串联谐振耐压试验系统调频电源数字控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
调频式串联谐振交流耐压试验系统采用变频变压电源实现试验回路的谐振升压,具有电源设备容量小、交流等效性好等优点,是目前对高电压等级电容性被试品进行耐压试验行之有效的方法。调频式串联谐振耐压试验系统的核心是自动调频PWM 逆变电源,本文对基于DSP 数字控制器的调频式串联谐振交流耐压试验系统自动调频PWM 逆变电源进行了研究。
    本文建立了串联谐振耐压试验系统的数学模型。通过分析谐振回路传递函数,指出系统是一个阻尼比很小的欠阻尼二阶振荡环节,其动态性能较差。通过变参数平均值数字PI 控制方法实现被试品电压的调节控制,保证了电压的无超调。系统的频率特性表明被试品电压相位是频率的非线性函数,采用小偏差法对相频特性进行线性化,得到了相频特性在谐振频率点的增量化线性模型。根据系统谐振工作时试验回路输入电压和被试品电压相位的关系,提出采用检测被试品电压与输入电压相位差的方法确定试验回路谐振状态。基于系统线性化相位模型,提出了一种利用DFT 运算求取相位及设计谐振频率跟踪控制器的方法,并通过仿真验证了控制器的控制效果。
    针对单相全桥PWM 逆变器电压波形的调制方式开展了研究,指出当前广为使用的单脉冲RPWM 调制方式稳态时在被试品上产生的电压波形满足试验规程要求,但低次谐波容易在试验回路上产生谐振导致波形畸变,不利于谐振频率的跟踪控制。提出采用分段同步单极性SPWM 方法进行调频电源的波形调制,保证了电源大范围变频调压过程中低次谐波少,波形质量高。对单极性调制的两种开关模式进行了分析,说明在稳态谐振工作时采用简化开关模式能避免死区效应,具有理想单极性SPWM 的效果,且开关损耗小。
    设计了一套基于TMS320F240 DSP 数字控制器的串联谐振耐压试验系统模型样机。样机实验结果表明,采用分段同步单极性SPWM 调制方式实现的试验系统自动调频电源输出电压正负半波对称性好,相位稳定,波形正弦度高; 验证了利用DFT 计算相位实现谐振频率自动跟踪控制的方法具有稳定性好、精度较高的特点。
For high voltage(HV) on-site testing, the AC frequency-tuned series resonant test system(ACRF system) have been recognized to be the most cost-effective and only practicable solution because of the advantages of the ACRF system: a very good weight-to-test power ratio and very low power demands. The ACRF system is tuned into resonance with the test object by a voltage of variable frequency supplied by a variable frequency PWM inverter. Consequently, the variable frequency supply is the heart of a ACRF system.
    A variable frequency SPWM inverter for ACRF system is described in this dissertation. The analysis of the transfer function of the ACRF system indicates that this system is a typical second-order oscillation section with small damping ratio and the phase-frequency characteristic is non-linear function of frequency. By linearizing the phase-frequency characteristic around the operating point, the linearized characteristic of the system can be easily obtained. Based on the system modeling and simulation, two kinds of PWM modulation methods used in single-phase bridge are analyzed. As a result, a subsection synchronization unipolar SPWM modulation strategy and a average voltage PI control scheme is applied in DSP controller for achieving a wide frequency range of output voltage. Based on DFT algorithm, the phase of voltage in the test object is gained and the digital controller is presented for tracing the system resonant frequency.
    A prototype of the ACRF test system is developed, which uses DSP TMS320F240 as the core of control system. Experimental results demonstrate that the output voltage of the system based on subsection synchronization unipolar SPWM modulation and DFT algorithm have high steady-state precision and symmetrical waveform, furthermore, the phase and frequency of the voltage is both precise and stable.
引文
[1] 肖如泉, 何金良. 高电压试验工程. 北京: 清华大学出版社, 2001
    [2] 重庆大学, 南京工学院. 高电压技术. 北京: 电力工业出版社, 1981
    [3] 胡国根, 王战铎. 高电压技术. 重庆: 重庆大学出版社, 1996
    [4] 清华大学, 西安交通大学. 高电压绝缘. 北京: 电力工业出版社, 1980
    [5] 周泽存. 高电压技术. 北京: 水利电力出版社, 1988
    [6] R.Plath, U.Herrmann, K.Polster, et al. After laying tests of 400 kV XLPE cable systems for Bewag Berlin. Proc. of IEEE. High Voltage Engineering, 1999, 5: 276~279
    [7] E.Gockenbach, G..Schiller. The influence of the material conditions on the breakdown behaviour of XLPE-samples at voltages of different shapes. Proc. of IEEE. Electrical Insulation, 1996, 2: 608~611
    [8] W.Schufft, P.Coors, W.Hauschild, et al. Frequency-tuned resonant test systems for on-site testing and diagnostics of extruded cables. Proc. of IEEE. High Voltage Engineering, 1999, 5: 35~339
    [9] 陈坚. 电力电子学——电力电子变换和控制技术. 第一版. 北京: 高等教育出版社, 2002
    [10] 陈警. 数字化移相全桥ZVZCS 直流变换器的研究: [硕士学位论文]。武汉:华中科技大学图书馆, 2004
    [11] 刘凤君. 正弦波逆变器. 北京: 科学技术出版社, 2002
    [12] A.Okuno, M.Hayashi, H.Kawano, et al. Latest developments and practical evaluations of load-adaptive variable-frequency and PAM-based variable-voltage high-frequency resonant inverter using static induction high-power transistors for industrial induction-heating plants. Power Electronics and Variable-Speed Drives, 1994. Fifth International Conference on , 26-28 Oct 1994 , 430~435
    [13] 陈禾青. 调频式串联谐振耐压装置的调频电源设计. 华东电力, 1995, (9): 24~26
    [14] W.Hauschild. Frequency-tuned resonant test systems for HV on-site testing of XLPE cables and SF6 insulated apparatus. Properties and Applications of Dielectric Materials, 1997, 2: 1151~1158
    [15] E.Gockenbach, W.Hauschild. The selection of the frequency range for high-voltage on-site testing of extruded insulation cable systems. IEEE Electrical Insulation Magazine, 2000, 16(6): 11~16
    [16] 胡寿松. 自动控制原理. 北京: 国防工业出版社, 1994
    [17] 高国燊, 余文烋. 自动控制原理. 广州: 华南理工大学出版社, 1999
    [18] N.S.Bayindir, O.Kukrer, M.Yakup. DSP-based PLL-controlled 50-100 kHz 20kW high-frequency induction heating system for surface hardening and welding applications. Proc. of IEEE. Electric Power Applications, 2003, 150(3): 365~371
    [19] 高金源等. 计算机控制理论——理论、设计与实现. 北京: 北京航空航天大学出版社, 2001
    [20] A.C.Franklin, D.P.Franklin. 变压器全书. 崔立君等译. 北京: 机械工业出版社, 1990孔德铭. 调频谐振试验装置在小浪底水电站的应用. 高电压技术, 2001, 27(5): 79~80
    [22] 陈伯时. 电力拖动自动控制系统. 北京: 机械工业出版社, 2000
    [23] J.Hamman, F.S.van der Merwe. Voltage harmonics generated by voltage-fed inverters using PWM natural sampling. IEEE Trans. Power Electronics, 1988, 3(3): 297~302
    [24] S.Fukuda, K.Iwaji. Introduction of the harmonic distortion determining factor and its application to evaluating real time PWM inverters. IEEE Trans. Industry Applications, 1995, 31(1): 149~154
    [25] 佟为明, 李可敬, 翟国富等. SPWM 电压源逆变器变压变频过程的谐波分析. 电力电子技术, 1995, (3): 47~51
    [26] H.Dehbonei, L.Borle, C.V.Nayar. A review and a proposal for optimal harmonic mitigation in single-phase pulse width modulation. Proc. of IEEE. Power Electronics and Drive Systems, 2001, (1): 408~414
    [27] 詹长江. 大功率PWM 高频整流系统波形控制技术研究: [博士学位论文]。武汉: 华中科技大学图书馆, 1997
    [28] 胡兴柳, 彭小兵, 穆新华. SPWM 逆变电源的单极性控制方式实现. 机电工程, 2004,21(1): 38~40
    [29] Ray Shyang Lai, K.D.T.Ngo. A PWM method for reduction of switching loss in a full-bridge inverter. IEEE Trans. Power Electronics, 1995, 10(3): 326~332
    [30] 郭卫农. CVCF-PWM VSI 输出波形瞬时控制技术研究: [博士学位论文]。武汉: 华中科技大学图书馆, 2001
    [31] Wen Inne Tsai, York-Yih Sun. Design and implementation of three phase HIPWM inverters with instantaneous and average feedback. IEEE IECON. Industrial Electronics, Control, and Instrumentation, 1993, 800~805
    [32] 李剑. 单相400HZ CVCF 逆变器模糊-重复混和控制方案研究: [博士学位论文]。武汉:华中科技大学图书馆, 2002
    [33] 赖寿宏. 微型机算计控制技术. 北京: 机械工业出版社, 1999
    [34] 钟庆昌, 谢剑英, 李辉. 变参数PID 控制器. 信息与控制.1999, 28(4): 273~277
    [35] 邹建龙, 徐至新, 朝泽云. 采用变参数PI的蓄电池放电装置. 电力电子技术. 2003, 37(2): 9~11
    [36] Mohand Mokhtari, Michel Marie. 赵彦玲译. MATLAB 与SIMULINK 工程应用北京: 电子工业出版, 2002
    [37] 郑继禹, 万心平等. 锁相环路原理与应用. 北京: 人民邮电出版社, 1984
    [38] 段善旭, 裴雪军, 熊健等. 基于DSP的一种新型全数字化UPS研究. 高电压技术. 2003, 29(12): 4~6
    [39] 程佩青. 数字信号处理教程. 北京: 清华大学出版社, 2001
    [40] 邹云屏, 林桦. 信号与系统分析. 北京: 科学出版社, 2003
    [41] A.Okuno, M.Hayashi, H.Kawano, et al. Phase-lock loop operated load-resonance inverter using static induction power transistors and its practical characteristic evaluations. IEEE/IAS. Industrial Automation and Control: Emerging Technologies, 1995, 1~7
    [42] A.Okuno, H.Kawano, J.Sun, et al. Feasible development of soft-switched SIT inverter with load-adaptive frequency-tracking control scheme for induction heating. IEEE Trans. Industry Applications, 1998, 34(4): 713~718
    [43] 何益宏, 卓放, 周新等. 利用瞬时无功功率理论检测谐波电流方法的改进. 电工技术学报. 2003,18(1): 87~90
    [44] 辜承林, 陈乔夫, 熊永前. 电机学. 武汉: 华中科技大学出版社, 2000
    [45] Data Book of Semiconductor Power Module, Mitsubishi Electric, 1993
    [46] 武汉力源电子股份有限公司. TMS320C24X DSP 控制器参考手册. 2001
    [47] 刘和平, 严利平, 张学锋等. TMS320LF240X DSP 结构、原理及应用. 北京: 北京航空航天大学出版社, 2002
    [48] 张芳兰. TMS 320C2XX 用户指南. 北京: 电子工业出版社, 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700