大规模电力系统的分区仿真算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代互联电网规模的不断扩大,电力系统中发生的物理现象也越来越复杂,在线动态安全分析技术逐渐被提上日程,使得对高速仿真技术的需求越来越迫切。本文提出一种新型快速的电力系统仿真方法——基于树形结构和双向迭代技术的电力系统分区仿真算法。该方法的主要内容包括树形结构的构建、各电力系统元件的结构化描述、变量修正量的标准表达式、分区计算流程、直流线路的处理方法等。各部分内容的具体阐述如下:
     根据实际电网内部强关联,外部弱连接的地理区域特性,提出一种较为实用的网络分割方法来实现大规模互联电网的划分,并将分割后的子网络按照树形层次模型来描述。在树形结构中,各树结点之间的连线代表了分区间的关联关系、动态元件与相应子区的关联关系。
     提出了一种基于树形层次模型和双向迭代技术的分区仿真算法,该方法通过前向简化技术对树形结构的枝结点形成其对上一层树结点的接口表达关系,通过后向回代技术将根结点的计算结果传递给各枝结点,实现一次双向迭代过程。较为系统地介绍了各电力系统元件在树形结构中的位置及相应变量修正量的标准表达式,这种描述方法具有结构化、标准化的特点,便于程序的实现。该算法在我国实际电网上的计算结果与商业仿真软件BPA的计算结果进行了比较,验证了该算法的合理性与有效性。
     根据电力系统稳定分析中的其它计算方法,将分区仿真技术进行了扩展,形成分区QSS仿真及分区轨迹灵敏度仿真,通过对各仿真算法计算特点的详细分析,实现了树形结构标准表达式的公式推导及分区计算流程,为电力系统预防控制的快速分析提供了强有力的计算工具。
     此外,考虑到交直流混合大电网将成为我国电力建设的发展趋势,将直流输电技术对本文所提的树形结构模型的影响进行了详细的分析,并形成了交直流混联系统的树形层次模型。通过对直流输电方程进行结构化处理,形成树形结构所需的修正量的标准表达式,实现了交直流混联系统的分区仿真计算。
     最后,本文还对连续潮流算法进行了一些研究,提出了“局部弧长”参数化方法及固定“对角线”的步长控制方式,并将本文的核心内容“分区计算”引入其中,形成一种改进的连续潮流算法,通过在我国东北电网和华北电网上的计算分析,验证了所提方法的有效性和合理性。
As the large-scale power grid has been basically established recently, the representation of power system stability problem is getting much complicated than before, the online dynamic security analysis (DSA) is attracted too much attention, and the high speed simulation method is extremely required. A new fast simulation approach, hierachical tree model and bi-directional iteration based power system area-partitioning simulation approach, was proposed in this dissertation. It is composed of the construction of tree model, structured description of the power components, standard formulation of the variable’s correction factors, the calculation procedure and the settlement of high voltage DC transmission line. The details of the above are summarized as follows.
     Taking advantage of the power network inherent characteristic, strongly internal conjunction and loosely external connection, a practical area-division method is proposed to partition the large-scale power network into many subareas, which are represented by the hierachical tree model. In the tree model, the connection lines between the tree nodes denote the relationship among the subareas and the dynamic component in the power system.
     A bi-directional iteration technique was introduced to calculate the correction factors of variables in the proposed simulation method by the tree-traversing procedure, called forward reduction and backward evaluation. It is systematically described the power components’location in the tree structure and the computation model, the feature of this description approach are normalized and structured, and expediently to program the calculation procedure. In case studies, the simulation result obtained by the proposed approach is compared with that of BPA, a kind of power system commercial simulation software validates the correctness and efficiency of the new approach.
     The area partitioning based simulation method is extended to the other analytical methods in the power system stability evaluation, such as quasi steady state simulation and trajectory sensitivity simulation method. By the particular analysis of their computation characteristic, it is achieved that the standard formulation and the calculation procedure of the above two simulation method in the tree model, and it would be potentially useful in developing fast calculation tool for preventive control in the power system.
     As the development of AC/DC transmission technology, the AC/DC mixed huge power network will come true in our country, so the DC line’s affection on the proposed tree structure is fully evaluated and form a modified tree model for AC/DC mixed network. By the bi-directional iteration technology, the DC transmission equation is converted into standard formulation in the tree structure, and achieved the AC/DC mixed power system simulation.
     Finally, it is deeply researched on the continuous power flow method in this dissertation and achieved some success, denoted as“local-arc”parameter and fixed diagonal step-controlling method, besides; the area-partitioning calculation method is introduced, and formed a novel continuous power flow method, which is tested on the Northeast and North China power system.
引文
[1]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2004.
    [2]王梅义,吴竞昌,蒙定中.大电网系统技术[M].北京:中国电力出版社,2000.
    [3]于群,郭剑波.中国电网停电事故统计与自组织临界性特征[J].电力系统自动化,2006,30(2):16-20.
    [4]王永干.当前电力形势与供需预测[J].电气时代,2009,10:26-28.
    [5] US-Canada power system outage task force, Final report on the August 14th blackout in the United States and Canada: Causes and Recommendations, Apr. 2004.
    [6]唐斯庆,张弥,李建设.海南电网“9.26”大面积停电事故的分析与总结[J].电力系统自动化,2006,30(1):1-7.
    [7]倪以信,陈寿松,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [8] Kundar P, Power system stability and control, New York: McGraw~Hill, 1994.
    [9]张伯明,陈寿孙.高等电力网络分析[M].北京:清华大学出版社,1999.
    [10]易水平,王淳,苏慧玲.近似最佳加速因子改进高斯-赛德尔法潮流计算[J].江西电力,2008,32(1):5-7.
    [11]许琼,代粉蕾,杨学存.支路阻抗法配电网潮流计算[J].技术与创新管理,2008,29(4):398-400.
    [12]周存圣.潮流计算中的数学方法—牛顿-拉夫逊法[J].科技信息,2008,23:576-578.
    [13] Zimmerman R. D. Chiang H. D., Fast decoupled power flow for unbalanced radial distribution systems[J]. IEEE Trans on Power Systems, 1995, 10(4): 2045-2052.
    [14] Zhang F., Cheng C. S., A Modified Newton Method for Radial Distribution System Power Flow Analysis[J]. IEEE Trans on Power Systems, 1997, 12(1): 389-397.
    [15]汪芳宗,向小民,袁兆强.基于松弛牛顿法的配电网潮流计算方法[J].继电器,2007,35(6):21-24.
    [16] Shishir Dixit, Laxmi Srivastava, Ganga Agnihotri. Power Flow Analysis Using Fuzzy Logic[C]. IEEE Power India Conference, 2006.
    [17] Huang G., Ongsakul W. A New Relaxation Algorithm For Power FlowAnalysis[J]. IEEE International Symposium on Circuits and Systems, 1990, 2: 1276-1280.
    [18]李传栋,房大中,杨金刚等.大规模电网并行潮流算法[J].电网技术,2008,32(7):34-39.
    [19]张海波,张伯明,孙宏斌.分布式潮流计算异步迭代模式的补充和改进[J].电力系统自动化,2007,31(2):12-16.
    [20] Kim B. H., Baldick R., A comparison of distributed optimal power flow algorithms[J]. IEEE Trans on Power Systems, 2000, 15(2): 599-604.
    [21]黄平,沈沉,陈颖.多层电力系统的异步迭代分布式潮流计算[J].电网技术,2008,32(7):19-24.
    [22]黄家裕,陈礼义,孙德昌.电力系统数字仿真[M].北京:中国水力电力出版社,1995.
    [23]李云阁,吕景顺.EMTP的应用研究[J].甘肃电力,1995,1:28-36.
    [24]林良真,叶林.电磁暂态分析软件包PSCAD/EMTDC[J].电网技术,2000,24(1):65-66.
    [25] Prado A. J., Filho J. P., Tavares M.C., et al, Representing a double three-phase transmission line in a transient study-a new approach[C]. IEEE Power Engineering Society Winter Meeting, 2001, 2(2): 884-889.
    [26]杨卫东,徐政.NETOMAC在直流输电系统仿真研究中的应用[J].电力自动化设备,2001,21(4):10-14.
    [27] Demello F. P., Feltes J. W., Loskowski T. F., Simulating Fast and Slow Dynamic Effects in Power System[J]. IEEE Computer in Application. 1992, 5(3): 33-38.
    [28] Fankhauser H. R., Aneros K., Advanced Simulation Techniques for the Analysis of Power System Dynamics[J]. IEEE computer applications in Power 1990, 3(4): 31-36.
    [29] Wu Zhongxi, Zhou Xiaoxin, Power System Analysis Software Package (PSASP) An Integrated Power System Analysis Tool[C]. Proceedings POWERCON’98. Beijing, 1998: 7-11.
    [30] Evard C., Bihain A., Powerful Tools for Various Types of Dynamic Studies of Power System[C]. Proceedings POWERCON’98. Beijing, 1998: 1-6.
    [31] Long-term System Dynamic Simulation Methods. EPRI-EI, 3894. Research Project 1469-1 Final Report. 1985.
    [32] Sanchez-Gasca J. J., Aquila R. D., Paserba J. J., Extended-term Dynamic Simulation Using Variable Time Step Integration[J]. IEEE Computer Applications in Power, 1993, 6(4): 23-28.
    [33] Stott B., Power system dynamic response calculations[J], Proceedings of the IEEE, 1979, 67(2): 219-241.
    [34]韩祯祥,韩晓言.并行处理及其在电力系统中的应用[J].电网技术,1993,5:1-8.
    [35]范文涛,薛禹胜.并行处理在电力系统分析中的应用[J].电力系统自动化,1998,22 (2):64-67.
    [36] Jian Sheng Chai, Anjan Bose, Bottlenecks in parallel algorithms for power system stability analysis[J], IEEE Transactions on Power System, 1993, 8(1): 9-15.
    [37]吉兴全,王成山.电力系统并行计算方法比较研究[J].电网技术,2003,27(4):22-26.
    [38]王成山,张家安.改进的暂态稳定分布式并行仿真算法[J].电力系统自动化,2003,27(19):30-33, 60.
    [39]李亚楼,周孝信,吴中习.基于PC机群的电力系统机电暂态仿真并行算法[J].电网技术,2003,27(11):6-12.
    [40] Daniel J., Tylavsky Anjan Bose, Parallel processing in power systems computation[J], IEEE transactions on power systems, 1992, 7(2): 629-638.
    [41]薛巍,舒继武,严剑峰等.基于集群机的大规模电力系统暂态过程并行仿真[J].中国电机工程学报,2003,23(8):38-43.
    [42]薛巍,舒继武,王心丰等.电力系统暂态稳定仿真并行算法的研究进展[J].系统仿真学报,2002,14(2):177-182.
    [43]毛承熊,吴增华.电力系统并行仿真计算的一种新算法[J].电网技术,2000,24(3):13-15.
    [44]洪潮,单巍.在IBM-SP2上实现电力系统暂态稳定计算的一种并行算法[J].电力系统及其自动化学报,2001,13(1):18-22.
    [45] Chan K. W., Parallel algorithms for direct solution of large sparse power system matrix equations[J], IEE Proceedings-C: Generation, Transmission and Distribution, 2001, 148(6): 615-622.
    [46]韩晓言,韩祯祥.电力系统暂态稳定分析的并行算法研究[J].电力系统及其自动化学报,1995,7(3):3-11.
    [47]王成山,张家安.基于支路分割和区域迭代的暂态稳定性仿真并行算法[J].电网技术,2004,28(1):22-26.
    [48]洪潮,沈俊明.电力系统暂态稳定计算的一种空间并行算法[J].电网技术,2000,24(5):20-24.
    [49] Decker I. C., Falcao D. M., Kaszkurewicz E., Parallel implementation of a power system dynamic simulation methodology using the conjugate gradient method[J], IEEE Transactions on Power Systems, 1992, 7(1): 458-465.
    [50] Decker I. C., Falcao D. M., Kaszkurewicz E., Conjugate gradient methods for power system dynamic simulation on parallel computers[J], IEEE Transactions on Power Systems, 1996, 11(3): 1218-1227.
    [51]洪潮.电力系统暂态稳定计算的一种时间并行计算方法[J].电网技术,2003,27(4):31-35.
    [52]汪芳宗.电力系统暂态稳定性并行牛顿计算方法[J].电力系统自动化,1995,19(9):9-14.
    [53]汪芳宗.基于高度并行松弛牛顿方法的暂态稳定性实时分析计算的并行算法[J].中国电机工程学报,1999,19(11):14-17.
    [54]汪芳宗.基于高度并行松弛牛顿方法的暂态稳定性实时分析计算方法的并行装配[J].中国电机工程学报,1999,19(11):18-21.
    [55] Wang F. Z., Parallel-in-time relaxed Newton method for transient stability analysis[J], IEE Proceedings-C: Generation, Transmission and Distribution, 1998, 145(2): 155-159.
    [56] Granelli G. P., Montagna M., Scala M. L., et al. Relaxation-Newton Methods for Transient Stability Analysis on a Vector/Parallel Computer[J], IEEE Trans. on Power Systems, 1994, 9(2): 637-643.
    [57] Hong C., Shen C. M., Implementation of parallel algorithms for transient stability analysis on a message passing multicomputer[J], Power Engineering Society Winter Meeting, IEEE, 2000, 2: 1410 -1415.
    [58] Massimo La Scala, Michele Brucoli, A Gauss-Jacobi-Block-Newton method for parallel transient stability analysis[J], IEEE Transactions on Power Systems, 1990, 5(4): 1168-1177.
    [59] M. La Scala, G. Sblendorio, Parallel-In-Time implementation of transient stability simulations on a transputer network[J], IEEE Transactions on Power Systems, 1994,9(2): 1117-1125.
    [60] Massimo La Scala, Roberto Sbrizzai, A pipelined-in-time parallel algorithm for transient stability analysis[J], IEEE Transactions on Power Systems, 1991, 6(2): 715-722.
    [61]林济铿,李杨春,罗萍萍.波形松弛法的电力系统暂态稳定性并行仿真计算[J].电工技术学报,2006,21(12):47-53.
    [62]韩晓言,韩祯祥.电力系统暂态稳定分析的内在并行算法研究[J].中国电机工程学报,1997,17(3):145-148.
    [63] Ilic M., Crow M. L., Pai M. A., Transient stability simulation by waveform relaxation methods[J], IEEE Transactions on Power Systems, 1987, 2(4): 943-952.
    [64] Crow M. L., Ilic M., The Paralllel implementation of the waveform relaxation method for transient stability simulations[J], IEEE Transactions on Power Systems, 1990, 5(3): 922-932.
    [65] Hou L. J., Bose A. J., Implementation of the Waveform Relaxation Algorithm on a Shared Memory Computer for the Transient Stability Problem[J], IEEE Trans. on Power System, 1997, 12(3): 1053-1060.
    [66] Fouad A. A., Transient stability Margin as a Tool for Dynamic Security Assessment[J]. Final Report for EPRI Project No. EL-1755, March 1981.
    [67] Chung T. S. and Fang D. Z., A Fast Approach to Transient Stability Estimation Using an improved Potential Energy Boundary Surface Method[J], Electric Power System Research, 1995, 3447-55: 107-112.
    [68] Xue. Y, Van Cutsem T., Ribbens-Pavella M., A simple direct method for the fast transient stability assessment of large power system[J]. IEEE Trans. on Power Systems. 1988, 4(2): 400-412.
    [69] Hiskens I. A., Pai M. A., Trajectory Sensitivity Analysis of Hybird Systems[J]. IEEE Trans. On Circuits and Systems, 2000, 47(2): 204-220.
    [70] Vale M. H. M., Falcao D. M., Kaszkurewicz E., Electrical Power Network Decomposition for Parallel Computations[J], Proceedings of the IEEE International Symposium on Circuits and Systems, 1992, 6: 2761-2764.
    [71] Chan K. W., Dunn R. W., Daniels A. R., Efficient heuristic partitioning algorithm for parallel processing of large power systems network equations[J], IEE Proceedings-C: Generation Transmission and Distribution, 1995, 142(6): 625-630.
    [72] Banerjee P., Jones M. H., Sargent J. S., Parallel simulated annealing algorithms for cell placement on hypercube multiprocessors[J], IEEE Trans. on Parallel and Distributed Systems, 1990, 1(1): 91-106.
    [73] Hendrickson B., Leland R., An improved spectral graph partitioning algorithm for mapping parallel computations[J], SIAM Journal on Scientific Computing, 1995, 16(2): 452-469.
    [74] Karypis G., Kumar V., A fast and high quality multilevel scheme for partitioning irregular graphs[J], SIAM Journal on Scientific Computing, 1999, 20(1): 359-392.
    [75] Zhu N., Anjan B., A dynamic partitioning scheme for parallel transient stability analysis[J], IEEE Trans. on Power Systems, 1992, 7(2): 940-946.
    [76] Aleksandar I. Z., Nebojsa Gacic, A partitioning algorithm for the parallel solution of differential-algebraic equations by waveform relaxation[J], IEEE Transactions on Circuits and Systems-I: fundamental theory and applications, 1999, 46(4): 421-434.
    [77] Irving M. R., Sterling M. J. H., Optimal network tearing using simulated annealing[J], IEE Proceedings-C: Generation, Transmission and Distribution, 1990, 137(1): 69-72.
    [78] Dommel H. W., Sato N., Fast transient stability solutions[J], IEEE Trans. on Power Apparatus and Systems, 1972, 91(3): 1643-1650.
    [79] Aloisio G., Bochicchio M. A., Scala M. L., et al, A distributed computingapproach for real-time transient stability analysis[J], IEEE Trans. on Power Systems, 1997, 12(2): 981-987.
    [80] Padilha A., Morelato A., A W-matrix methodology for solving sparse network equations on multiprocessor computers[J], IEEE Trans on Power System, 1992, 7(3): 1023-1030.
    [81] Lof P. A., Smed T., Andersson G., et al, Fast calculation of a voltage stability index[J]. IEEE Trans on Power System, 1992, 7(1): 54-64.
    [82] Hong Y. H., Pan C. T., Lin W. W., Fast calculation of a voltage stability index of power systems[J]. IEEE Trans on Power System, 1997, 12(4): 1555-1560.
    [83]王刚,梅生伟.静态电压稳定域边界的切平面分析[J].电力系统自动化,2007,31(11):6-11.
    [84] Barquin J., Gomez T., Pagola F. L., Estimating the loading limit margin taking into account voltage collapse areas[J]. IEEE Trans on Power System, 1995, 10(4): 1952-1962.
    [85] Esaka T., Kataoka Y., Ohtaka T., et al, Voltage stability preventive control using a new voltage stability index[C]. International Conference on Power System Technology, 2004, 1: 21-24.
    [86] Esaka T., Kataoka Y., Ohtaka T., et al, Voltage stability preventive and emergency preventive control using VIPIt sensitivities[C]. Power Systems Conference and Exposition, IEEE PES, 2004, 1: 509-516.
    [87]张尧,张建设,袁世强.求取静态电压稳定极限的改进连续潮流法[J].电力系统及其自动化学报,2005,17(2):21-25.
    [88]张尧,宋文南,贺家李.临近电压稳定极限的潮流和静稳极限算法[J].中国电机工程学报,1994,14(6):17-22.
    [89]余贻鑫.电压稳定研究述评[J].电力系统自动化,1999,23(21):1-8.
    [90] Ajjarapu V., Christy C., The continuation power flow: a tool for steady statevoltage stability analysis[J], IEEE Trans. on Power Systems, 1992, 7 (1): 416-423.
    [91] Antonio C. Z. de Souza, Canizares C. A., Quintana V. H., New techniques to speed up voltage collapse computations using tangent vectors[J], IEEE Trans. on Power Systems, 1997, 12 (3): 1380-1387.
    [92] Malange F. C. V., Alves D. A., Silva L. C. P., et al, Real power losses reduction and loading margin improvement via continuation method[J], IEEE Trans. on Power Systems, 2004, 19 (3): 1690-1692.
    [93]郭瑞鹏,韩祯祥.电压稳定分析的改进连续潮流法[J].电力系统自动化,1999,23(14):14-16.
    [94]蔡伟程,代静.对求取电力系统PV曲线的连续潮流法的改进[J].电力系统及其自动化学报,2005,17(5):82-85.
    [95]祝达康,程浩忠.求取电力系统PV曲线的改进连续潮流法[J].电网技术,1999,23(4):37-40.
    [96] Chiang H. D., Flueck A. J., Shah K. S., et al, CPFLOW: A Practical Tool for Tracing Power System Steady State Stationary Behavior Due to Load and Generation Variations[J], IEEE Trans. on Power Systems, 1995, 10(2): 623-634.
    [97] Iba K., Sazaki H., Calculation of Critical Loading Condition With Nose Curve Using Homotopy Continuation Method[J], IEEE Trans. on Power Systems, 1991, 6(2): 584-593.
    [98] Ajjarapu V., Christy C., The Continuation Power Flow: A Tool for Steady State Voltage Stability Analysis[J], IEEE Trans. on Power Systems, 1992, 7(1): 416-423.
    [99]周双喜,朱凌志,郭锡玖等.电力系统电压稳定性及其控制[M].北京:中国电力出版社,2004.
    [100]江伟.基于直接法的静态电压稳定临界点计算[D].天津:天津大学,2005.
    [101]李传栋,鄂志君,杨金刚.电力系统静态电压稳定极限的分区求解算法[J].电网技术,2008,32(24):39-45.
    [102] Menon Vijay, Trefethen Anne E. MultiMATLAB: integrating MATLAB with high-performance parallel computing[M], New York: ACM, 1997.
    [103] Jeremy Kepnera, Stan Ahaltb, Short communication MatlabMPI[J], Journal of parallel and distributed computing, 2004, 64: 997-1005.
    [104]刘怡.直接模拟蒙特卡洛计算的并行算法研究[D].武汉:华中科技大学,2007.
    [105]石韦.基于分布式计算环境的电力系统无功优化研究[D].南宁:广西大学,2007.
    [106]郭志忠,柳悼.两种分裂潮流算法的比较研究[J].中国电机工程学报,1987,7(6):21-28.
    [107] Happ H. H., Young C. C., Tearing Algorithms for Large-Scale Network Programs[J], IEEE Transactions on Power Apparatus and Systems, 1971, 6: 2639-2649.
    [108]陈钊,殷红德.多区域互联系统潮流解耦算法[J].科学技术与工程,2009,9(13):3785-3788.
    [109]黄彦全,肖建,刘兰等.基于支路切割方法的电力系统潮流并行协调算法[J].电网技术,2006,30(4):21-25.
    [110]邢福霞,赵玉岩,王敏.电力系统三种分块算法的比较分析[J].电气技术,2009,5:32-36.
    [111]张步涵,王凯,方华亮等.基于网络分割的电力系统潮流分解协调计算[J].高电压技术,2007,33(7):173-176.
    [112]杨晓东.基于组件树模型和双向迭代技术的暂态稳定仿真方法研究[D].天103津:天津大学,2006.
    [113]李传栋.大电网快速稳定分析关键基础技术研究[D].天津:天津大学,2007.
    [114]马晓蕾,孔庆军.非常时期彰显大电网优势[J].国家电网,2008,10:24-26.
    [115]余志伟,高大伟,谢志棠等.多区域互联电力系统输电服务边际电价理论[J].电力系统自动化,2000:1-5.
    [116]王永,郭志忠,彭茂君.基于灵敏度分析的多区域互联电力系统状态估计[J].电力系统自动化,2007,31(19):27-31.
    [117]高军彦,王保喜.大电网格局下发展分布式发电,实现集中电源与分布式电源优势互补[J].电气时代,2008,10:100-106.
    [118]张家安.市场条件下多区域电力系统分布式暂态稳定仿真[D].天津:天津大学,2005.
    [119]周保荣,房大中.双向模块简化技术在电力系统稳定性仿真中的应用[J].天津大学学报,2004,37(9):797-801.
    [120]房大中,杨晓东.基于模块双向迭代的电力系统仿真新算法研究[J].中国科学E辑,2005,35(9):981-995.
    [121] Fang Dazhong, Yang Xiaodong. A New Method for Fast Dynamic Simulation of Power Systems[J]. IEEE Transactions on Power Systems, 2006, 21(2): 619-628.
    [122]卢锦玲,于磊,朱永利.PC机集群系统在电力系统暂态稳定分析中的应用[J].华北电力大学学报,2006,33(2):25-28.
    [123]卢锦玲,于磊,李英.PC机集群系统在电力系统暂态稳定分析中的应用[J].电力自动化设备,2006,26(4):36-39.
    [124] Cutsem T. V., Jacquemart Y., Marquet J. N., A comprehensive analysis of mid-term voltage stability[J]. IEEE Trans on Power System, 1995, 10(3): 1173-1182.
    [125] Cutsem T. V., Vournas C. D., Voltage stability analysis in transient and mid-term time scales[J]. IEEE Trans on Power System, 1996, 11(1): 146-154.
    [126]顾群,徐泰山,陈怡等.中期电压稳定的建模和快速仿真[J].电力系统自动化,1999,23(21):25-28.
    [127]徐泰山,鲍颜红,薛禹胜等.中期电压稳定的快速仿真算法研究[J].电力系统自动化,2000,24(24):9-11.
    [128]安宁,周双喜,朱凌志.中长期电压稳定准稳态时域轨迹追踪方法[J].电网技术,2006,30(20):40-45.
    [129] Gao B., Morison G. K., Kundur P., Towards the development of a systematic approach for voltage stability assessment of large-scale power systems[J]. IEEE Trans on Power System, 1996, 11(3): 1314-1324.
    [130] Chiang H. D., Flueck A. J. Shah K. S., A practical tool for tracing power system steady-state stationary behavior due to load and generation variations[J]. IEEETrans on Power System, 1995, 10(2): 623-634.
    [131] Morison G. K., Gao B., Kundur P., Voltage stability analysis using static and dynamic approaches[J]. IEEE Trans on Power System, 1993, 8(3): 1159-1171.
    [132]张芳,房大中,陈家荣等.最优协调电压紧急控制新模型研究[J].中国电机工程学报,2007,27(10):35-41.
    [133] Angelis D. G., Gagliardi F., Scala L. M., et al, Transient voltage stability signature in time domain simulations[J]. the 8th Mediterranean Electrotechnical Conference, 1996, 2: 859-862.
    [134]孙景强.电力系统暂态稳定约束下的预防控制新算法研究[D].天津:天津大学,2005.
    [135] ]Fang D. Z., Chung T. S., David A. K., Evaluation of transient stability limit using a transient time margin sensitivity approach[J], Electric power systems research, 1999, 52(1): 19-27.
    [136] Hisken I. A., Koeman A., Power system parameter estimation[J], Journal of Electrical and Electronics Engineering Australia, 1999, 19(2):1-8.
    [137] Chen L. N., Tada Y., Okamoto H., Optimal operation solutions of power systems with transient stability constraints[J]. IEEE Trans. on Circuits and Systems, 2001, 48(3): 327-339.
    [138] Scala M. L., Trovato M., Antonelli C., On-line dynamic preventive control: An algorithm for transient security dispatch[J]. IEEE Trans. on Power Systems, 1993, 13(2): 601-610.
    [139] Gan D., Thomas R. J., Zimmerman R. D., Stability-constrained optimal power flow[J]. IEEE Trans. on Power Systems, 2000, 15(2): 535-540.
    [140] Yuan Y., Kubokawa J., Sasaki H., A solution of optimal power flow with multicontingency transient stability constraints[J]. IEEE Trans. on Power Systems, 2003, 18(3): 1094-1102.
    [141]孙元章,杨新林,王海风.考虑暂态稳定性约束的最优潮流问题[J].电力系统自动化,2005,29(16):56-59.
    [142]杨新林,孙元章,王海风.考虑暂态稳定性约束的最优潮流[J].电力系统自动化,2003,27(14):13-17.
    [143]孙景强,房大中,钟德成.暂态稳定约束下的最优潮流[J].中国电机工程学报,2005,25(12):12-17.
    [144]刘明波,阳曾.含暂态能量裕度约束多故障最优潮流计算[J].中国电机工程学报,2007,27(34):12-18.
    [145]刘明波,李妍红,陈家荣.基于轨迹灵敏度的暂态稳定约束最优潮流计算[J].电力系统及其自动化学报,2007,19(6):24-29.
    [146] Xia Y., Chan K. W., Dynamic constrained optimal power flow using semi-infinite programming[J]. IEEE Trans. on Power Systems, 2006, 21(3):1455-1457.
    [147] Tong X. J., He W., Zhou R. J., et al. Calculation for optimal power flow with transient stability constraints based on semi-infinite programming algorithm[C]. IEEE Power and Energy Society General Meeting, Pittsburgh, USA, 2008: 1-6.
    [148] Cai H. R., Chung C. Y., Wong K. P., Application of differential evolution algorithm for transient stability constrained optimal power flow[J]. IEEE Trans. on Power Systems, 2008, 23(2): 719-728.
    [149] Mo N., Zou Z. Y., Chan K. W., et al. Transient stability constrained optimal power flow using particle swarm optimization[J]. IET Generation, Transmission & Distribution, 2007, 1(3): 476-483.
    [150]浙江大学发电教研组直流输电科研组.直流输电(第二版)[M].北京:水利电力出版社,1985.
    [151]徐政.交流等值法交直流电力系统潮流计算[J].中国电机工程学报,1994,14(3):1-6.
    [152]邱革非,束洪春,于继来.一种交直流电力系统潮流计算实用新算法[J].中国电机工程学报,2008,28(13):53-57.
    [153]中国电力科学研究院.中国版BPA潮流程序用户手册.2002,3.
    [154]王志勇,崔秀玉.南方电网交直流混合输电系统动态潮流仿真计算[J].电力系统自动化,2005,29(17):89-92.
    [155]刘崇茹,张伯明,孙宏斌等.多种控制方式下交直流系统潮流算法改进[J].电力系统自动化,2005,29(21):25-31.
    [156] Johnson B. K., HVDC models used in stability studies[J]. IEEE Transactions on Power Delivery, 1989, 4(2): 1153-1163.
    [157] Andersen B. R., Xu L., Hybrid HVDC system for power transmission to island networks[J]. IEEE Transactions on Power Delivery, 2004, 19: 1884-1890.
    [158]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社,2004.
    [159]徐政,蔡晔,刘国平.大规模交直流电力系统仿真计算的相关问题[J].电力系统自动化,2002,26(15):4-8.
    [160]李兴源.高压直流输电系统的运行和控制[M].北京:科学出版社,1998.
    [161] Aik D. L. H, Andersson G., Influence of Load Characteristics on the Power/voltage Stability of HVDC Systems[J]. IEEE Trans on Power Delivery, 1998, 13(4): 1445-1452.
    [162]中国电力科学研究院.中国版BPA暂态稳定程序用户手册.2000,7.
    [163]苏黎,吴广宁,蒋伟.基于BPA的交直流系统稳定性仿真研究[J].2009,37(2):32-36.
    [164]周长春,徐政.直流输电准稳态模型有效性的仿真验证[J].中国电机工程学报,2003,23(12):33-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700