10kW单相光伏并网逆变系统及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能作为一种可再生能源,是最有潜力的替代能源之一,是人类可以直接使用的清洁能源,而我国又是世界上太阳能资源最为丰富的国家之一,因此,在能源危机日益严重的今天,研究电力电子装置效率、改善其输出特性,开发和利用太阳能具有重大的战略意义。本文设计构建了太阳能并网逆变系统,并从最大功率点跟踪和逆变器的驱动、系统参数计算与控制器设计三个方面进行了深入研究。
     针对传统光伏逆变器体系结构存在着成本高、可靠性差和热斑现象等不足,本文提出了一种并联多支路的光伏逆变器结构,前级采用boost电路升压,可完成光伏电池最大功率点跟踪,后级逆变环节采用全桥逆变电路,输出级采用工频隔离变压器来实现电气隔离,从而实现了光伏电能输入,标准市电输出,克服了传统光伏逆变系统的一些不足。除此之外,本文还在如下环节做了较详细的研究:
     (1)DC/DC电路拓扑与控制器设计。主电路采用超级电容与boost升压电路组合的形式。以多晶硅太阳能电池板输出侧的电压与电流作为控制变量,在保证boost电路直流母线电压为500V的前提下,以最大功率作为的控制目标,采用变步长扰动观测算法实现最大功率点跟踪,极大限度的提高太阳能的利用率。
     (2)大功率DC/AC并网逆变器主电路拓扑及其控制器设计。DC/AC主电路采用电压型全桥逆变结构,功率器件使用IGBT模块或同等功率的IGBT单管,应用SPWM控制方式。采用dsPIC30F5015作为控制器主控芯片,完成了主控制器的设计,并对主逆变缓冲电路和输出侧滤波器进行了详细的参数计算。根据简单、鲁棒的原则,采用PID算法有效地稳定了直流母线电压同时调节了并网功率因数;采用被动孤岛检测法与主动孤岛检测法结合来防止孤岛效应。
     本文作者设计了10kW光伏并网逆变系统,并相应制作了小容量的逆变器闭环装置和大量仿真实验。通过对整个系统的理论分析和仿真结果证明,该系统设计方案是光伏并网发电领域的高效可行的较佳方案,具有不可估量的理论意义和经济意义。
Solar energy as a renewable energy is the most promising substitute energy sources. Human can use it as a clean energy directly, and China who is the one of the countries has the most abundant solar energy resources, therefore, for the growing energy crisis today, studying the efficiency of power electronic devices, improving the output characteristics, and development and utilization of solar energy have significant strategic significance. A solar grid-system was designed and built in this paper, and the in-depth study and calculation were elaborated for the maximum power point tracking and inverter drives, system parameters and controller design in this paper.
     There are some lacks for the traditional architecture of the PV inverter, for example the high cost, poor reliability and hot-spot phenomena. A multi-branch centralized photovoltaic inverter structure was proposed in this paper and pre-boost circuit was used to increase the voltage, which can complete maximum power point tracking of photovoltaic cell. Full-bridge inverter circuit was used in after-class inverter and isolation transformer was used in output stage to achieve electrical isolation, so the input of solar energy and output of standard electricity were achieved which overcame some shortcomings of traditional PV inverter system. In addition, more detailed studies have been done for following areas in this paper:
     (1) DC/DC circuit topology and controller were designed. The main circuit was combined by super capacitor with boost circuit. The voltage and current of the output side of the polycrystalline silicon solar panel as the control variable to be used, the maximum power as the control objectives, at same time ensuring the boost DC bus voltage at 500V, the technique of variable step disturbance observer is used to achieve maximum power point tracking which improved the utilization of solar energy with maximum extent.
     (2) High-power DC/AC main circuit topology of grid-connected inverter and its controller were designed. Voltage full-bridge inverter structure was adopted in main DC/AC circuit; the same power IGBT module or single-tube was adopted in IGBT power devices and SPWM control was applied. dsPIC30F5015 chip was adopted in the master controller to complete the design, and the parameters of buffer and filter for output side were calculated in detail. According to a simple principles and robust principles, PID algorithm was adopted to stabilize the DC bus voltage effectively, and regulating the grid power factor; the way of combining passive way with active way was adopted to prevent island effect.
     A 10kW photovoltaic inverter system was designed in this paper. A small-capacity inverter device was manufactured and large numbers of closed-loop simulation were made. The whole system analysis and simulation results show that the solution is effective in the field of photovoltaic grid, and have practical theory significance and economic significance.
引文
[1]苗玉金. 21世纪我国太阳能发电的趋势.农村电工, 2005(4): 43.
    [2] 2009-2010年全球太阳能光伏产业发展研究报告. 2009, 2.
    [3]杨军.太阳能光伏发电前景展望.沿海企业与科技, 2005(8): 110~112.
    [4]赵玉文. 21世纪我国太阳能利用发展趋势. http://www.cnki.com.cn/Article/CJFD2000-ZGDL200 009023.htm, 2000, 09.
    [5]张兴,曹仁贤等.太阳能光伏并网发电及其逆变控制.北京:机械工业出版社, 2010, 9.
    [6] Kleinkauf W, Sachau J, Hempel H. Development in inverters for photovoltaic systems [C]. 11th E. C. Photovoltaic Solar Energy Conference, Montreux, Switzerland, 1992.
    [7] Kleinkauf W. Photovoltaic Power Conditioning [C]. 10th EPVSEC, Lisbon, Portugal, 1991.
    [8] Kjaer S B, Pedersen J K, Blaabjerg F.A review of single-Phase grid-connected inverters for Photovoltaic modules [J]. IEEE Transactions on Industrial Applications, 2005, 41(5): 1292~1306.
    [9] Infineon, IKW25N120T2 data manual, 2006, 10.
    [10] M. Rahimo, SPT+, the Next Generation of Low-Loss HV-IGBTs, Proceedings PCIM′05, Nuremberg, Germany, 2005.
    [11]Eupec, AN-Nummer: AN2003-03, Switching behavior and optimal driving of IGBT modules, 2003, 04.
    [12] Infineon, AN-Number: AN-2006-01, Driving IGBTs with unIpolar gate voltage, 2005, 12.
    [13]任义希.太阳能光伏发电系统总体方案.电子科技大学测试技术研究所, 2007, 4.
    [14]黄建国.太阳能光伏发电系统研制技术协议.电子科技大学测试技术研究所, 2007, 4.
    [15]沈辉,曾祖勤等.太阳能光伏发电技术.化学工业出版社, 2005.
    [16]刘杨华,吴政球,涂有庆,黄庆云,罗华伟.分布式发电及其并网技术综述.电网技术. 2008.
    [17]张文利.高压大功率开关电源技术的研究[D].中国科学院研究生院(电工研究所), 2003.
    [18] GONG Shu-qiu, TANG Ming, CUI Li-yan. et al. Analysis and Design of IGBT Driving and Protection Circuit for Photovoltaic Grid-connected Inverter [J]. ICMEE, 2011, 11.
    [19]叶斌.电力电子应用技术.清华大学出版社, 2006.
    [20]李洪剑,王志强,余世科. IGCT及IGCT变频器[J].半导体技术, 2004, (05).
    [21]陈昆仑.光伏水泵系统中的最大功率点跟踪控制策略及实现: [硕士学位论文].北京:清华大学电机系, 2001.
    [22]王长贵.新能源和可再生能源的现状和展望.太阳能光伏产业发展论坛论文集.新疆, 2003: 4~17.
    [23]余世杰,战福忠,沈维祥,等.光伏水泵系统的最大功率点跟踪器.太阳能学报, 1991, 12(03): 225~230.
    [24]郑诗程,丁明,苏建徽,等.户用光伏并网发电系统的研究与设计.电力电子技术, 2005, 23(01): 55~57.
    [25]赵为.太阳能光伏并网发电系统的研究: [博士学位论文].合肥:合肥工业大学电气与自动化工程学院, 2003.
    [26]孙广生,孔力,李安定.西藏安多光伏电站电气设备绝缘特性的研究.电工电能新技术, 2003, 22(3): 21~23.
    [27]沈玉梁,徐伟新,赵为,等.单输入单相SPWM调制的光伏并网发电系统控制规律的研究.太阳能学报, 2004, 25(6): 794~798.
    [28]杨海柱,金新民.最大功率跟踪的光伏并网逆变器研究.北方交通大学学报, 2004, 28(2): 65~68.
    [29] Huesser P, Kaizuka I. Statistics and Trends In Photovoltaic Applications Results from the Latest Surveys in Selected IEA-PVPS and Non-IEA-PVPS Countries Along the PV Value Chain. Proceedings of the 15th International Photovoltaic Science & Engineering Conference (PVSEC-15). Shanghai, China: SSTP, 2005: 351~352.
    [30] Davis M W, Fanney A H, Dougherty B P. Evaluating building integrated photovoltaic performance models. Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE. New Orleans, Louisiana: IEEE, 2002: 1642~1645.
    [31] Minwon P, In-Keun Y. A study on the optimal voltage for MPPT obtained by surface temperature of solar cell. Industrial Electronics Society, 2004. IECON 2004. 30th Annual Conference of IEEE. Pusan, Korea: IEEE, 2004: 2040~2045.
    [32] Hussein K H, Muta I, Hoshino T, et al. Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions. Generation, Transmission and Distribution, IEEE Proceedings, 1995, 142(1): 59~64.
    [33] Wu L B, Zhao Z M, Liu J Z, et al. Modified MPPT Strategy Applied in Single-Stage Grid-Connected Photovoltaic System. Electrical Machines and Systems, 2005. ICEMS 2005. Proceedings of the Eighth International Conference on. Nanjing, China: IEEE, 2005: 1027~1030.
    [34] Infield D G, Onions P, Simmons A D, et al. Power quality from multiple grid-connected single-phase inverters. Power Delivery, IEEE Transactions on, 2004, 19(4): 1983~1989.
    [35] Dai M, Marwali M N, Jung J W, et al. Power flow control of a single distributed generation unit with nonlinear local load. Power Systems Conference and Exposition, 2004. IEEE PES. NY, USA: IEEE, 2004: 398~403.
    [36]汪海宁,苏建徽,张国荣,等.光伏并网发电及无功补偿的统一控制.电工技术学报, 2005, 20(9): 114~118.
    [37]禹华军,潘俊民.无功补偿技术在光伏并网发电系统孤岛检测中的应用.电工电能新技术, 2005, 24(3): 22~26.
    [38]王志群,朱守真,周双喜,等.分布式发电对配电网电压分布的影响.电力系统自动化, 2004, 28(16): 56~60.
    [39]吴理博,赵争鸣,刘建政,等.独立光伏照明系统中的能量管理控制.电机工程学报, 2005, 25(22): 68~72.
    [40]王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社, 1998. 209~215.
    [41]胡广书.数字信号处理—理论、算法与实现.北京:清华大学出版社, 1997. 66~69.
    [42]李永东.交流电机数字控制系统.北京:机械工业出版社, 2002. 137~139.
    [43] Holtz J. Pulsewidth modulation-a survey.Industrial Electronics, IEEE Transactions on, 1992, 39(5): 410~420.
    [44] Nishida K, Konishi Y, Nakaoka M. Novel current control scheme with deadbeat algorithm for three-phase current-source active power filter. Industrial Electronics, 2001. Proceedings. ISIE 2001. IEEE International Symposium on. Pusan: IEEE, 2001: 805~810.
    [45] Park J H, Shin D R, Roh T K, et al. Deadbeat control of three phase voltage source active power filter using sinusoidal tracking model. TENCON 99. Proceedings of the IEEE Region 10 Conference. Cheju Island, 1999: 1442~1445.
    [46] Buso S, Malesani L, Mattavelli P. Comparison of current control techniques for active filter applications. IEEE Transactions on Industrial Electronics, 1998, 45(5): 722~729.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700