, IEE Proceedings-. 2006, 153(1): 149-158
    [50] S. J. Chiang, J. M. Chang. Design and Implementation of the Parallelable Active Power Filter. IEEE. 1999
    [51] S. J. Chiang, J. M. Chang. Parallel operation of shunt active power falters with capacity limitation control. Aerospace and Electronic Systems, IEEE Transactions on. 2001, 37(4): 1312-1320
    [52] L. Moran, P. Godoy, R. Wallace. A new current control strategy for active power filters using three PWM voltage source inverters. IEEE Power Electronics Specialists Conference. Seattle, WA, 1993, 3-9
    [53] Kim Sangsun, P. N. Enjeti. A new hybrid active power filter (APF) topology. IEEE Transactions on Power Electronics. 2002, 17(1): 48-54.
    [54] R. El Shatshat, M. Kazerani, M. M. A. Salama. Modular active power-line conditioner. Power Delivery, IEEE Transactions on. 2001, 16(4): 700-709
    [55] M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies. Image coding using wavelet transform. Image Processing, IEEE Transactions on. 1992, 1(2): 205-220
    [56] 杨福生.小波变换的工程分析与应用.北京:科学出版社,1999,1 edn.
    [57] JPEG committee. JPEG 2000 image coding system, JPEG 2000 final committee draft version 1.0. March 2000. Available: http://www.jpeg.org
    [58] 何正友.电力系统暂态信号的小波分析方法及其在EHV输电线路暂态保护中的应用研究.Ph.D.thesis,西南交通大学,2000
    [59] Xu Lijun. Cancellation of harmonic interference by baseline shifting of wavelet packet decomposition coefficients. Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on]. 2005, 53(1): 222-230
    [60] Qing-hai Wei, Hui Sun, Ji-yan Zou. Detection strategy of the harmonic compensation in distribution systems. Power System Technology, 2002. Proceedings. PowerCon 2002. International Conference on. 2002, vol. 4, 2491-2495
    [61] Du Tianjun, Chen Guangju, Lei Yong. Frequency domain interpolation wavelet transform based algorithm for harmonic analysis of power system. Communications, Circuits and Systems, 2004. ICCCAS 2004. 2004 International Conference on. 2004, vol. 2, 742-746
    [62] 赵成勇,何明锋.基于复小波变换相位信息的谐波检测算法.中国电机工程学报.2005,25(1):38-42
    [63] 杜天军,陈光,雷勇.基于混叠补偿小波变换的电力系统谐波检测方法.中国电机工程学报.2005,25(3):54-59
    [64] Chen Zhong, Xu Dehong. Delayless harmonic detection based on DSP with high-accuracy for active power filter. APEC'05. 2005, 1817-1823
    [65] L. N. Arruda, S. M. Silva, B. J. C. Filho. PLL structures for utility connected systems. Industry Applications Conference, 2001. Thirty-Sixth IAS Annual Meeting. Conference Record of the 2001 IEEE. 2001, vol. 4, 2655-2660
    [66] S. Chen, G. Joos. Symmetrical SVPWM pattern generator using field programmable gate array implementation. Applied Power Electronics Conference and Exposition. 2002, vol. 2, 1004-1010
    [67] Zhou Zhaoyong, Li Tiecai, T. Takahashi. Design of a universal space vector PWM controller based on FPGA. Applied Power Electronics Conference and Exposition. 2004, vol. 3, 1698-1702
    [68] M. J. Newman, D. N. Zmood, D. G. Homes. Stationary frame harmonic reference generation for active filters systems. IEEE Applied Power Electronics Conference. Dallas, Texas, USA, 2002, 1054-1060
    [69] Ruixiang Hao, Zhiguang Cheng, Xiaojie You. A novel harmonic currents detection method based on rotating d-q reference frame for active power filter. Power Electronics Specialists Conference. 2004, 3034-3038
    [70] Lei Wanjun, Zhuo Fang, Li Hongyu. Study on the key-problems for digital controlled multiple parallel active power filter. Power Electronics and Motion Control Conference. 2004, vol. 1, 254-259
    [71] Y. F. Chan, M. Moallem, W. Wang. Efficient implementation of PID control algorithm using FPGA technology. IEEE Conference on Decision and Control. 2004, vol. 5, 4885-4890
    [72] A. de Castro, P. Zumel, O. Garcia. Concurrent and simple digital controller of an AC/DC converter with power factor correction based on an FPGA. IEEE Trans Power Electron. 2003, 18(1): 334-343
    [73] A. M. Omar, N. A. Rahim. FPGA-based ASIC design of the three-phase syn-chronous PWM flyback converter. IEE Proc Electr Power Appl. 2003, 150(3): 263-268
    [74] R. El Shatshat, M. Kazerani, M. M. A. Salama. Modular active power filtering approaches: Power splitting verses frequency splitting. IEEE Canadian Conference on Electrical and Computer Engineering. Edmonton, Alta., Canada, 1999, vol. 3, 1304-1308
    [75] 王建赜,冉启文,纪延超等.基于小波变换的时变谐波检测.电力系统自动化.1998,22(8):52-55
    [76] P. Clarkson, P. S. Wright. Wavelet-based method for locating bursts of harmonics applied to the calibration of harmonic analysers. IEE Proceedings Science, Measurement and Technology. 2004, 151(5): 368-375
    [77] E. Y. Hamid, R. Mardiana, Z. I. Kawasaki. Method for RMS and power measurements based on the wavelet packet transform. IEE Proceedings Science, Measurement and Technology. 2002, 149(2): 60-66
    [78] Gaing Zwe-Lee. Wavelet-based neural network for power disturbance recognition and classification. IEEE Transactions on Power Delivery. 2004, 19(4): 1560-1568
    [79] Stephane Mallat.信号处理的小波导引.北京:机械工业出版社,2002,2 edn.
    [80] I. Daubechies. Ten Lectures on Wavelets. Philadelphia: PA: SIAM, 1992
    [81] M. V. Wickerhauser, R. R. Coifman. INRIA lectures on wavelet packet algorithms. 1991
    [82] T. Tarasiuk. Hybrid wavelet-Fourier spectrum analysis. IEEE Transactions on Power Delivery. 2004, 19(3): 957-964
    [83] Julio Barros, Ram(?)n I. Diego. Application of the Wavelet-Packet Transform to the Estimation of Harmonic Groups in Current and Voltage Waveforms. IEEE Transactions on Power Delivery. 2006
    [84] 姜新华,范征宇.快速小波变换在DSP中的实现方法.数据采集与处理.2000,15(2):170-175
    [85] 姜俊峰,刘会金,陈允平等.有源滤波器的电压空间矢量双滞环电流控制新方法.中国电机工程学报.2004,24(10):82-86
    [86] Mathworks Inc. Implementing s-functions: overview of s-functions (Simulink), 2004. Available: http://mathworks.com
    [87] W. Sweldens, W. Schroder. Building your own wavelets at home. Tech. rep., Department of Mathematics, University of South Carolina, 1995
    [88] W. Sweldens. A custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis. 1996, 3(2): 186-200
    [89] Ingrid Daubechies, Wire Sweldens. Factoring wavelet transforms into lifting steps. Tech. rep., 1996
    [90] R. C. Calderbank, I. Daubechies, W. Sweldens, B.L. Yeo. Wavelet Transforms that Map Integers to Integers. Applied and Computational Harmonic Analysis. 1998, 5(3): 332-369
    [91] 王娜,贾传荧,贾银山.小波提升格式的研究.信号处理.2003,19(3):269-273
    [92] S. Masud, J. V. McCanny. Wavelet packet transforms for system-on-chip applications. IEEE International Conference on Acoustics, Speech, and Signal Processing. 2000, vol. 6, 3287-3290
    [93] C. Valens. The fast lifting wavelet transform. Tech. rep., 2004
    [94] A. Cohen, Ingrid Daubechies, J. -C. Feauveau. Biorthogonal bases of compactly supported wavelets. Comm Pure Appl Math. 1992, 45(5): 485-560
    [95] Minh N. Do. Directional Multiresolution Image Representations. Ph. D. thesis, 2001
    [96] Huang Chao-Tsung, Tseng Po-Chih, Chen Liang-Gee. Flipping structure: an efficient VLSI architecture for lifting-based discrete wavelet transform. IEEE Transactions on Signal Processing. 2004, 52(4): 1080-1089
    [97] L. Cheng, D. L. Liang, Z. H. Zhang. Popular biorthogonal wavelet filters via a lifting scheme and its application in image compression. IEE Proceedings Vision, Image and Signal Processing. 2003, 150(4): 227-232
    [98] O. Fatemi, S. Bolouki. Pipeline, memory-efficient and programmable architecture for 2D discrete wavelet transform using lifting scheme. IEE Proceedings Circuits, Devices and Systems. 2005: 703-708
    [99] Wu Bing-Fei, Lin Chung-Fu. A high-performance and memory-efficient pipeline architecture for the 5/3 and 9/7 discrete wavelet transform of JPEG2000 codec. IEEE Transactions on Circuits and Systems for Video Technology. 2005, 15(12): 1615-1628
    [100] Lan Xuguang, Zheng Nanning, Liu Yuehu. Low-power and high-speed VLSI architecture for lifting-based forward and inverse wavelet transform. IEEE Transactions on Consumer Electronics. 2005, 51(2): 379-385
    [101] K. A. Kotteri, S. Barua, A. E. Bell. A comparison of hardware implementations of the biorthogonal 9/7 DWT: convolution versus lifting. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs. 2005, 52(5): 256-260
    [102] Xiong Cheng-Yi, Tian Jin-Wen, Liu Jian. A note on "Flipping structure: an efficient VLSI architecture for lifting-based discrete wavelet Transform". IEEE Transactions on Signal Processing. 2006, 54(5): 1910-1916
    [103] L. Asirninoaei, F. Blaabjerg, S. Hansen. Evaluation of harmonic detection methods for active power filter applications. APEC'05. 2005, vol. 1,635-641
    [104] Shailendra Kumar Jain, Pramod Agarwal, H. O. Gupta. A control algorithm for compensation of customer-generated harmonics and reactive power. IEEE Trans Power Delivery. 2004, 19(1): 357-366
    [105] Chen Zhong, Xu Dehong. Control and design issues of a DSP-based shunt active power filter for utility interface of diode rectifiers. APEC'04. 2004, vol. 1, 197-203
    [106] Vikrarn Kawa, Vladimir Blasko. Operation of a phase locked loop system under distorted utility conditions. IEEE Transactions on Industry Applications. 1996, 33: 703-708
    [107] Se-Kyo. Chung. A phase tracking system for three phase utility interface inverters. IEEE Transactions on Power Electronics. 2000, 15(3): 431-438
    [108] Sang-Joon Lee, Jun-Koo Kang, Seung-Ki Sul. A new phase detecting method for power conversion systems considering distorted conditions in power system. Industry Applications Conference. Hyatt Regency Phoenix, Arizona USA, 1999, 2167-2172
    [109] 陈东华,吴睿,谢少军等.基于FPGA的三相四线有源滤波器的电流控制方案.电力系统自动化.2006,30(3):56-60
    [110] Keshab K. Parhi. VLSI digital signal processing systems: design and implementation. John Wiley & Sons, Inc., 1999
    [111] 王勇,吕征宇,姚文熙等.有源电力滤波器中谐波提取的数字法实现.电力系统及其自动化学报.2004,16(4):64-67
    [112] Alan V. Oppenheim, Ronald W. Schafer, John R.Buck. Discrete-Time signal processing. Prentice-Hall, Inc., 1999, 2 edn.
    [113] J. Zeng, Y. Ni, Q. Diao. Current controller for active power filter based on optimal voltage space vector. IEE Proc-Gener Transm Distrib. 2001, 148(2): 111-116
    [114] 曾江,刁勤华,倪以信等.基于最优电压矢量的有源滤波器电流控制新方法.电力系统自动化.2000,24(6):25-31
    [115] J. F. Jiang, H. J. Liu, Y. P. Chen. A novel double hysteresis current control method for active power filter with voltage space vector. Proceedings of the CSEE. 2004, 24(10): 82-86. In chinese
    [116] S. Malhotra, T. P. Borer, D. P. Singh. The Quartus University Interface Program: enabling advanced FPGA research. IEEE International Conference on Field- Programmable Technology. 2004, 225-230
    [117] W. le Roux, J.D. van Wyk. The effect of signal measurement and processing delay on the compensation of harmonics by PWM converters. IEEE Trans Ind Applicat. 2000, 47: 297-304
    [118] Power Integrations, Inc. TOP242-249 TOPSwitch-GX Family Extended Power, Design Flexible, EcoSmart, Integrated Off-line Switcher, 2000, November. Available: http://www.powerint.com/
    [119] P. S. Sensarma, K. R. Padiyar, V. Ramanarayanan. Analysis and performance evaluation of a distribution STATCOM for compensating voltage fluctuations. IEEE Trans Power Delivery. 2001, 16(2): 259-264
    [120] H. F. Bilgin, M. Ermis, K. N. Kose. Reactive power compensation of coal mining excavators by using a new generation statcom. Fourtieth IAS Annual Meeting. 2005, vol. 1, 185-197
    [121] Cai Rong, M. Bongiorno, A. Sannino. Control of D-STATCOM for Voltage Dip Mitigation. International Conference on Future Power Systems. 2005, 1-6
    [122] L. Xu, V. G. Agelidis, E. Acha. Development considerations of DSP-controlled PWM VSC-based STATCOM. IEE Proceedings Electric Power Applications. 2001, 148(5): 449-455
    [123] Y. Liu, F. L. Luo. Trinary hybrid multilevel inverter used in STATCOM with unbalanced voltages. Electric Power Applications, IEE Proceedings-. 2005, 152(5): 1203-1222
    [124] G. W. Moon. Predictive current control of distribution static compensator for reactive power compensation. IEE Proc -Gener Transm Distrib. 1999, 146(5): 515-520
    [125] M. I. Marei, E. F. El-Saadany, M. M. A. Salama. A novel control scheme for STATCOM using space vector modulation based hysteresis current controller. Harmonics and Quality of Power, 2004. 11th International Conference on. 2004, 58-65
    [126] Shin Eun-Chul, Park Sung-Min, Oh Won-Hyun. A novel hysteresis current controller to reduce the switching frequency and current error in D-STATCOM. IEEE Annual Conference of IECON. 2004, vol. 2, 1144-1149
    [127] Peng Fang Zheng, Lai Jih-Sheng. Dynamic performance and control of a static VAt generator using cascade multilevel inverters. IEEE Transactions on Industry Applications. 1997, 33(3): 748-755
    [128] Kim Bum-Sik, Oh Won-Hyun, Shin Eun-Chul. Current control method using a double band hysteresis. IEEE Annual Conference of IECON. 2004, vol. 1, 286-290
    [129] P. Garica-Gonzalez, A. Garcia-Cerrada. Control system for a PWM-based STATCOM. IEEE Transactions on Power Delivery. 2000, 15(4): 1252-1257
    [130] 魏文辉,刘文华,宋强等.基于逆系统方法有功无功解耦PWM控制的链式STATCOM动态控制策略研究.中国电机工程学报.2005,25(3):23-28
    [131] 魏文辉,宋强,滕乐天等.基于反故障控制的链式STATCOM动态控制策略的研究.中国电机工程学报.2005,25(4):19-24
    [132] M. Saeedifard, A. R. Bakhshai, P. Jain. Introducing the low switching frequency space vector modulated multimodular three-level converters for high power applications. IEEE Power Electronics Specialist Conference. 2003, vol. 4, 1639-1644
    [133] M. Saeedifard, A. Bakhshai, G. Joos. Low switching frequency space vector modulators for high power multimodule converters. IEEE Transactions on Power Electronics. 2005, 20(6): 1310-1318
    [134] 栗春,姜齐荣,王仲鸿.STATCOM电压控制系统性能分析.中国电机工程学报.2000,20(8):46-50
    [135] Altera Inc. Cyclone Device Handbook Volume 1, 2003, May. Available: http://www.altera.com
    [136] 颜晓庆.并联型及并联混合型电力有源滤波器的稳定性及其动态特性的研究.Ph.D.thesis,西安交通大学,1998
    [137] 高大威.电力系统谐波、无功和负序电流综合补偿的研究.Ph.D.thesis,华北电力大学,2001
    [138] M. A. Jabbar, A. M. Khambadkone, Yanfeng Zhang. Space-vector Modulation in a two-phase induction motor drive for constant-power operation. IEEE Transactions on Industrial Electronics. 2004, 51(5): 1081-1088
    [139] 杨贵杰,孙力,崔乃政等.空间矢量脉宽调制方法的研究.中国电机工程学报.2001,21(5):79-83
    [140] S. R. Bowes, Lai Yen-Shin. The relationship between space-vector modulation and regular-sampled PWM. IEEE Transactions on Industrial Electronics. 1997, 44(5): 670-679
    [141] Zhou Keliang, Wang Danwei. Relationship between space-vector modulation and three-phase carrier-based PWM: a comprehensive analysis. IEEE Transactions on Industrial Electronics. 2002, 49(1): 186-196
    [142] Hua Bai, Zhengming Zhao, Shuo Meng. Comparison of three PWM strategies- SPWM, SVPWM & one-cycle control. The Fifth International Conference on Power Electronics and Drive Systems. 2003, vol. 2, 1313-1316
    [143] J. T. Boys, P. G. Handley. Harmonic analysis of space vector modulated PWM waveforms. IEE Proceedings-Electric Power Applications. 1990, 137(4): 197-204
    [144] V. S. Kumar, P. S. Kannan. Harmonic studies in space vector PWM inverter drive system. International Conference on Power System Technology. 2004, vol. 1, 123-127
    [145] A. M. Trzynadlowski, R. L. Kirlin, S. F. Legowski. Space vector PWM technique with minimum switching losses and a variable pulse rate. IEEE Transactions on Industrial Electronics. 1997, 44(2): 173-181
    [146] J. O. P. Pinto, B. K. Bose, L. E. B. Da Silva. A neural-network-based spacevector PWM controller for voltage-fed inverter induction motor drive. Industry Applications, IEEE Transactions on. 2000, 36(6): 1628-1636
    [147] C. B. Jacobina, A. M. Nogueira Lima, E. R. C. da Silva. Digital scalar pulsewidth modulation: a simple approach to introduce nonsinusoidal modulating waveforms. IEEE Transactions on Power Electronics. 2001, 16(3): 351-359
    [148] Zhou Zhaoyong, Yang Guijie, Li Tiecal. Design and implementation of an FPGA-based 3-phase sinusoidal PWM VVVF controller. Applied Power Electronics Conference and Exposition. 2004, vol. 3, 1703-1708
    [149] J. Rey, J. Doval-Gandoy, F. Sanchez. Converting a VSC modulation strategy for controlling a CSC used in FACTS. IECON 32nd Annual Conference. 2005, 871-876
    [150] Dai Ning-Yi, Wong Man-Chung, Han Ying-Duo. Application of a three-level NPC inverter as a three-phase four-wire power quality compensator by generalized 3DSVM. IEEE Transactions on Power Electronics. 2006, 21(2): 440-449
    [151] A. R. Bakhshai, G. Joos, P. K. Jain. Incorporating the overmodulation range in space vector pattern generators using a classification algorithm. IEEE Transactions on Power Electronics. 2000, 15(1): 83-91
    [152] A. M. Trzynadlowski, K. Borisov, Li Yuan. A novel random PWM technique with low computational overhead and constant sampling frequency for highvolume, low-cost applications. IEEE Transactions on Power Electronics. 2005, 20(1): 116-122
    [153] N. Celanovic, D. Boroyevich. A fast space vector modulation algorithm for multilevel three-phase converters. Industry Applications Conference. 1999, vol. 2, 1173-1177
    [154] Wei Sanmin, Wu Bin, Li Fahai. A general space vector PWM control algorithm for multilevel inverters. Applied Power Electronics Conference and Exposition. 2003, vol. 1, 562-568
    [155] 周卫平,吴正国,唐劲松等.SVPWM的等效算法及SVPWM与SPWM的本质联系.中国电机工程学报.2006,26(2):133-137
    [156] A. Bakhshai, G. Joos, J. Espinoza. Fast space vector modulation based on a neurocomputing digital signal processor. APEC'97 Conference Proceedings. 1997, vol. 2, 872-878
    [157] Liu Tian, Song Qiang, Liu Wenhua. FPGA-based universal multilevel space vector modulator. IECON 32nd Annual Conference. 2005, 745-749
    [158] 宋文祥,陈国呈,束满堂等.中点箝位式三电平逆变器空间矢量调制及其中点控制研究.中国电机工程学报.2006,26(5):105-109
    [159] C. S. Moreira, R. C. S. Freire, E. U. K. Melcher. FPGA-based SVPWM trigger generator for a 3 φ voltage source inverter. Proceedings of Instrumentation and Measurement Technology Conference. 2000, vol. 1, 174-178
    [160] Cui Naizheng, Yang Guijie, Liu Yajing. Development of an FPGA-based high-performance servo drive system for PMSM. International Symposium on Systems and Control in Aerospace and Astronautics. 2006, 881-886
    [161] B. P. McGrath, D. G. Holmes, T. Lipo. Optimized space vector switching sequences for multilevel inverters. IEEE Transactions on Power Electronics. 2003, 18(6): 1293-1301
    [162] Seo Jae Hyeong, Choi Chang Ho, Hyun Dong Seok. A new simplified space-vector PWM method for three-level inverters. IEEE Transactions on Power Electronics. 2001, 16(4): 545-550

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700