三相逆变器冗余并联运行关键技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆变器冗余并联技术是实现高可靠性、大容量、可扩展性电源系统的基础,也是电力电子领域的研究热点和难点。
     本文基于恒频、恒压(Constant Voltage Constant Frequency,CVCF)逆变器电源分布式并联控制方法,针对变频、变压(Variable Voltage Variable Frequency,VVVF)逆变器(变频器)提出了一种由数字控制实现的分布式有互联线并联控制方法。将变频器的并联控制解耦成为频率变化的正弦基准信号的同步控制和均流控制。首先利用方波信号来表示各模块的基准相位及频率,并据此生成所有并联运行的变频器共享的同步信号,各台变频器根据共享的同步信号,控制各台之间同频、同相;然后采样计算环流信号对各模块正弦电压基准信号微调,实现负载均分。同时分析了并联系统同步控制和均流控制的稳定性,进行了仿真和实验验证。
     参考电力系统中用于功率调度的分层控制方法,提出了一种基于多层控制技术的无互联线并联控制,以实现多层控制的解耦,提高系统稳定性和可靠性。控制包含三层:第一层为改进的PQ下垂算法,在传统算法中引入正比于有功功率的初始相位调节量,在并联模块相位差较小的前提下,精准调节输出电压,实现良好的动态及稳态均流性能;第二层控制为负载调整率校正,检测并联系统输出交流母线电压的频率及幅值,据此对由下垂调节和均流电感造成的输出电压偏差进行补偿,以改善负载调整率;第三层控制称为准同步控制,各逆变器模块检测交流母线电压相位,在本模块与交流母线相位差超过允许范围时,粗略但快速的调节本模块相位,使相位差回落到第一层控制可以有效工作的区间内,以便实施第一层控制,并有效实现无冲击热投入及避免逆变器的动态相位失步,提高了系统的可靠性和稳定性。提出了多层控制协调策略,给出了关键参数设计准则。
     提出了基于无互联线并联的逆变器准同步控制方法。结合逆变器基于空间矢量控制的特性及检测交流母线电压相位,调节基准电压与交流母线之间的相位偏差在一定小的范围内,在热投入过程中保证逆变器与交流母线基本上同频、同相后再投入并联运行,有效抑制并联瞬间的电流冲击,改善并联系统的热插拔性能,在动态过程中,保证逆变器与交流母线之间的相位差不超过允许的范围。研究了准同步控制方法和下垂同步控制方法之间的关系,并分析了两者之间的稳定性。
     将提出的无线并联控制技术应用于大功率、模块化的电力机车辅助电源系统中。提出了电力机车辅助电源系统架构、工作模式和建网逻辑,建立了由两台35kVA逆变器构成的实验系统,验证了理论分析和设计的正确性和可行性,为实现高可靠性、高可维护性和高冗余性的机车辅助电源系统提供了理论和技术基础。
Paralleled control for inverters is one of most key and challenging techniques to achieve power supply systems featuring high reliability, high capacity as well as high expansibility. Paralleled control technique has been for many decades and is still a hot topic and one technique challenging in the power electronics field.
     Based on the paralleled control strategy for constant voltage constant frequency inverters (CVCF), a distributed control strategy with wired connection, implemented by a digital signal processor (DSP), is proposed for variable voltage variable frequency paralleled inverters feeding an asynchronous motor. The system is decoupled into two independent subsystems for synchronization regulation and current sharing control respectively by introducing the local feedback technique. A square waveform, containing information of both frequency and phase angle, is used to generate a synchronization signal for all the inverter in parallel operation, which is shared by all the inverters to keep them in phase. Then the voltage references for current sharing control are regulated through sensing the circulating currents, aiming at equally sharing the load currents. The stability issue for synchronization control and current sharing control is analyzed and the control strategy is verified both in simulation and experimentally.
     Referring to the well-known hierarchical control applied to power dispatching in large AC power system, a multilayer control for inverters in parallel operation with wireless connection is proposed in this paper to enhance the stability and reliability of the paralleled system. A controller, embedded in each inverter, consists of three layers:The first layer is based on an improved droop method, based on which the paralleled operation can be achieved under conditions with small phase angle difference through regulating reactive power and active power to fine adjust system frequency and initial phase angle. As a result, good steady state performance and dynamic response are obtained. The second layer is designed for compensating the droop control and thus improving the load regulation performance of the inverter. The third layer, called quasi-synchronization control, aims to limit the phase deviation between the inverter and the shared ac bus. If the phase difference is out of limit, the phase of the inverter is regulated immediately in order to ensure the phase difference to be kept within the appropriate range within which the first layer can take effect. And the paralleled inverters can keep in phase with each other and the inrush currents among the inverters are suppressed at hot plug-in. The coordinated control for all layers is proposed and analyzed in detail, and the stability of the control is analyzed as well.
     A quasi-synchronization control scheme is proposed for the inverters in wireless connection parallel operation. Combining the features of the inverters with the space vector control and the phase angle of the shared ac bus, the phase differences of the reference voltage and the shared ac bus are regulated within a certain small range to keep the frequency and phase angle of the inverters as same as those of the shared ac bus, which will effectively suppress the inrush currents and improve the performance of the hot swap when the inverters start to put into parallel operation. During the transients in parallel operation, the control scheme makes sure that the phase angle differences of the inverters and the shared ac bus are kept within a certain range to avoid the out-of-synchronization. The relationship between the quasi-synchronization control and the droop synchronization control is studied and the stability between them is analyzed as well.
     The proposed wireless parallel control technique is applied to high power and modularized train's auxiliary power system. A system architecture and its operation mode are proposed for train's auxiliary power system and the logic in the establishment of auxiliary power system is set according to the principle of the multilayer control. A prototype, configured by two paralleled35kVA inverters, is set up. And the experimental results verify the validility and feasibility of the proposed control. The theoretical and technical bases for realizing the train's auxiliary power system with high reliability, high maintainability and high redundancy are provided.
引文
[1]何中一.PWM逆变器的控制及并联运行控制研究,[博士学位论文].南京:南京航空航天大学,2008.
    [2]何中一,邢岩,付大丰.模数混合分布式逆变器并联控制方法.中国电机工程学报,2007,27(4):113-117.
    [3]邢岩.逆变器并联运行系统的研究,[博士学位论文].南京:南京航空航天大学,1999.
    [4]陈良亮.无输出隔离变压器的逆变器并联系统研究,[博士学位论文].南京:南京航空航天大学,2004.
    [5]肖岚.逆变器并联控制技术研究.东南大学博士后研究工作报告,2001.3.
    [6]A. Cid-Pastor, L. Martinez-Salamero, C. Alonso, et al. Paralleling DC-DC switching converters by means of power gyrators. IEEE Trans. on Power Electronics,2007,22(6):2444-2453.
    [7]S.K. Mazumder, M. Tahir, and K. Acharya. Master-slave current-sharing control of a parallel DC-DC converter system over an RF communication interface. IEEE Trans. on Industrial Electronics,2008,55(1):59-66.
    [8]J. M. Guerrero, Lijun Hang, and Javier Uceda. Control of distributed uninterruptible power supply systems. IEEE Trans. on Industrial Electronics,2008,55(8):2845-2859.
    [9]J. M. Guerrero, L. Garcia de Vicuna, and J. Uceda. Uninterruptible power supply systems provide protection. IEEE Ind. Electron. Mag.,2007,1(1):28-38.
    [10]A. P. Martins, A. S. Carvalho, and A. S. Araujo. Design and implementation of a current controller for the parallel operation of standard UPSs. IEEE IECON,1995,584-589.
    [11]T. Iwade, S. Komiyama, and Y. Tanimura. A novel small-scale UPS using a parallel redundant operation system. IEEE INTELEC,2003,480-483.
    [12]Namho Hur, Kwanghee Nam. A Robust load-sharing control scheme for parallel-connected multisystems. IEEE Trans. on Industrial Electronics,2000,47(4):871-879.
    [13]H. van der Broeck and U. Boeke. A simple method for parallel operation of inverters. IEEE INTELEC,1998,143-150.
    [14]C. S. Lee, S. Kim, C. B. Kim, et al. Parallel UPS with a instantaneous current sharing control. IEEE IECON,1998,568-573.
    [15]Y. Pei, G. Jiang, X. Yang, and Z. Wang. Auto-master-slave control technique of parallel inverters in distributed AC power systems and UPS. IEEE PESC,2004,2050-2053.
    [16]W.-C. Lee, T.-K. Lee, S.-H. Lee, et al. A master and slave control strategy for parallel operation of three phase UPS systems with different ratings. IEEE APEC,2004,456-462.
    [17]J. F. Chen and C.-L. Chu. Combination voltage-controlled and current-controlled PWM inverters for UPS parallel operation. IEEE Trans. on Power Electronics,1995,10(5):547-558.
    [18]Y. J. Cheng and E. K. K. Sng. A novel communication strategy for decentralized control of parallel multi-inverter systems. IEEE Trans. on Power Electronics,2006,21(1):148-156.
    [19]肖岚,胡文斌,蒋渭忠,等.基于主从控制的逆变器并联系统研究.东南大学学报(自然科学版),2002,32(1):133-137.
    [20]T.-Fu Wu, Y.-K. Chen, and Y.-H. Huang.3C strategy for inverters in parallel operation achieving an equal current distribution. IEEE Trans. on Industrial Electronics,2000,47(2):273-281.
    [21]K. Piboonwattanakit, and W. Khan-ngern. Design of two parallel inverter modules by circular chain control technique. IEEE PEDS,2007:1518-1522.
    [22]S. J. Chiang, C. H. Lin, and C. Y. Yen. Current limitation control technique for parallel operation of UPS inverters. IEEE PESC,2004:1922-1926.
    [23]于玮,徐德鸿,周朝阳.并联UPS系统均流控制.中国电机工程学报,2008,28(21):63-67.
    [24]余蜜,张宇,康勇,单鸿涛,段善旭.基于改变环流阻抗的并联解耦控制策略.电工技术学报,2008,23(10):58-68.
    [25]张宇.三相逆变器动态特性及其并联系统环流抑制的研究,[博士学位论文].武汉:华中科技大学,2005.
    [26]段善旭,刘邦银,康勇等.基于分散逻辑的UPS逆变电源并联控制技术.电力电子技术,2004,38(2):56-58.
    [27]孔雪娟,王荆江,彭力等.采用SVPWM的三相逆变电源的分散逻辑并联运行.中国电机工程学报,2003,23(6):81-86.
    [28]刘慧.大功率三相逆变器控制与并联技术研究,[硕士学位论文].武汉:华中科技大学,2008.
    [29]徐慧.电压控制型三相逆变器的并联与并网技术研究,[硕士学位论文].武汉:华中科技大学,2007.
    [30]张昌盛.高频UPS双环控制及并联运行关键技术研究,[硕士学位论文].武汉:华中科技大学,2005.
    [31]方天治,阮新波,肖岚,刘爱忠.一种改进的分布式逆变器并联控制策略.中国电机工程学报,2008,28(33):30-36.
    [32]Zhongyi He, Yan Xing, Yuwen Hu. Low cost compound current sharing control for inverters in parallel operation. IEEE PESC,2004:222-227.
    [33]Mohammad N. Marwali, Jin-Woo Jung, Ali Keyhani. Stability analysis of load sharing control for distributed generation systems. IEEE Trans. on Energy Conversion,2007,22(3):222-227.
    [34]于玮,徐德鸿.基于虚拟阻抗的不间断电源并联系统均流控制.中国电机工程学报,2009,29(24):32-39.
    [35]于玮.UPS并联系统若干关键问题研究,[博士学位论文].浙江:浙江大学,2009.
    [36]X. Sun, Y.-S. Lee, and D. Xu. Modeling, analysis, and implementation of parallel multi-inverter system with instantaneous average-current-sharing scheme. IEEE Trans. on Power Electronics,2003,18(3):844-856.
    [37]S. Sun, L.-K. Wong, Y.-S. Lee, and D. Xu. Design and analysis of an optimal controller for parallel multi-inverter systems. IEEE Trans. on Circuits syst. II, Exp. Briefs,2006,52(1):56-61.
    [38]Y.-K. Chen, Y.-E. Wu, T.-F. wu, et al. ACSS for paralleled multi-inverter systems with DSP-based robust controls. IEEE Trans. on Aerospace and Electronic Systems,2003,39(3):1002-1015.
    [39]肖岚,陈良亮,李睿,等.基于有功和无功环流控制的DC-AC逆变器并联系统分析与实现.电工技术学报,2005,20(10):7-12.
    [40]T.-F. Wu, H.-M. Hsieh, Y.-E. Wu, et al. Parallel-inverter system with failure isolation and hot-swap features. IEEE Trans. on Industry Applications,2007,43(5):1329-1340.
    [41]T.-F. Wu, Y.-E. Wu, H.-M. Hsieh, et al. Current weighting distribution control strategy for multi-inverter systems to achieve current sharing. IEEE Trans. on Power Electronics,2007,22(1):160-168.
    [42]邢岩,严仰光.逆变器并联系统中基准信号同步的一种方法.数据采集与处理,2000,15(1):65-68.
    [43]Zhongyi He and Yan Xing. Distributed control for UPS modules in parallel operation with RMS voltage regulation. IEEE Trans. on Industrial Electronics,2008,55(8):2860-2869.
    [44]J. Tao, H. Lin, J. Zhang, and J. Ying. A novel load sharing control technique for paralleled inverters. IEEE PESC,2003:1432-1437.
    [45]华明,胡海兵,邢岩,何中一.一种变频器并联运行的分布式控制方法.中国电机工程学报,2010,30(24):48-53.
    [46]M. Hahii, K. Kousaka, M. Kamimoto. New approach to a high power GTO PWM inverter for ac motor drives. IEEE Trans. on Industry Applications,1987,23(2):263-269.
    [47]N. Kawakami, M. Honbu, T. Ikimi, A. Ueda, and K. Kamiyama. Quick response and low-distortion current control for multiple inverter-fed induction motor drives. IEEE Trans. on Power Electronics,19949(2):240-247.
    [48]S. Ogasawara, J. Takagaki, H. Akagi, and A. Nebae. A novel control scheme of a parallel current-controlled PWM inverter. IEEE Trans. on Industry Applications,1992,28(5):1023-1030.
    [49]许波.基于变频单元并联的调速装置的研究[硕士学位论文].西安:西安理工大学,2006.
    [50]J. M. Guerrero, L. G. de Vicuna, Jose Matas, et al. A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems. IEEE Trans. on Power Electronics,2004,19(5):1205-1213.
    [51]J. M. Guerrero, L. G. de Vicuna, Jose Matas, et al. A high-performance DSP-controller for parallel operation of online UPS systems. IEEE APEC,2004:463-469.
    [52]A. Tuladhar, H. Jin, T. Unger, and K. Mauch. Parallel operation of single phase inverter modules with no control interconnections. IEEE APEC,1997:94-100.
    [53]杨淑英,张兴,张崇巍.基于下垂特性的逆变器并联技术研究.电工电能新技术,2006,25(2):7-10,80.
    [54]肖岚,李睿.电压电流双闭环控制逆变器并联系统的建模和环流特性分析.电工技术学报,2006,21(2):51-56.
    [55]J. M. Guerrero, L. G. de Vicuna, Jose Matas, et al. Output impedance design of parallel-connected UPS inverters with wireless load-sharing Control. IEEE Trans. on Industrial Electronics,2005,52(4):1126-1135.
    [56]J. M. Guerrero, Nestor Berbel, Jose Matas, et al. Decentralized control for parallel operation of distributed generation inverters in Microgrids using resistive output impedance. IEEE IECON,2006,22(4):5149-5154.
    [57]林新春,段善旭,康勇,陈坚.UPS无互联线并联中基于解耦控制的下垂特性控制方案.中国电机工程学报,2003,23(12):117-122.
    [58]Karel De Brabandere, Bruno Bolsens, J. Van den Keybus, et al. A voltage and frequency droop control method for parallel inverters. IEEE Trans. on Power Electronics,2007,22(4):1107-1115.
    [59]Anil Tuladhar, Hua Jin, Tom Unger, and Konrad Mauch. Control of parallel inverters in distributed AC power systems with consideration of Line Impedance Effect.IEEE Trans. on Industry Applications,2000,36(1):131-138.
    [60]J. M. Guerrero, Jose Matas, L. G. de Vicuna, et al. Wireless-control strategy for parallel operation of distributed-generation inverters. IEEE Trans. on Industrial Electronics,2006,53(5):1461-1470.
    [61]Ritwik Majumder, Arindam Ghosh, Gerard Ledwich, and Firuz Zare. Angle droop versus frequency droop in a voltage source converter based autonomous Microgrid. IEEE PES,2009:1-8.
    [62]Dipankar De, V. Ramanarayanan. Decentralized parallel operation of inverters sharing unbalanced and nonlinear loads. IEEE Trans. on Power Electronics,2010,25(12):3015-3025.
    [63]M. Dai, M. N. Marwali, J.-W. Jung and A. Keyhani. Power flow control of a single distributed generation unit. IEEE Trans. on Power Electronics,2008,23(1):343-352.
    [64]Ritwik Majumder, Gerard Ledwich, Arindam Ghosh, Saikat Chakrabarti, et al. Droop control of converter-interfaced microsources in rural distributed generation. IEEE Trans. on Power Delivery,2010,25(4):2768-2778.
    [65]N. Pogaku, M. Prodanovic, T. C. Gree. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans. on Power Electronics,2007,22(2):613-625.
    [66]阚加荣,谢少军.提高无互联线逆变器并联稳定性的一种功率运算方法.电工技术学报,2007,22(3):85-90.
    [67]姚玮,陈敏,陈晶晶,朱鹏军,钱照明.一种用于无互联线逆变器并联的多环控制方法.电工技术学报,2008,23(1):84-89.
    [68]Charles K. Sao, and Peter W. Lehn. Autonomous load sharing of voltage source converters. IEEE Trans. on Power Delivery,2005,20(2):1009-1016.
    [69]张尧,马皓,雷彪,何湘宁.基于下垂特性控制的无互联线逆变器并联的均流分析.中国电机工程学报,2006,26(25):55-59.
    [70]林新春,段善旭,康勇,陈坚.基于下垂特性控制的无互联线并联UPS建模与稳定性分析.中国电机工程学报,2004,24(2):33-38.
    [71]U. Borup, F. Blaabjerg, P. N. Enjeti. Sharing of nonlinear load in parallel-connected three-phase converters. IEEE Trans. on Industry Applications,2001,37(6):1817-1823.
    [72]E. A. Alves Coelho, P. C. Cortizo, and P. F. Donoso Garcia. Small-signal stability for parallel-connected inverters in stand-alone AC supply systems. IEEE Trans. on Industry Applications,2002,38(2):533-542.
    [73]J. M. Guerrero, L. Garcia de Vicuna, J. Miret, J. Matas, et al. Output impedance performance for parallel operation of UPS inverters using wireless and average current-sharing controllers. IEEE PESC,2004:2482-2488.
    [74]Y. Li, D. M. Vilathgamuwa, and P. C. Loh. Design, analysis, and real-time testing of a controller for multibus microgrid system. IEEE Trans. on Power Electronics,2004,19(5):1195-1204.
    [75]祁飚杰.基于PQ法的逆变器并联技术研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [76]J. M. Guerrero, L. G. de Vicuna, Jose Matas, et al. Output impedance design of parallel-connected UPS inverters. IEEE ISIE,2004:1123-1128.
    [77]Wei Yao, Min Chen, Jose Matas, J. M. Guerrero, et al. Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing. IEEE Trans. on Industrial Electronics,2011,58(2):576-588.
    [78]T. B. Lazzarin, G. A.T. Bauer, and I. Barbi. A control strategy by instantaneous average values for parallel operation of single phase voltage source inverters based in the inductor current feedback. IEEE ECCE,2009:495-502.
    [79]J. M. Guerrero, Jose Matas, L. G. de Vicuna, et al. Decentralized control for parallel operation of distributed generation inverters using resistive output impedance. IEEE Trans. on Industrial Electronics,2007,54(2):994-1004.
    [80]W. Yao, M. Gao, Z. Ren, M. Chen, et al. Study on the impact of the complex impedance on the droop control method for the parallel inverters. IEEE APEC,2010:1204-1208.
    [81]韦统振.电力电子变换器外特性下垂并联控制方法研究,[博士学位论文].北京:中国科学院,2004.
    [82]付好名.基于DSP控制的逆变器模块的无连线并联研究,[硕士学位论文].浙江:浙江大学,2005.
    [83]M. C. Chandorkar, D. M. Divan, Y. Hu, and B. Barnajee. Novel architectures and control for distributed UPS systems. IEEE APEC,1994:683-689.
    [84]J. M. Guerrero, J. C. Vasquez, Jose Matas, et al. Control strategy for flexible Microgrid based on parallel line-interactive UPS systems. IEEE Trans. on Industrial Electronics,2009,56(3):726-736.
    [85]阚加荣,吴云亚,谢少军.控制参数对并联逆变器性能的影响.电工技术学报,2009,24(9):120-126.
    [86]Xiaotian Zhang, Hao Zhang, Xikui Ma, and J. M. Guerrero. Sharing of active power supply and reactive power compensation for parallel inverters. IEEE APEC,2009:353-357.
    [87]李乐.无互联线并联逆变器控制技术研究,[硕士学位论文].武汉:武汉理工大学,2006.
    [88]M. N. Marwali, J.-W. Jung, and A. Keyhani. Control of distributed generation sytems-part Ⅱ: load sharing control. IEEE Trans. on Power Electronics,2004,19(6):1551-1561.
    [89]阚加荣.单相逆变器无互联线并联控制技术研究,[硕士学位论文].南京:南京航空航天大学,2007.
    [90]雷彪.单相逆变器无连线并联技术研究,[硕士学位论文].浙江:浙江大学,2006.
    [91]张尧,马皓,雷彪,何湘宁.基于下垂特性控制的无互联线逆变器并联动态性能分析.中国电机工程学报,2009,29(3):42-48.
    [92]马皓,雷彪.逆变器无连线并联系统的统一小信号模型及应用.浙江大学学报(工学版),2007,41(7):1111-1115.
    [93]Zheng Ren, Mingzhi Gao, Qiong Mo, and Kun Liu, et al. Power calculation method used in wireless parallel inverters under nonlinear load conditions. IEEE APEC,2010:1674-1677.
    [94]Xiaotian Zhang, Hao Zhang, J. M. Guerrero, and Xikui Ma. Reactive power compensation for parallel inverters without control interconnections in Microgrid. IEEE IECON,2008:922-925.
    [95]Kan jiarong, Xie Shaojun. Research on the power sharing of the parallel inverters without control interconnection basing on droop characteristic. IEEE IPEMC,2006:1-5.
    [96]Chia-Tse Lee, Chia-Chi Chu, and Po-Tai Cheng. A new droop control method for the autonomous operation of distributed energy resource interface converters. IEEE ECCE,2010:702-709.
    [97]阚加荣,谢少军,吴云亚.无互联线并联逆变器的功率解耦控制策略.中国电机工程学报,2008,28(21):40-45.
    [98]E. P. De Paiva, J. B. Vieira, Jr., L. C. De Freitas, V. J. Farias, et al. Small signal analysis applied to a single phase inverter connected to stiff AC system using a novel improved power controller. IEEE APEC,2005:1099-1104.
    [99]Y. Wei Li, and Ching-Nan Kao. An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid. IEEE Trans. on Power Electronics,2009,24(12):2977-2988.
    [100]Q.-C. Zhong, G. Weiss. Synchronverters:Inverters that mimic synchronous generators. IEEE Trans. on Industrial Electronics,2011,58(4):1259-1267.
    [101]J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, et al. Hierarchical control of droop-controlled AC and DC Microgrids-A general approach toward standardization. IEEE Trans. on Industrial Electronics,2011,58(1):158-172.
    [102]徐宗祥.我国电力机车的发展回顾.中国铁路,2001(2):12-14.
    [103]李凡.浅议铁路客车的供电方式.西铁科技,2009(2):23-25.
    [104]戴舜华.发电车集中供电与DC600V供电特点及改进建议.铁道机车车辆,2006,26(3):56-57.
    [105]史富强,王旭波.IGBT在客车DC600V西铁逆变器中的应用与保护.电子设计工程,2009,17(6):107-109.
    [106]江靖,张凯,李广和.DC600V/AC380V兼容供电客车电气系统设计.四机科技,1998,4:11-15.
    [107]中华人民共和国铁道部.旅客列车DC600V供电系统技术条件.TB/T3063-2002,2002.
    [108]P. Kundur. Power system stability and control[M]. McGraw-Hill Professional,1994.
    [109][日]供电常设委员会,杨莳百,王锡凡译.电力系统的分层控制系统.北京:电力工业出版社,1980.
    [110][加]Prabha Kundur著,《电力系统稳定与控制》翻译组译.电力系统稳定与控制.北京:中国电力出版社,2002.
    [111]《电力系统调频与自动发电控制》编委会著.电力系统调频与自动发电控制.北京:中国电力出版社,2006.
    [112]周双喜,朱凌志,郭锡久,王小海.电力系统电压稳定性及其控制.北京:中国电力出版社,2004.
    [113]李先彬.电力系统自动化(第五版).北京:中国电力出版社,2007.
    [114]Technical paper—Definition of a set of requirements to generating units. Union for the Co-ordination of Transmission of Electricity (UCTE),2008.
    [115]Operation handbook. Union for the Co-ordination of Transmission of Electricity (UCTE),2004.
    [116]B. Lucus, L. F. de Catro Ribeiro, P. Brown. Load-Frequency control UCTE operation handbook. Porto, Maio de,2005.
    [117]毛鹏,谢少军,许泽刚IGBT模块的开关暂态模型及损耗分析.中国电机工程学报,2010,30(15):40-47.
    [118]马柯.逆变器效率提升方案研究,[硕士学位论文].浙江:浙江大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700