交直流混合系统区域间可用输电能力计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国已跨入复杂交直流混合大系统发展阶段。HVDC由于其独特的优点,在远距离输电和大型互联电网中起着十分重要的作用,但HVDC也对大型互联系统的运行提出了新的挑战。复杂交直流混合系统中,如何协调系统运行的安全性和经济性的研究迫在眉睫。电力系统区域间可用输电能力(ATC)这一经济技术指标,在维持系统的安全稳定运行、输电阻塞的管理、引导市场交易进行等方面具有特别重要的意义。因此,交直流混合输电系统区域间ATC的评估已成为电力市场环境下一项十分重要而又有许多问题亟待解决的研究课题。为此,本文紧紧围绕着这一中心课题,对其静态及动态约束下混合系统区域间ATC的相关问题展开了详细分析和深入研究。
     首先,针对现有混合系统潮流计算方法存在的可改进空间,改进了交直流混合系统潮流计算方法。考虑在换流器不同控制方式下交直流系统的相互影响,提出一种能够满足换流器控制方式转换策略的潮流计算方法。以交替迭代法为基础,对交流系统雅可比矩阵的特殊节点元素进行有效修正;结合换流器控制方式转换策略合理选取换流器关键状态变量,并将控制角余弦值和变压器分接头变比乘积作为一个状态变量处理,有效地避免了迭代过程中控制角余弦值和变压器分接头越限情况发生。改进的交替迭代法数学概念清晰、易于实现、可移植性强,提高了交直流系统潮流计算的鲁棒性。
     针对现有电压稳定性指标的局限性,本文以局部电压指标(L指标)为基础,结合实际输电网线路电抗远大于电阻、母线电压相位小的特点,提出一种可适应大规模电网快速计算的简化L指标(Lsimple指标)及分析母线间电压稳定关联信息的L-Q灵敏度分析方法。借助Lsimple指标的全微分方程分析系统参数变化对电压稳定影响作用的基础之上,定义电力系统的Lsimple-Q灵敏度,并阐明了其物理意义;简化L指标与Lsimple-Q灵敏度相结合,可提供系统电压稳定在线监控的多元信息,有利于系统运行人员全面掌握系统电压运行状态,采取合理措施改善系统电压稳定性,具有一定的工程实用价值。
     结合改进的交替迭代法和Lsimple指标,基于计及常规静态安全约束的ATC优化模型,充分考虑了HVDC系统的特点,并将Lsimple指标加入不等式约束,构建了基于OPF法的混合系统ATC计算模型。采用非线性原-对偶内点法对优化模型进行求解,分析了L指标约束值的变化对混合系统ATC和电压稳定性的影响,指出了对于一确定的交直流混合系统具有相同ATC优化结果的条件下,具有Lsimple指标约束的ATC模型电压稳定性优于无Lsimple指标约束的ATC模型。
     针对目前动态等值方法的不足,对同调等值方法做了改进,定义发电机的动态响应因子,并以动态响应因子为权系数推导并定义了大区互联电网机组动态稳定性指标,应用该指标可定量评价振荡后区域内各发电机的动态稳定性。借助于机组动态稳定性指标对区域互联系统进行同调等值计算,在有效地提高等值精度的前提下,减少了计算量。将大区互联电网机组动态稳定性指标用于电力系统同调等值能够有效跟踪系统运行方式变化,准确识别惯量中心主导机群,更符合电力系统动态等值中的发电机聚合思想,为提高非线性直流附加功率控制效果提供了有力的理论支持。
     针对HVDC的附加功率调制可改善交流系统的动态稳定性这一特性,提出一种新的非线性直流附加功率调制控制策略。采用改进的同调等值方法对各系统区域内发电机组进行等值,并根据等值后交直流系统的特点,将交直流系统的微分反馈线性化模型扩展为微分代数反馈线性化模型,有效计及了电力系统强非线性代数方程的影响,采用线性最优理论进行模型求解;为克服系统全状态反馈条件难以实现的不足,采用等值系统主导机群的状态变量作为调制输入信号,在保证控制效果的前提下,降低了控制策略实现的难度。本文的直流附加功率调制控制策略与传统的线性化的控制策略相比,更加有效地改善了交直流混合系统的动态稳定性。
     本文最后,针对系统区域间传输功率显著影响互联系统的动态稳定性,可能引发系统区域间低频振荡,从而限制ATC这一问题,构建了计及系统动态稳定约束的交直流系统区域间ATC评估模型。将阻尼比作为衡量系统的动态稳定性的指标加入ATC优化模型,并采用连续潮流法进行模型求解;模型通过直流附加功率调制策略,有效地改善系统动态特性的同时显著提高了系统的区域间ATC,在提高并满足了系统稳定性要求的前提下又兼顾了经济性的需要。计及系统动态稳定约束的交直流系统ATC计算模型,为混合系统区域间ATC的研究开辟了新的途径。
China has entered a large complex system with AC and DC era. Because of its unique advantages, HVDC plays an important role in the long-distance power transmission and large interconnected power system. But new challenges are also raised in large-scale interconnected system operation. In complicated AC and DC systems, the research to coordinate the system safety and economic operation is imminent. Available transfer capability (ATC) is applied as the economic and technical indicator in inter-regional electric power system, it is of great importance in maintaining security and stability of the system, managing transmission congestion, and guiding the conduct of market transactions and other aspects. Therefore, the assessment and decision-making of ATC in regional AC-DC hybrid electricity transmission system has become a very important research issue, which still has many problems to be solved, under electricity market environment. As a result, tightly connected with this central theme, the paper gives detailed analysis and conducts in-depth research for ATC related problems in inter-regional systems under static and dynamic constraints.
     Firstly, aiming at existing space which still can be proved in nowadays power flow calculation method for hybrid systems, this paper improved the power flow calculation method in AC-DC hybrid systems. Considering the interaction between AC and DC systems under different control strategies, it brings us a power flow calculation method satisfying inverters changing controlling strategies. It is based on alternating iterative method, giving effective correction for the special nodes in AC system Jacobian matrix. Key state variables of the converter is choosen reasonably according to its changing controlling strategies, and deals with the cosine value of the control angle and the transformation ration product as a state variable. It effectively avoids the cosine value and transformation ration form crossing the limitation during the iterative process. The refined alternating iterative method has clear mathematical concepts, and is easy to be implemented and transferred. It improves the robustness of the power flow calculation method in AC-DC hybrid systems.
     There are some limitations of Voltage stability index. A simplified formula of local voltage stability L-index is proposed in this paper. It is based on the actual grid line with reactance is much greater than resistance, the characteristics of a small bus voltage phase. It is proposed a fast calculation can be adapted to large-scale grid L-index (LSimple indicators) and voltage stability analysis of bus related information among the LSimPle_Q sensitivity. The differential equation of the simplified L-index is developed to obtain the sensitivity of LSimpe respect to parameters, such as LSimple-Q sensitivity. The physical meaning of LSimple-Q sensitivity is comprehensively presented. Combining simplified L index with LSimple-Q sensitivity online monitoring system to provide multi-voltage information. It can help system operators complete control system voltage running condition and take reasonable measures to improve the system voltage stability. It has some practical value.
     The ATC optimization model based on conventional static security constrained, combined the improved alternating iterative method and LSimple index,fully considered characteristics of the HVDC system, and join the LSimple index in inequality constraints, constructed a new ATC calculation method, which is based on the OPF hybrid system. The proposed model is solved by primal-dual interior point method, at the same time, this paper analysis the change of the LSimple value constraints and its influence on ATC of AC-DC hybrid system and voltage stability. Finally pointing out that for a certain AC-DC hybrid system with the same ATC optimization results, the votlage stability of ATC model with LSimple index constraints is better than the one who doesn't have LSimple index constraints.
     As the prerequisite for realizing the nonlinear additional power control strategy, an improved coherency-based equivalence method is proposed to make up for the current deficiency of dynamic equivalence method. The generator dynamic response factor is defined by the combination of coherency-based equivalences and model equivalences, the generator dynamic stability index is deduced and obtained by the dynamic response factor, and the generator dynamic stability after oscillation can be quantitatively evaluated by using the index. By means of the generator dynamic stability index to calculate coherency-based equivalences of the regional interconnected grid, the accuracy of the equivalence can be effectively improved and the amount of computation can be reduced. The improved coherency-based equivalence method can effectively trace the system operating mode changes and accurately identify the dominant cluster in the center of inertia, which is more accord with generator polymerization concept in dynamic equivalence of power system.This method offers a strong theoretical support for the nonlinear additional power control.
     According to the additional power characteristic of HVDC that its modulation can improve the dynamic stability of the AC system, a rational DC nonlinear additional power control strategy is proposed. A new dynamic equivalent method is proposed to enhance the accuracy of equivalent system. According to the characteristics of the equivalent strategy, a rational nonlinear optimal supplementary control strategy is proposed for the DC modulation. The feedback linearization of differential systems is easily extended to differential-algebraic systems by proposed approach. Utilizing the equivalent strategy, a rational nonlinear optimal supplementary control strategy is proposed for the AC-DC system. The control strategy only requires the critical clusters'speeds and angles as modulation signals, which ensures the control effect and reduces the difficulty of control strategy implementation. Compared with the traditional control strategy, the proposed control strategy can effectively improve the dynamic stability of the AC-DC hybrid system.
     At last, against the problem that inter-area transmission power for the system can significantly affect the dynamic stability of the interconnected system, and may lead to inter-area low-frequency oscillation, thereby limiting the ATC. Taking system dynamic stability constraints into account, ATC evaluation model is constructed for inter-area AC-DC systems, which makes the damping ratio join ATC optimization model as an indicator to measure the system dynamic stability, and uses the continuous power flow method to solve the model. By additional DC power modulation strategies, the model effectively improves the system dynamic characteristics and significantly raises the of inter-area system ATC, which takes the economic needs into account and meets the premise of the stability of the power system. The AC-DC systems ATC calculation model considering the dynamic system stability constraints opens up a new way for the research of ATC in hybrid inter-area system.
引文
[1]卢强,梅生伟.面向21世纪的电力系统重大基础研究[J].自然科学进展,2000,10(10):870-876
    [2]刘振亚.特高压电网[M].北京:中国经济出版社,2005
    [3]浙江大学发电教研组直流输电科研组.直流输电[M].北京:水利电力出版社,1985
    [4]于尔铿,韩放,谢开.电力市场[M].北京:中国电力出版社,1998
    [5]Federal Energy Regulatory Commission. Open access same-time information system (formerly real-time information networks) and standards of conduct[R].1996, Washington
    [6]North American Electric Reliability Council (NERC). Available transfer capability definitions and determination[R].1996, Washington
    [7]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004
    [8]詹奕,尹项根.高压直流输电与特高压交流输电的比较研究[J].高电压技术,2001,27(4):44-46
    [9]喻新强.2003年以来国家电网公司直流输电系统运行情况总结[J].电网技术,2003,29(20):41-46
    [10]舒印彪.中国直流输电的现状及展望[J].高电压技术,2004,30(11):1-2
    [11]戴熙杰.直流输电基础[M].北京:水利水电出版社,1990
    [12]Kunder. Power System Stability and Control [M]. New York:McGraw-Hill, 1994
    [13]North American Electric Reliability Council (NERC). Transmission transfer capability:a reference documents for calculating and reporting the electric power transfer capability of interconnected electric systems[R].1995, Washington
    [14]李国庆,王成山,余贻鑫.大型互联电力系统区域间功率交换能力研究综述[J].中国电机工程学报,2001,21(4):20-25
    [15]汪峰,白小民.基于最优潮流方法的传输容量计算研究[J].中国电机工程学报,2002,22(11):35-40
    [16]Tsai C Y, Lu C N. Bootstrap application inATCestimation[J]. IEEE Power Engineering Review,2001,21(2):40-42
    [17]余贻鑫,王成山.电力系统稳定性理论与方法[M].北京:科学出版社: 1999
    [18]丁平,周孝信,严剑峰.考虑合理安全原则的大型互联电网在线传输极限计算[J].中国电机工程学报,2010,30(22):1-6
    [19]Y Xiao, Y H Song, Y Z Sun. A Hybrid Stochastic Approach to Available Transfer Capability Evaluation[J]. IEE Proceeding Generation, Transmission and Distribution,2001,148(5):420-426
    [20]Y Xiao, Y H Song. Available transfer capability (ATC) evaluation by stochastic programming[J]. IEEE Power Engineering Review,2000, 20(9):50-52
    [21]肖颖,宋永华,孙元章.基于混合随机算法的可用输电能力计算[J].电力系统自动化,2002,26(13):25-31
    [22]Feng Xia, Sakis A P, Meliopoulos. A Methodlogy for probabilistic simultaneous transfer capability analysis[J]. IEEE Trans on Power Systems, 1996,11(3):1269-1278
    [23]高亚静,周明,李庚银.基于马尔可夫链和故障枚举法的可用输电能力计算[J].中国电机工程学报,2006,26(19):41-46
    [24]EPRI Report. Simulataneous transfer capability project:direction for software development[J]. Final Report to RP3140-1, January 1991.
    [25]Sandrin P, Dubost L, Feltin L. Evaluation of transfer capability between interconnected utilities[C].Proceedings of the 11th Power System Computation Conference, Avignon, France, August 30-September 3,1993, 1:981-985
    [26]李庚银,高亚静,周明.可用输电能力评估的序贯蒙特卡洛仿真法[J].中国电机工程学报,2008,28(25):74-79
    [27]Ou Y, Singh C. Calculation of risk and statistical indices associated with available transfer capability[J]. IEE Proeeedings on Generation, Transmission and Distribution,2003,150(2):239-244
    [28]LANDGREN, TERHUNE H L, ANGEL R K. Transmission interchange capability analysis by computer[J]. IEEE Trans on Power Apparatus and Systems,1992,91(6):748-754
    [29]A J Flueck, H D Chiang, K S Shah. Investigating the Installed Real Power Transfer Capability of a Large Scale Power System Under a Proposed Multiarea Interchange Schedule Using CPFLOW[J]. IEEE Transactions on Power Systems,1996, 11(2):883-889
    [30]李国庆.基于连续型方法的大型互联电力系统区域间输电能力的研究[博 士学位论文].天津:天津大学,1998
    [31]王成山,王兴刚.考虑静态电压稳定约束并计及负荷和发电机出力不确定性因素的概率最大输电能力快速计算[J].中国电机工程学报,2006,26(16):47-51
    [32]潘雄,徐国禹.基于最优潮流并计及静态电压稳定性约束的区域间可用输电能力计算[J].中国电机工程学报,2004,24(12):86-91
    [33]王成山,李国庆,余贻鑫.电力系统区域间功率交换能力的研究:(一)连续型方法的基本理论及应用[J].电力系统自动化,1999,23(3):23-26
    [34]王成山,李国庆,余贻鑫.电力系统区域间功率交换能力的研究:(二)计算区域间最大交换功率的模型与算法[J].电力系统自动化,1999,23(4):5-9
    [35]刘焕志,李扬,陈霄.基于连续潮流的输电网可用输电能力计算[J].电力自动化设备,2003,23(12):5-8
    [36]Avalos, Canizares, Anjos. A practical voltage-stability-constrained optimal power flow[C]. Proceedings of IEEE-PES General Meeting on Power and Energy Society. Pittsburgh.2008
    [37]Ejebe G C, Waight J G, Sanots-Nieto M. Fast calculation of linear available transfer capability[J]. IEEE Trans.on Power Systems,2002,15(3):1112-1116
    [38]刁勤华,默哈莫德·夏班,倪以信.运用连续二次规划法计算区域间极限传输容量[J].电力系统自动化,2000,24(24):5-8
    [39]李国庆,沈杰,申艳杰.考虑暂态稳定约束的可用功率交换能力计算的研究[J].电网技术,2004,28(15):67-71
    [40]LUO X, PATTON A D, SINGREAL C. Power transfer capability calculations using multi-layer feed-forward neural networks[J]. IEEE Trans on Power Systems,2000,15(2):903-908
    [41]MOZAFARI B, RAMBAR A M, SHIRANI A R. A comprehensive method for available transfer capability calculation in a deregulated power system[C]. Proceedings of the 2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies:Vol 2, April 5-8,2004, Hong Kong, China:680-685
    [42]GENCAGA D, KURUOGLU E E, ERTUZUN A. Estimation of time-varying autoregressive symmetric alpha stable processes by particle filters[EB/OL]. [2006-02-19]. http://www.ee.bilkent.edu.tr/-signal/defevent/papers/crl 522.p df
    [43]T Smed, G Andersson, G B Sheble. A New Approach to AC/DC Power Flow[J]. IEEE Transactions on Power Systems,1991,6(3):1238-1244
    [44]Q F Ding, B M Zhang. A New Approach to AC/MTDC Power Flow[C]. Proceedings of the 4th International Conference on Advances in Power System Control, Operation and Management, APSCOM-97. Hong Kong.1997
    [45]Transmission capability margins and their use in ATC determination-White Paper. June17,1999.
    [46]黄伟,黄民翔,赵学顺.基于主从递阶决策模型的TRM评估[J].电力系统自动化,2006,30(4):17-21,28
    [47]徐政.交流等值法交直流电力系统潮流计算[J].中国电机工程学报,1994,14(3):1-6
    [48]Panosyan, Oswald R G. Modified Newton-Raphson load-flow analysis for integrated AC/DC power systems[C].39th International Universities Power Engineering Conference. Bristol.2004
    [49]胡林献,陈学允.AC/MTDC系统电压稳定极限的计算[J].电力系统自动化,1997,21(7):34-37
    [50]Y K Fan, Niebur D, Nwankpa C O. Multiple power flow solutions of small integrated AC/DC power system[C]. The 2000 IEEE International Symposium on Circuits and Systems. Geneva.2000
    [51]刘崇茹,张伯明.交直流混合系统潮流算法改进及鲁棒性分析[J].中国电机工程学报,2009,29(19):57-62
    [52]陆进军,黄家裕.一种高效灵活的电力系统多端直流潮流算法[J].电力系统自动化,2000,24(6):48-50
    [53]刘崇茹,张伯明,孙宏斌.多种控制方式下的交直流系统潮流算法改进[J].电力系统自动化,2005,29(21):25-31
    [54]邱革非,束洪春,于继来.一种交直流电力系统潮流计算实用新算法[J].中国电机工程学报,2008,28(13):53-57
    [55]IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. Definition and Classification of Power System Stability [J]. IEEE Transactions on Power Systems,2004,19(2):1387-1401
    [56]Claudio Canizares. Voltage Stability Assessment:Concepts, Practices and Tools[R]. IEEE/PES Power System Stability Subcommittee Special Publication, Final Document. Aug.2002
    [57]张建设,张尧,张志朝.交直流并联系统的电压稳定研究综述[J].继电器, 1999,33(2):79-84
    [58]周双喜,吕佳丽,张元鹏.直流输电对电压稳定性的影响[J].清华大学学报(自然科学版),1999,39(3):4-7
    [59]江伟,王成山.电力系统输电能力研究中PV曲线的求取[J].电力系统自动化,2001,25(2):9-12
    [60]江伟,王成山,余贻鑫.电压稳定裕度对参数灵敏度求解的新方法[J].中国电机工程学报,2006,26(2):13-18
    [61]汪洋,卢继平,李文沅.基于局部网络电压相量的等值模型及其电压稳定性指标[J].中国电机工程学报,2008,28(34):52-68
    [62]徐政.联于弱交流系统的直流输电特性研究之一:直流输电的输送能力[J].电网技术,1997,21(1):12-16
    [63]P W Sauer, MAPai. Power System Steady-State Stability and the Load Flow Jacobian[J]. IEEE Transactions on Power Systems,1990,5(4):1374-1383
    [64]Chih-wenLiu, Chen-sung Chan. Toward a CPFLOW-based algorithm to compute all the type-1 load-flow solutions in electric power systems[J]. IEEE Transactions on Circuits and Systems II:Regular Papers,2005,52(3):625-630
    [65]N Flatabo, R Ognedal, T Carlsen. Voltage stability condition in a power transmission system calculated by sensitivity methods[J]. IEEE Transactions on Power Systems,1990,5(4):1286-1293
    [66]Vu, Begovic M M, Novosel D. Use of local measurements to estimate voltage-stability margin[J]. IEEE Trans on Power Systems,1999, 14(3):1029-1035
    [67]余贻鑫,贾宏杰,严雪飞.可准确跟踪鞍节点分岔的改进局部电压稳定指标LI[J].电网技术,1999,23(5):19-23
    [68]贾宏杰,余贻鑫,王成山.利用局部指标进行电压稳定在线监控的研究[J].电网技术,1999,23(1):45-49
    [69]徐光虎,王杰,陈陈.基于微分代数模型的AC/DC系统非线性控制器设计[J].中国电机工程学报,2005,25(7):52-57
    [70]汪娟娟,张尧.相对增益矩阵原理在多直流附加调制信号选取中的应用[J].中国电机工程学报,2009,29(1):74-79
    [71]A E Hammad. Stability and Control of HVDC and AC Transmission in Parallel[J]. IEEE Transactions on Power Delivery,1999,14(4):1545-1554
    [72]R L Cresap, W A Mittelstadt, D N Scoot. Operating Experience with Modulation of the Pacific HVDC Intertie[J]. IEEE Trans,1978:PAS-97:1053 -1059
    [73]张步涵,陈龙,李皇.利用直流功率调制增强特高压交流互联系统稳定性[J].高电压技术,2010,36(1):116-121
    [74]杨卫东,薛禹胜.南方电网中直流输电系统对交流系统的紧急功率支援[J].电力系统自动化,2003,27(17):68-72
    [75]T Smed, G Andersson. Utilizing HVDC to Damp Power Oscillations[J]. IEEE Transactions on Power Delivery,1993,8(2):620-627
    [76]Mao Xiao-ming, Zhang Yao, Guan Lin. Coordinated Control of Interarea Oscillation in the China Southern Power Grid[J]. IEEE Transactions on Power Delivery,2006,21(2):845-852
    [77]郑希云,李兴源,王渝红.基于混沌优化算法的PSS和直流调制的协调优化[J].电工技术学报,2010,25(5):170-175
    [78]周孝法,陈陈,杨帆.基于自适应混沌粒子群优化算法的多馈入直流输电系统优化协调直流调制[J].电工技术学报,2009,24(4):193-201
    [79]谢惠藩,张尧,林凌雪.基于时间最优和自抗扰跟踪的广域紧急直流功率支援控制[J].电工技术学报,2010,25(8):145-153
    [80]徐光虎,陈陈,王杰.计及非线性负荷的AC/DC系统控制策略[J].电工技术学报,2007,22(1):114-119
    [81]杨靖萍.大规模互联电力系统动态等值方法研究[博士学位论文].杭州:浙江大学,2007
    [82]DEBS A S. Estimation of external network equivalents from internal system data[J]. IEEE Trans on Power Apparatus and Systems,1975,94(2):273-279
    [83]Sebastigo E M de Oliveira, J F de Queiroz. Dynamic equivalent for electric power system-Ⅰ:Theory[J]. IEEE Trans on Power Systems,1988, 3(4):1723-1730
    [84]P Ju, L Q Ni, F Wu. Dynamic equivalents of Power systems with online measurements. Part II:Applications [J]. IEE Proceedings-Generation, Transmission and Distribution,2004,151(2):179-182
    [85]P Ju, L Q Ni, F Wu. Dynamic equivalents of Power systems with online measurements. Part I:Theory[J]. IEE Proceedings-Generation, Transmission and Distribution,2004,151(2):175-178
    [86]A M Stankovic, A T Saric. Transient Power system analysis with measurement-based gray box and hybrid dynamic equivalents[J]. IEEE Transactions on Power Systems,2004,19(1):455-466
    [87]Sebastigo E M de Oliveira, J F de Queiroz. Dynamic equivalent for electric power system-Ⅱ:stability simulation tests[J]. IEEE Trans on Power Systems, 1988,3(4):1731-1737
    [88]彭伟,徐泰山.电力系统动态等值中发电机的选择方法[J].电力系统自动化,2010,34(14):48-52
    [89]K Nojiri, S Suzaki, K Takenaka. Modal reduced dynamic equivalent model for analog type power system simulator[J]. IEEE Transactions on Power Systems, 1997,12(4):1518-1523
    [90]胡杰,余贻鑫.电力系统动态等值参数聚合的实用方法[J].电网技术,2006,30(24):26-30
    [91]D Chaniotis, M A Pai. Model reduction in Power systems using Krylov subspace methods[J]. IEEE Transactions on Power Systems,2005, 20(2):888-894
    [92]倪向萍,梅生伟.基于复杂网络社团结构理论的同调等值算法[J].电力系统自动化,2008,32(7):10-14
    [93]史坤鹏,穆钢,李婷.基于经验模式分解的聚类树方法及其在同调机组分群中的应用[J].电网技术,2007,31(22):21-25
    [94]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2006:330-349
    [95]唐国栋,李华强,肖玲.交直流系统可利用传输能力的评估[J].电力系统保护与控制,2010,38(2):12-17
    [96]李国庆,姚少伟,陈厚合.基于内点法的交直流混合系统可用输电能力计算[J].电力系统自动化,2009,33(3):35-39
    [97]卢锦玲,蔡红艳,周明.交直流混合系统可用输电能力评估[J].电网技术,2011,35(4):29-34
    [98]周明,谌中杰,李庚银,秦建华.基于功率增长优化模式的交直流电网可用输电能力计算[J].中国电机工程学报,2001,31(22):48-55
    [99]Kundur P. Power system stability and control[M]. Beijing:McGraw Hill & China Electric Power Press,2001:363-368
    [100]李兴源.高压直流输电系统的运行和控制[M].北京:科学出版社,1998
    [101]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社,2004
    [102]P Kessel, H Glavitsch. Estimating the Voltage Stability of a Power System[J]. IEEE Transactions on Power Delivery,1986,1(3):346-354
    [103]王锡凡.现代电力系统分析[M].北京:科学出版社,2003
    [104]林伟芳,汤涌,卜广全.多馈入交直流系统短路比的定义和应用[J].中国电机工程学报,2010,28(31):1-8
    [105]叶剑烽,方鸽飞,倪涌炯.基于电压稳定预想事故的快速输电能力分析[J].继电器,2006,34(6):18-20,56
    [106]王俊,蔡兴国,张占安.考虑电压和暂态稳定性的可用输电能力计算[J].电网技术,2011,35(10):88-93
    [107]王成山,王兴刚,张沛.考虑静态电压稳定约束并计及设备故障概率的TTC快速计算[J].中国电机工程学报,2006,26(19):7-12
    [108]Krishna, Manohar T G. Voltage stability constrained atc computations in deregulated power system using novel technique[J]. ARPN Journal of Engineering and Applied Sciences,2008,3(6):76-81
    [109]王成山,李慧聪,魏炜.考虑电压稳定性约束的输电能力综合计算[J].电力自动化设备,2004,24(1):9-13
    [110]陈厚合.基于改进粒子群优化算法的概率可用输电能力研究[硕士学位论文].吉林:东北电力大学:2007
    [111]N Megiddo. Pathways to the optimal set in linear programming, in:Progress in Methematical Programming[M]. Springer Verlag, NewYork,1989:131-158
    [112]H Wei, H Sasaki, R Yokoyama. An Application of Interior Point Quadratic Programming Algorithm to Power System Optimization Problems[J]. IEEE Transactions on Power Systems.1996,11(1):870-877
    [113]吴超,陆超,韩英铎.Prony方法和ARMA法在低频振荡模式辨识中的适用性比较[J].电力自动化设备,2010,30(3):30-34
    [114]赵珊珊,周子冠,张东霞.大区互联电网动态稳定风险评估指标及应用[J].电网技术,2009,32(2):68-72
    [115]李国庆,姜涛,陈厚合.计及网络影响的电力系统动态等值新方法[J].电网技术,2011,31(1):221-226
    [116]余贻鑫,李鹏.大区电网弱互联对互联系统阻尼和动态稳定性的影响[J].中国电机工程学报,2005,25(11):6-11
    [117]朱芳,赵红光,刘增煌.大区电网互联对电力系统动态稳定性的影响[J].中国电机工程学报,2007,27(1):1-7
    [118]朱方,汤涌,张东霞.我国交流互联电网动态稳定性的研究及解决策略[J].电网技术,2004,28(15):1-5
    [119]刘取.电力系统稳定性及发电机励磁控制[M].北京:中国电力出版社,2007
    [120]杨帮宇,彭建春,黄泽荣.低频振荡约束下电网最大输电能力[J].高电压技术,2009,35(2):425-429
    [121]卢强,梅生伟,孙元章.电力系统非线性控制(第二版)[M].北京:清华大学出版社,2008
    [122]Rogers G. Power system oscillations[M]. Boston:Kluwer Academic Publishers,2000
    [123]周双喜,苏小林.电力系统小干扰稳定性研究的新进展[J].电力系统及其自动化学报,2007,19(2):1-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700