基于安全域的水火系统优化潮流
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统优化潮流是在系统结构参数及负荷情况均给定的情况下,通过调节发电机功率、变压器抽头及无功补偿器等可控设备,找到满足所有运行约束条件并使系统的某一指标或几个指标达到最优值时的潮流分布。优化潮流在电力系统规划和调度运行等方面已得到广泛应用,但尚有很多问题仍需要进一步完善,包括非线性约束处理、优化问题建模、求解速度和可靠性的提高等方面。考虑暂态稳定性和电压稳定性约束的优化潮流问题是其中的一个重要研究方向,也是本文研究的重点。
     域的方法是一种全新的方法学,与稳定性研究中传统的“逐点法”相比,对给定的注入和既定事故确定安全域的边界,可以为运行人员提供系统整体的安全稳定性信息。目前关于注入功率空间上保证系统暂态稳定性的“动态安全域”和割集功率空间上保证静态电压稳定的“静态电压稳定域”的研究已取得一定的实用性成果,研究表明关于这两种安全域的临界面可用超平面近似描述。利用上述研究成果,可以很好地解决电力系统调度优化问题中稳定约束难以处理的问题。
     首先,本文提出了一种以发电费用最小为目标函数的新型优化潮流模型与算法,该模型以“静态电压稳定域”和“动态安全域”的边界条件来表示系统暂态稳定性和静态电压稳定性的约束条件。利用电力系统的有功功率与支路角、无功功率与节点电压幅值的仿射关系,以支路角作为优化变量,提出基于二次规划的优化潮流算法。新英格兰10机39节点系统算例验证了该模型和算法的有效性。
     其次,提出了一种新的以最小化燃料费用和污染排放量为目标的水火电力系统优化潮流模型。模型中的约束条件考虑了网损和系统稳定性两个方面,其中网损用发电量和发电量转移分配系数表示,系统稳定性用动态安全域和静态电压稳定域的方式表示。模型的求解使用牛顿—拉夫逊迭代法实现,并采用了一种新的初值设定方法以提高计算的收敛特性。进一步还就目标函数中燃料费用和污染排放比例间的关系进行了研究。
     本文还提出了一种基于安全域的电力系统分布式优化潮流算法,将多区电力系统的优化潮流问题按照分区分解为多个子优化问题,各分区子优化问题的解通过价格机制互相协调,最终收敛于系统整体的优化潮流解。该算法采用预测校正原—对偶内点法求解,计及了线路的热稳定极限以及安全域形式的暂态稳定约束和静态电压稳定约束。通过IEEE RTS-96三区域算例系统验证了该算法的有效性。
The Optimal Power Flow (OPF) is used extensively in the control centers of power utilities as well as by system planners for planning studies, as it calculates various levels of power generation and all the controls associated with the static (steady-state) operation of the entire electric power grid of a power utility. During the course of development of the OPF, it has been realized that the main challenges relate to the effectiveness of dealing nonlinear functional constraints, the modeling of the problem, and the speed and reliability for simultaneously solving all of the network equations while minimizing an objective function. The largest challenge in OPF is how to deal with transient stability and static voltage stability constraints at the same time.
     A security region (SR) defined in injection space is unique for a given power system configuration or a power system with a particular postulated change in configuration. Different from traditional“point-wise”approach, a security region defined mathematically and visualized can give power system engineers systematic and global information about the feasible operation region. Two type of security have reached the stage of practical application: one is the practical dynamic security region (PDSR) in power injection space to guarantee transient stability, the other is the static voltage stability region (CVSR) in critical cut set power space. Based on the hyper-plane descriptions of critical boundaries of PDSR and CVSR, the difficulties in dealing with stability constraints in the problems of solving OPF may be overcome easily.
     Firstly in this dissertation a novel mathematics model and an efficient algorithm that can minimize total generation cost with considering both 1st order and 2nd order terms of generation cost function, are developed, where both of transient stability constraints and static voltage stability constraints are taken into account based on the hyper-plane descriptions of critical boundaries of security regions. In the formulation of OPF an affine mapping between branches angles and real powers is used to take branch angles as optimization variables instead of power injections as usual. For simplicity, an affine mapping between voltage magnitudes of buses and reactive power injections in network is also used. The feasibility and effectiveness of the proposed mathematics model and algorithm have been validated in the 39-bus New-England System.
     The formulation of the optimal hydrothermal power flow is one of fruitful applications of OPF, which is more realistic than conventional OPF because of dynamic coupling between the variables of the problem as a result of the hydro energy constraints introduced through the volume of water availability limitations.
     Secondly, in this dissertation a novel formulation of the optimal hydrothermal power flow problem is also suggested with taking into account the emissions minimization, and the transient stability and voltage stability in its constraints based on the concepts of security regions. The transmission loss is approximately expressed in terms of the generalized generation shift distribution factor and of generated power. The implementation is based on a Newton Raphson’s interactive procedure, with novel initial guesses to obtain improved convergence properties. The IEEE standard systems are worked out in order to demonstrate the effectiveness of the proposed method.
     Finally, the security region constrained distributed optimal power flow for interconnected power system is presented in this dissertation. The centralized OPF problem of the multi-area power systems is decomposed into independent distributed OPF subproblems one for each area. The transient stability constraints and static voltage stability constraints, and line current limits are included as constraints. The solutions of the distributed OPF subproblems make the independent dispatch of each area possible while achieving a multi-area optimum. The nonlinear distributed OPF subproblem is solved by an efficient predictor-corrector interior point method. The IEEE three-area RTS-96 system is worked out in order to demonstrate the effectiveness of the proposed method.
引文
[1] P. Kundur, Power System Stability and Control. McGraw-Hill, Inc., 1994.
    [2] C. W. Taylor, Power System Voltage Stability. McGraw-Hill, Inc., 1994.
    [3] A. J Wood and B. F. Wollenberg, Power generation, operation and control, John Wiley & Sons, New York, second edition, 1996.
    [4] J. Carpentier, Optimal Power Flow. ELSEVIER International Journal of Electrical Power and Energy Systems, Apr. 1979, 1(1), pp. 3-15.
    [5] T. E. Dy Liacco, The Adaptive Reliability Control System. IEEE Transactions on Power Apparatus and Systems, May 1982, PAS-86 (5), pp. 517-531.
    [6] B. Stott, O. Alsac and A. J. Monticelli, Security Analysis and Optimization Proceedings of IEEE. Dec. 1987, 75(12), pp. 1623-1644.
    [7] W. F. Tinney, et al , Some Deficiencies in Optimal Power Flow. IEEE Transactions on Power Systems, May 1988, 3 (2), pp. 676-683.
    [8] J. Carpentier, Contribution to the Economic Dispatch Problem. (in French), Bull, Soc. Franc. Electr., Aug. 1962, 8, pp. 431-447.
    [9] H. W. Dommel and W. F. Tinney, Optimal Power Flow Solutions. IEEE Transactions on Power Apparatus and Systems, Oct. 1968, PAS-87 (10), pp. 1866-1876.
    [10] J. L. Carpentier, Differential Injections Method: A General Method for Secure and Optimal Load Flows. PICA 1973, pp. 255-262.
    [11] J. Peschon et al., Optimal Solutions Involving System Security. PICA 1971, pp. 210-218.
    [12] R. C. Burchett, H. H. Happ and D. R. Vierath, Quadratically Convergent Optimal Power Flow. IEEE Transactions on Power Apparatus and Systems, Nov. 1984, PAS-103(11), pp. 3267-3275.
    [13] R. C. Burchett, and H. H. Happ, Large Scale Security Dispatching: An Exact Model. IEEE Transactions on Power Apparatus and Systems, Sep. 1983, PAS-102(9), pp. 2995-2999.
    [14] R. C. Burchett, et al., Large Scale Optimal Power Flow. IEEE Transactions on Power Apparatus and Systems, Oct. 1982, PAS-101(10), pp. 3722-3732.
    [15] T. C. Giras and S. N. Talukdar, Quasi-Newton Method for Optimal Power Flows. ELSEVIER International Journal of Electrical Power and Energy Systems, Apr. 1981, 3(2), pp. 59-64.
    [16] B. Cova, et al., Large-Scale Application of the Han-Powell Algorithm to Compact Model of Static and Dynamic Dispatch of Real Power. ELSEVIER International Journal of Electrical Power and Energy Systems, Jul. 1987, 9(3), pp. 130-141.
    [17] A. M. Sasson, et al., Optimal Load Flow Solution Using The Hessian Matrix. IEEE Transactions on Power Apparatus and Systems, Jan.1973, PAS-92(1), pp. 31-41.
    [18] W. R. Barcelo, et al., Optimization of The real-Time Dispatch with Constraints For secure Operation of Bulk Power Systems. IEEE Transactions on Power Apparatus and Systems, May 1977, PAS-96(3), pp. 741-757.
    [19] A. Santos Jr., S. Deckman and S. Soares , A Dual Augmented Lagrangian Approach for Optimal Power Flow. IEEE Transactions on Power Systems, Aug.1988, 3(3), pp. 1020-1025.
    [20] B. Sttot, et al., Review of Linear Programming applied to Power System Rescheduling. IEEE Conference Proceedings, Power Industry Computer Applications, PICA-79, May 1979, pp. 142-154.
    [21] B. Sttot and J. L. Marinho, Linear Programming for Power-System Network Security Applications. IEEE Transactions on Power Apparatus and Systems, May 1979, PAS-98(3), pp. 837-848.
    [22] B. Sttot and E. Hobson, Power System Security Control Calculations Using Linear Programming, Part I and Part II. IEEE Transactions on Power Apparatus and Systems, Sep. 1978, PAS-97(5), pp. 1713-1731.
    [23] E. Hobson, Network Constrained reactive Power Control Using Linear Programming. IEEE Transactions on Power Apparatus and Systems, May 1980, PAS-99(3), pp. 868-877.
    [24] O. Alsac, et al., Further Developments in LP-Based Optimal Power Flow. IEEE Transactions on Power Systems, Aug. 1990, 5(3), pp. 697-711.
    [25] C. H. Jolissaint, et al., Decomposition of Real and Reactive Power Flows: A Method Suited for On-Line Applications. IEEE Transactions on Power Apparatus and Systems, Mar. 1972, PAS-91(2), pp. 661-670. 107
    [26] D. I. Sun, et al, Optimal Power Flow by Newton Approach. IEEE Transactions on Power Apparatus and Systems, Oct. 1984, PAS-103(10), pp. 2864-2880.
    [27] J. Nanda, D. P. Kothari and S. C. Srivastava, New optimal power-dispatch algorithm using Fletcher’s quadratic programming method. IEE Proceedings, May 1989, Pt C, 136(3), pp. 153-161.
    [28] G. C. Contaxis, Decoupled Optimal Load Flow Using Linear or Quadratic Programming. IEEE Transactions on Power Systems, May 1986, PWRS-1(2), pp. 1-7.
    [29] R. R. Shoults and D. I. Sun, Optimal Power Flow Based Upon P-Q Decomposition. IEEE Transactions on Power Apparatus and Systems, Feb. 1982, PAS-101(2), pp. 397-405.
    [30] H. Wei, H. Sasaki and R. Yokoyama, An application of interior point quadratic programming algorithm to power system optimization problems, IEEE Transactions on Power Systems, Feb. 1996, 11 (1), pp. 1509-1518.
    [31] X. Yan and V. H. Quintana, An Efficient Predictor-Corrector interior Point Algorithm for Security-Constrained Economic Dispatch. IEEE Transactions on Power Systems, May 1997, 12(2), pp. 803-810.
    [32] D. I. Sun, B. Ashley, B. Brewer, A. Hughes and W. F. Tinney, Optimal power flow by Newton approach. IEEE Transactions on Power Apparatus and Systems, Oct. 1984, PAS-103 (10), pp. 2864-2880.
    [33] A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained minimization Techniques. John Wiley & Sons, 1968.
    [34] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, Dec.1984, 4(4), pp. 373-395.
    [35] R. E. Marsten and M. J. Saltzman, Implementation of a dual affine interior point algorithm for linear programming, ORSA Journal on Computing, 1989, 1, pp. 287-297.
    [36] C. C. Gonzaga, Path-following methods for linear programming. SIAM Review, 1992, 34(2), pp. 167-224.
    [37] P. E. Gill, W. Murray, D. B. Ponceleón and M. A. Sauders, Primal-dual methods for linear programming. Mathematical Programming, Oct. 1995, 70(1-3), pp. 251-277.
    [38] S. Mehrotra, On the implementation of a primal-dual interior point method. SIAM Journal on Optimization, 1992, 2(4), pp. 575-601.
    [39] T. J. Carpenter, I. J. Lustig, J. M. Mulvey and D. F. Shanno, Higher-order predictor-corrector interior point methods with applications to quadratic objectives. SIAM Journal on Optimization, 1993, 3(4), pp. 696-725.
    [40] J. Gondzio, Multiple centrality corrections in a primal-dual method for linear programming. Computational Optimization and Applications, Sep.1996, 6(2), pp. 137-156.
    [41] A . El-Bakry, R. Tapia, T. Tsuchiya and Y. Zhang, On the formulation and theory of the Newton interior-point method for nonlinear programming. Journal of Optimization Theory and Applications, Jun. 1996, 89(3), pp. 507-541.
    [42] H. Yamashita and H. Yabe, Superlinear and quadratic convergence of some primal-dual interior point methods for constrained optimization. Mathematical Programming, Dec. 1996, 75(3), pp. 377-397.
    [43] K. A. Clements, P. W. Davis and K. D. Frey, Treatment of inequality constraints in power system state estimation. IEEE Transactions on Power Systems, May 1995, 10 (2), pp. 567-574.
    [44] S. Granville, Optimal reactive dispatch trough interior point methods. IEEE Transactions on Power Systems, Feb. 1994, 9 (1), pp. 136-146.
    [45] G. D. Irisarri, X. Wang, J. Tong and S. Mokhtari, Maximum loadability of power systems using interior point non-linear optimization method. IEEE Transactions on Power Systems, Feb. 1997, 12 (1), pp. 162-172.
    [46] J. L. Martinez, A. Gomez and V. H. Quintana, Reactive-power optimization by interior point methods: Implementation issues. In Proceedings of the 12th Power Systems Computation Conference, Dresden, Germany, Aug. 1996, pp. 844-850.
    [47] G. L. Torres and V. H. Quintana, An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates. IEEE Transactions on Power Systems, Nov.1998, 13(4), pp. 1211-1218.
    [48] Y. C. Wu, A. S. Debs and R. E. Marsten, A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flow. IEEE Transactions on Power Systems, May 1998, 9(2), pp. 876-883.
    [49] S. Granville, J. C. O. Mello and A. C. G. Melo, Application of interior point methods to power flow unsolvability. IEEE Transactions on Power Systems, May 1996, 11(2), pp.1096-1103.
    [50] G. Cohen, Optimization by decomposition and coordination: A unified approach. IEEE Transactions on Automatic Control, Apr. 1978, AC-23(2), pp. 222-232.
    [51] Task Force of the Computer and Analytical Methods Subcommittee of the Power Systems engineering Committee, Parallel processing in power systems computation. IEEE Transactions on Power Systems, May 1992, 7(2), pp. 629-637.
    [52] IEEE/CICRE Joint Task Force on Stability Terms and Definitions, Definition and Classification of Power System Stability. IEEE Transactions on Power Systems, May 2004, 19(4), pp.1387-1401.
    [53] Thierry Van Cutsen, Voltage Instability: Phenomena, Countermeasures, and Analysis Methods. Proceedings of the IEEE, Feb. 2000, 88(2), pp. 208-226.
    [54] B. Gao, O. K. Morison and P. Kundur, Voltage Stability Evaluation Using Modal Analysis. IEEE Transactions on Power Systems, Nov. 1992, 7(4), pp. 1529-1542.
    [55] V. Ajjarapu and C. Christy, The continuation power flow: a tool for steady state voltage stability analysis. IEEE Transactions on Power Systems, Feb. 1992, 7(1), pp.416-423.
    [56] P. Kessel and Glavitsch, Estimating the voltage stability of a power system. IEEE Transactions on Power Delivery, 1986, 3, pp. 346-354.
    [57] N. Flatabo, R. Ognedal and T. Carlsen, Voltage stability condition in a power transmission system calculated by sensitivity methods. IEEE Transactions on Power Systems, Nov. 1990, 5(4), pp.1286-1293.
    [58] C. Lemaitre, J. P. Paul, J. M. Tesseron, Y. Harmand and Y. S. Zhao, An indicator of the risk of voltage profile instability for real-time control applications. IEEE Transactions on Power Systems, Feb. 1990, 5(1), pp.154-161.
    [59] P. A. Lof, G. Andersson and D. J. Hill, Voltage stability indices for stressed power systems. IEEE Transactions on Power Systems, Feb. 1993, 8(1), pp.326-335.
    [60] Y. L. Chen, C. W. Chang and C. C. Liu, Efficient methods for identifying weak nodes in electrical power networks. IEE Proceedings- Generation, Transmission and Distribution, May 1995, 142(3), pp. 317-322.
    [61] G. K. Morison, B. Gao and P. Kundur, Voltage stability analysis using static and dynamic approaches. IEEE Transactions on Power Systems, Aug. 1993, 8(3), pp.1159-1171.
    [62] E. Bompard, E. Carpaneto, G. Chicco and Napoli, A dynamic interpretation of the load-flow Jacobian singularity for voltage stability analysis. Electrical Power & Energy System, 1996, 18(6), pp. 385-395.
    [63] T. J. Overbye and I. Dobson, Q-V curve interpretations of energy measures for voltage security. IEEE Transactions on Power Systems, Feb. 1994, 9(1), pp. 331-340.
    [64] Y. Tamura, H. Mori and S. Iwamoto, Relationship between voltage instability and multiple load flow solutions in electric power systems. IEEE Transactions on Power Apparatus and Systems, May 1983, PAS-102(5), pp. 1115-1125.
    [65] V. S. S. Vankayala and N. D. Rao, Artificial neural networks and their applications to power systems – a bibliographical survey. ELSVIER Electric Power Systems Research, Oct. 1993, 28(1), pp. 67-79.
    [66] B. Jeyasurya, Application of artificial neural networks to power system transient energy margin evaluation. ELSVIER Electric Power Systems Research, Jan. 1993, 26(1), pp. 71-78.
    [67] B. Jeyasurya, artificial neural networks for power system steady-state voltage instability evaluation. ELSVIER Electric Power Systems Research, Mar. 1994, 29(2), pp. 85-90.
    [68] D. J. Hill, Nonlinear dynamic load models with recovery for voltage stability studies. IEEE Transactions on Power Systems, Feb. 1993, 8(1), pp. 166-176.
    [69] A. A. El-Keib and X. Ma, Application of artificial neural networks in voltage stability assessment. IEEE Transactions on Power Systems, Nov. 1995, 10(4), pp. 1890-1895.
    [70] D. Niebur and A. J. Germond, Power system static security assessment using the Kohonen neural network classifier. IEEE Transactions on Power Systems, May 1992, 7(2); pp.865-872.
    [71] H. W. Dommel and N. Sato, Fast Transient Stability Solutions. IEEE Transactions on Power Apparatus and Systems, Jul. 1972, PAS-91(4), pp. 1643-1650.
    [72] J. A. Momoh, R. J. Koessler, M. S. Bond, B. Stott, D. Sun, A. Papalexopoulos and P. Ristanovic, Challenges to Optimal Power Flow. IEEE Transactions on Power Systems, Feb. 1997, 12(1), pp. 444-455.
    [73] D. Gan, R. J. Thomas and R. D. Zimmerman, Stability-Constrained Optimal Power Flow. IEEE Transactions on Power Systems, May 2000, 15(2), pp. 535-540.
    [74] D. Gan, D. Chattopadhyay and X. Luo, Enhancements to Stability Constrained OPF to Overcome Sub-optimality. Electric Power Components and Systems, 2005, 33(5), pp. 481-491.
    [75] L. Chen, Y. Taka, H. Okamoto, R. Tanabe, and A. Ono, Optimal Operation Solutions of Power Systems with Transient Stability Constraints. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Mar. 2001, 48(3), pp. 327-339.
    [76] Y. Yuan, J. Kubokawa and H. Sasaki, A solution of optimal power flow with multicontingency transient stability constraints. IEEE Transactions on Power Systems, Aug. 2003, 18(3), pp. 1094-1102.
    [77] Sun Gang,Y. Yixin, A Novel Model of Optimal Power Flow. Proceedings of the CSU-EPSA, 2005, 17(3), pp. 6-9.
    [78] F. F. Wu, Y. K. Tsai and Y. X. Yu, Probabilistic steady-state and dynamic security assessment. IEEE Transactions on Power Systems, Feb. 1988, 3(1), pp. 1-9.
    [79] F. F. Wu, and S. Kumagai, Steady-state security regions of power systems. IEEE Transactions on Power Systems, Nov. 1982, CAS-29(11), pp. 703-711.
    [80] Y. X. Yu, Security region of bulk power system. IEEE Proceedings of PowerCon 2002, Kun Ming, China, Oct. 2002,Vol. 1, pp. 13-17.
    [81] Yixin Yu, Direct Methods for Security Regions of Bulk Power System, EPRI, Palo Alto, CA, 2004.
    [82] Yu Yixin and Luan Wenpeng, Practical Dynamic Security Regions of Power Systems. Proceedings of the CSEE Vol.9 (Special Issue on Electrical Mathematics), 1990, pp.22-28.
    [83] Feng Fei and Yu Yixin, Dynamic Security Region in Injection Spaces of Power Systems. Proceedings of the CSEE, May 1993, 13(3), pp.14-21.
    [84] Zeng Yuan, Fan Jichao and Yu Yixin, "Practical dynamic security regions of bulk power systems". Automation of Electric Power Systems, 2001,25(16), pp.6-10.
    [85] Yuan Zeng and Yu Yixin, A Practical Direct Method for Determining Dynamic Security Regions of Electrical Power Systems. IEEE Proceedings of PowerCon 2002, Kun Ming, China, Oct. 2002, Vol. 2, pp. 1270-1274.
    [86] Y. X. Yu, J. K. Lin, Practical Analytical Expression of Power System Dynamic Security Region's boundary. Journal of Tianjin University, Jan. 1997, 30(1), pp.1-8.
    [87] Yuan Zeng,Yixin Yu,Stephen T. Lee,Pei Zhang, A Fast Method to Calculate Dynamic Security Region Based on Active Power Perturbation Analysis, Automation of Electric Power Systems, 2006, 30 (20), pp.5-9, 31.
    [88] Yu Yixin, Feng Fei, Active Power Steady-State Security Region of Power System. Science China, 1990, 33 (12), pp.1488-1500.
    [89] Jifeng Su, Yixin Yu, Hongjie Jia, et al., Visualization of Voltage Stability Region of Bulk Power System. IEEE Proceedings of PowerCon 2002, Kun Ming, China, Oct. 2002, Vol. 3, pp. 1665-1668.
    [90] A. Binkou and Yu Yixin, Security Region based Real and Reactive Optimization of Power Systems. Proceedings of the CSEE, Jun. 2006, 26(12): 1-10.
    [91] Yu Yixin, Su jifeng, Jia Hongjie, Li Peng, "Study on visualization of voltage stability feasible region of bulk power system", Automation of Electric Power Systems, 2001, 25(21), pp.1-5
    [92] S. K. Bath, J. S. Dhillon and D.P. Kothari. Fuzzy satisfying stochastic multi-objective generation scheduling by weightage pattern search methods. ELSEVIER Electric Power Systems Research. May 2004, 69(1-2), pp. 311-320.
    [93] A. R. Bergen, Power Systems Analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632, 1986.
    [94] B. H. Chowdhury and S. Rahman, A Review of Recent Advances in economic Dispatch. IEEE Transactions on Power Systems, Nov.1990, 5(4), pp. 1248-1259.
    [95] A Papalexopoulos, Shangyou Hao, E. Liu, Z. Alaywan and K. Kato, Cost/benefits analysis of an optimal power flow: The PG&E experience. IEEE Transactions on Power Systems, May 1994, 9(2), pp. 796-804.
    [96] Luoman Chen, Yasuyuki Tada, Hiroshi Okamoto, Ryuya Tanabe and Asako Ono, Optimal Operation Solutions of Power Systems with Transient Stability Constraints. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Mar. 2001, 48(3), pp. 327-339.
    [97] Y. Sun Y. Xinlin and H. F. Wang, Approach for optimal power flow with transient stability constraints. IEE Proceedings- Generation, Transmission and Distribution, Jan. 2004, 151(1), pp. 8-18.
    [98] D. S. Kirschen and H. P. Van Meetern, MW/Voltage Control in a linear Programming Based Optimal Power Flow. IEEE Transactions on Power Systems, May 1988, 3(2), pp. 782-790.
    [99] Y. G. Rebours, D. S. Kirschen, Marc Trotignon and S. Rossignol, A Survey of Frequency and Voltage Control Ancillary Services – Part I: Technical Features. IEEE Transactions on Power Systems, Feb. 2007, 22(3), pp. 350-357.
    [100] Y. G. Rebours, D. S. Kirschen, Marc Trotignon and S. Rossignol, A Survey of Frequency and Voltage Control Ancillary Services – Part II: Economic Features. IEEE Transactions on Power Systems, Feb. 2007, 22(3), pp. 358-366.
    [101] Z. Q. Wu, Y. N. Wang, H.-S. Qing and Y. X. O. Yang, Continuous integration congestion cost allocation based on sensitivity. IEE Proceedings- Generation, Transmission and Distribution, Jul. 2004, 151(4), pp. 421-426.
    [102] A. D. Papalexopoulos, C. F. Imparato and F. F. Wu, Large-Scale Optimal Power Flow: Effects of Initialization, Decoupling & Discretization. IEEE Transactions on Power Systems, May 1989, 4(2), pp. 748-759.
    [103] N. I. Deeb and S. M. Shahidehpour, Cross decomposition for multi-area optimal reactive power planning. IEEE Transactions on Power Systems, Nov. 1993, 8(4), pp. 1539-1544.
    [104] H. Glavitsh and M. Spoerry, Quadratic loss formula for reactive dispatch. IEEE Transactions on Power Apparatus and Systems, Dec. 1983, PAS-102(12), pp. 3850-3858.
    [105] A. Jiang and E. Suat, Polynomial loss models for economic dispatch and error estimation. IEEE Transactions on Power Systems, Aug. 1995, 10 (3), pp. 1546-1552.
    [106] J. A. Momoh, A Generalized Quadratic-Based Model for Optimal Power Flow. IEEE International Conference on Systems, Man and Cybernetics, 1989. Conference Proceedings, Cambridge, MA, UK, Nov. 1989, 1, pp. 261-267.
    [107] N. Grudinin, Reactive power optimization using successive quadratic programming method. IEEE Transactions on Power Systems, Nov. 1998, 13 (4), pp. 1219-1225.
    [108] G. A. Maria and J. A. Findlay, A Newton Optimal Flow Program for Ontario Hydro EMS. IEEE Transactions on Power Systems, Aug. 1987, PWRS-2(3), pp. 576-584.
    [109] A. Monticelli and W.-H. E. Liu, Adaptive Movement Penalty Method For The Newton Optimal Power Flow. IEEE Transactions on Power Systems, Feb. 1992, 7(1), pp. 334-342.
    [110] M. E. El-Hawary and D. H. Tsang, The hydrothermal optimal load flow, a practical formulation and solution techniques using Newton’s approach. IEEE Transactions on Power Systems, Aug. 1986, PWRS-1(3), pp. 157-166.
    [111] A. Santos Jr., G. R. M. da Costa, Optimal-power-flow solution by Newton’s method applied to an augmented Lagrangian function. IEE Proceedings- Generation, Transmission and Distribution, Jan. 1995, 142(1), pp. 33-36.
    [112] A. M .Abdel Moamen and N. P. Padhy, Newton-Raphson TCSC Model for Power Flow solution of Practical Power Networks. IEEE Power Engineering Society Summer Meeting, 2002, Vol.3, pp. 1488-1493.
    [113] C. R. Fuerte-Esquivel, E. Acha and H. Ambriz-Perez, A Comprehensive Newton-Raphson UPFC model for the quadratic Power Flow Solution of Practical Power Networks. IEEE Transactions on Power Systems, Feb. 2000, 15 (1), pp. 102-109.
    [114] M. Bjelogrlic, M. S. Calovic, P. Ristanovic and B. S. Babic, Application of Newton’s Optimal Power Flow in Voltage/Reactive Power Flow Control. IEEE Transactions on Power Systems, Nov. 1990, 5 (4), pp. 1447-1454.
    [115] K. Y. Lee, M. A. Mohtodi, J. L. Ortiz and Y. M. Park, Optimal operation of large-scale systems. IEEE Transactions on Power Systems, May 1988, 3 (2), pp. 413-419.
    [116] A. H. Mantawy and M. S. Al-Ghamdi, A New Reactive Power Optimization Algorithm. Power Tech Conference Proceedings IEEE Bologna Power Tech Conference, Bologna, Italy, Jun. 2003, Vol. 4.
    [117] V. Leonardo Paucar and Marcos J. Rider, Reactive Power Pricing in Deregulated Electrical Marginal Costs Using Methodology Based on the Theory of Marginal Costs. Power Engineering, 2001. LESCOPE '01. 2001 Large Engineering Systems Conference on 2001, Halifax, NS, Jul. 2001, pp.7-11.
    [118] M. J. Rider and V. L. Paucar, Application of a nonlinear reactive power pricing model for competitive electric markets. IEE Proceedings- Generation, Transmission and Distribution, May 2004, 151 (3), pp. 407-414.
    [119] E. Hnyilicza, S. T. Y. Lee and F. C. Schweppe, Steady-State Security Regions: Set-Theoretic Approach. Proc. PICA Conference, 1995, pp. 347-355.
    [120] Yu Yixin, Chun-Hua Huang and Fei Feng, A Study on Reactive Power Steady-State Security Regions. Electric Machines and Power Systems, 1989, 17(17), pp. 155-166.
    [121] Venkataramana Ajjarapu and Colin Christy, The Continuation Power Flow: A Tool For steady state Voltage Stability analysis. IEEE Transactions on Power Systems, Feb. 1992, 7(1), pp. 416-423.
    [122] Li Huiling, Yu Yixin, Han Qi, Su Jifeng and Zhao Jinli, The Practical Boundary of Static Voltage Stability Region in Cut-set Power Space of Power Systems. Automation of Electrical Power Systems, 2005, 29(4), pp. 18-23.
    [125] Yuan Zeng, Yixin Yu and Hongjie Jia, Theoretical Explanation of Hyper-plane Boundary of Dynamic Security Region. Canadian Conference on Electrical and Computer Engineering 2005, Saskatoon, Canada, May 2005, pp. 2035-2038.
    [126] K. L. Lee, Y. M. Park and J. L. Ortiz, A United Approach to Optimal Real and Reactive Power Dispatch. IEEE Trans. on Power Apparatus and Systems, May 1985, PAS-104 (5), 1147-1153.
    [127] MATPOWER, A MATLAB Power System Simulation Package: http://www.pserc.cornell.edu/matpower/: Feb. 14, 2005.
    [128] M. E. El-Hawary and G. S. Christensen, Optimal Economic Operation of Electric Power Systems. Academic Press, New York, San Francisco, London, 1979.
    [129] M. E. El-Hawary and G. A. N. Mbamalu, Prediction models for incremental cost and the water worth functions based on hydro-thermal OPF. IEEE Power System Monitoring and Control, 1991. Third International Conference on, London, UK, Jun. 1991, pp. 264-266.
    [130] M. Farid Zaghlool and F. G. Trutt, Efficient methods for optimal scheduling of fixed head hydrothermal power systems. IEEE Transactions on Power Systems, Feb. 1988, 3(1), pp.24-30.
    [131] U. Navon, I. Zur and D. Weiner, Simulation model for optimizing energy allocation to hydro-electric and thermal plants in a mixed thermal/hydro-electric power system. IEE Proceedings C Generation, Transmission and Distribution, May 1988, 135(3), pp. 182-188.
    [132] M. E. El-Hawary and K.M. Ravindranath, Hydro-thermal Power Flow Scheduling accounting for Head Variations. IEEE Transactions on Power Systems, Aug.1992, 7(3), pp. 1232-1238.
    [133] Jin-Shyr Yang, and Nanming Chen, Short-term Hydrothermal coordination using Multi-pass Dynamic Programming. IEEE Transactions on Power Systems, Aug. 1989, 4(3), pp.1050-1056.
    [134] K. P. Wong, Y. W. Wong, Short-term hydrothermal scheduling Part. I: Simulated annealing approach, Part II: parallel simulated annealing approach. IEE Proceedings- Generation, Transmission and Distribution, Sep.1994, 141(5), pp. 497-506.
    [135] M. E. El-Hawary and G. A. N. Mbamalu, Hydro-thermal stochastic optimal power dispatch: A Newton’s based approach. IEE Proceedings C Generation, Transmission and Distribution, May 1990, 137(3), pp. 213-224.
    [136] K. M. Ravindranath and M. E. El-Hawary, The hydrothermal optimal power flow problem in rectangular coordinates. Electric Machines and Power Systems, 1988, 14(5), pp. 295-315.
    [137] M. E. El-Hawary, and J.K. Landrigan, Optimum Operation of fixed-head Hydro-thermal Electric Power Systems: Powell’s hybrid method versus Newton-Raphson method. IEEE Transactions on Power Apparatus and Systems, Mar. 1982, PAS-101(3), pp. 547-553.
    [138] H. Wei, H. Saraki and J. Kubokawa, A Decoupled Solution of Hydrothermal Optimal Power Flow Problem by Means of Interior Point Method and Network Programming. IEEE Transactions on Power Systems, May 1998, 13(2), pp. 286-293.
    [139] Hau Wei, Hiroshi Sasaki, Junji Kubokawa, and Ryuichi Yokoyama, Large Scale hydrothermal optimal Power Flow Problems Based on Interior Point Nonlinear Programming. IEEE Transactions on Power Systems, Feb. 2000, 15(1), pp. 396-403.
    [140] G. A. N. Mbamalu, Ferial El-Hawary and M. E. El-Hawary, Effects of load modeling on minimum loss, minimum emission, and multiple-objective optimal hydrothermal power flow. ELSEVIER Electric Power Systems Research, Aug. 1995, 34(2), pp. 97-108.
    [141] J. H. Talaq, Ferial and M. E. El-Hawary, Minimum Emissions Power Flow. IEEE Transactions on Power Systems, Feb. 1994, 9(1), pp. 429-435.
    [142] J. Nanda, D. P. Kothari and K. S. Lingamurthy, Economic-Emission Load Dispatch Through Goal Programming Techniques. IEEE Transactions on Energy Conversion, Mar. 1988, 3(1), pp. 26-32.
    [143] J. H. Talaq, Ferial and M. E. El-Hawary, A Summary of Environmental Economic Dispatch algorithms. IEEE Transactions on Power Systems, Aug. 1994, 9(3): 1508-1516.
    [144] J. H. Talaq, Ferial and M. E. El-Hawary, A sensitivity analysis approach to minimum emissions power flow. IEEE Transactions on Power Systems, Feb. 1994, 9(1), pp. 436-442.
    [145] Jiann-Fuh Chen, Huang-Cheng Chen, and Ching-Lien Hua, The uniqueness of the local minimum for power economic dispatch problems. ELSEVIER Electric Power Systems Research, Mar. 1995, 32(3), pp. 187-193.
    [146] A. Nanda, D. Uy, M. Crow, J. Nanda, and E. Khan, A Powerful and computational Efficient Algorithm for Transmission Loss Calculation. Proceedings of the IEEE Power Engineering Society, Transmission and Distribution Conference, Chicago, IL, USA, 1994, pp. 86-90.
    [147] Yung-Chung Chang, Wei-Tzen Yang and Chun-Chang Liu, A New Method for Calculating Loss Cosfficients. IEEE Transactions on Power Systems, Aug. 1994, 9(3), pp. 1665-1671.
    [148] Han Qi, Yu Yixin, Li Huiling et al. A Practical Boundary Expression of Static Voltage Stability Region in Injection Space of Power Systems. Proceedings of the CSEE, Mar. 2005, 25(5), pp. 8-14.
    [149] Yixin Yu, Zhaofei Feng, and al. Application of Dynamic Equivalents in Determining Practical Dynamic Security Region. IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific, Dalian, China, 2005, pp. 1-6.
    [150] Wai Y. Ng, Generalized Generation Distribution Factors for Power System Security Evaluations. IEEE Transactions on Power Apparatus and Systems, Mar. 1981, PAS-100 (3), pp.1001-1005.
    [151] R. D. Christie, B. F. Wollenberg and I. Wangensteen, Transmission management in the deregulated environment. Proceedings of the IEEE, Feb. 2000, 88(2), pp.170-195.
    [152] P. N Biskas and A. G. Bakirtzis, Decentralised congestion management of interconnected power systems. IEE Proceedings, Generation, Transmission and Distribution, Jul. 2002, 149(4), pp. 432-438.
    [153] J. A. Aguado, V. H. Quintana and A. J. Conejo, Optimal Power Flows of Interconnected Power Systems. IEEE Power Engineering Society Summer Meeting. Edmonton, Canada, Jul. 1999, Vol. 2, pp. 814-819.
    [154] G. Huang and W. Ongsakul, Speedup and synchronization overhead analysis of Gauss-Seidel type algorithms on a Sequent balance machine. IEE Proceedings C Generation, Transmission and Distribution, Sep.1994, 141(5), pp. 437-444.
    [155] Shyan-Lung Lin and J. E. Van Ness, Parallel solution of sparse algebraic equations. IEEE Transactions on Power Systems, May 1994, 9(2), pp. 743-749.
    [156] D. J. Tylavsky, A. Bose, F. Alvarado R. Betancourt et al., A task force of the computer and analytical methods subcommittee of the power systems engineering committee. Parallel processing in power systems computation. IEEE Transactions on Power Systems, 1992, 7(2), pp. 629-637.
    [157] B. H. Kim and R. Baldick, Coarse-Grained Distributed Optimal Power Flow. IEEE Transactions on Power Systems, May 1997, 12(2), pp. 932-939.
    [158] R. Baldick, B. H. Kim, C. Chase and Y. Luo, A fast distributed implementation of optimal power flow. IEEE Transactions on Power Systems, Aug.1999, 14(3), pp. 858-864.
    [159] B. H. Kim and R. Baldick, A Comparison of Distributed optimal Power Flow Algorithms. IEEE Transactions on Power Systems, May 2000, 15(2), pp. 599-604.
    [160] A. J. Conejo and J. A. Aguado, Multi-area coordination decentralized DC optimal power flow. IEEE Transactions on Power Systems, Nov. 1998, 13(4), pp. 1272-1278.
    [161] J. A. Aguado, C. Pérez-Molina and V. H. Quintana, Decentralised Power System State Estimation: A Decomposition-Coordination Approach. IEEE Power Tech. Proceedings Conference, Porto, Portugal, Sep.2001, pp. 257-262.
    [162] J. A. Aguado, V. H. Quintana, M. Madrigal and W. D. Rosehart, Coordinated Spot Market for Congestion Management of Inter-Regional Electricity Markets. IEEE Transactions on Power Systems, Feb. 2004, 19(1), pp.180-187.
    [163] A. G. Bakirtzis, P. N. Biskas, A Decentralized Solution to the DC-OPF of Interconnected Power Systems. IEEE Transactions on Power Systems, Aug. 2003, 18(3), pp. 1007-1013.
    [164] P. N. Biskas, A. G. Bakirtzis, N. I. Macheras and N. K. Pasialis, A Decentralized Implementation of DC Optimal Power Flow on a Network of Computers. IEEE Transactions on Power Systems, Feb. 2005, 20(1), pp. 25-33.
    [165] G. L. Torres and V. H. Quintana, On a Nonlinear Multiple-Centrality-Corrections Interior-Point Method for Optimal Power Flow. IEEE Transactions on Power Systems, May 2001, 16(2), pp. 222-228.
    [166] C. Grigg, P. Wong, P. Albrecht, R. Allan, M. Bhavaraju, R. Billinton et al, The IEEE Reliability Test System–1996. IEEE Transactions on Power Systems, Aug. 1999, 14(3), pp.1010-1020.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700