超高压交流输电线路雷电过电压特性及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着超/特高压电网的快速发展,输电线路的高度、传输容量及传输距离都在不断的提高。输电线路经常遭受各种雷电过电压的侵袭,引发停电事故,雷击故障已经成为影响输电线路安全运行的第一因素,为了更经济合理地制定防雷措施以防止雷害事故发生,深入研究输电线路雷击事故的性质,准确评价输电线路上的雷电过电压性能就显得极为重要。通过模拟雷电过电压波在超高压交流输电线路中的传播过程,找到雷电过电压的影响因素,探索其特性规律,具有非常重要的理论意义和工程应用价值。
     本文根据雷电过电压的发生机理和500kV超高压交流输电线路的实际情况,利用电磁暂态仿真程序PSCAD/EMTDC搭建了包括雷电流模型、线路杆塔模型、绝缘子闪络模型以及输电线路模型等在内的输电线路雷击模型,模型考虑了冲击电晕和工频电压等因素带来的影响,更能真实地模拟输电线路上的雷电过电压情况。基于搭建的仿真模型对输电线路反击、绕击和雷击未造成故障时产生的雷电过电压暂态特征进行了仿真分析,发现了雷击塔顶和导线时绝缘子两端过电压波形的主要物理特征以及塔顶和三相导线、避雷线上的过电压特征,并确定了雷电过电压波及输电线路的范围,对比了考虑冲击电晕前后雷电过电压的变化。
     利用PSCAD/EMTDC软件仿真研究了雷电流波形与幅值、避雷线布置方式、杆塔塔型、导线布置方式(包括导线排列方式、导线分裂数)、接地电阻等因素变化时,塔顶或导线上雷电过电压的特点及其参数关系,找到了影响超高压交流输电线路反击和绕击过电压的关键因素。结果表明:雷电流幅值与波形、杆塔塔型、接地电阻对输电线路的反击过电压有着较大的影响;而雷电流幅值与波形、避雷线布置方式、导线分裂根数对输电线路的绕击过电压有较大的影响。本文的研究结果为输电线路雷电过电压研究奠定了一定的理论基础,对现有输电线路雷电防护水平的提高和新建线路的防雷设计提供了参考。
With the rapid development of Power Grid at Extra and Ultra High Voltage Level, the height of transmission lines, transmission Capacity and distance are constantly increasing. Transmission lines often suffer the invasion of various lightning overvoltage leading to blackout accident, thus lightning fault has become the first factor to affect safety operation of transmission lines. In order to draw up more economical and rational lightning protection measures to prevent lightning fault, it is extremely important to further research the lightning properties and accurate evaluate the lightning overvoltage performance of transmission lines. Through simulating propagation process of lightning overvoltage along EHVAC transmission lines, to find its influence factors and explore its characteristic regularity will be of great theoretical significance and value for engineering application.
     In this paper, according to the occurrence mechanism of lightning overvoltage and the actual situation of500kV EHV AC transmission lines, the lightning models of transmission lines including lightning current model, transmission line tower model, insulator flashover model and the transmission line model etc. are established by using Electromagnetic transient simulation program PSCAD/EMTDC. The impact of impulse corona and power frequency voltage has been taken into account in these models, thus the lightning overvoltage of transmission lines could be more realistically simulated. Based on the established simulation models, the lightning overvoltage transit features of transmission lines are analyzed on the situation of back striking, shielding failure and lightning without fault respectively, the main physical characteristics of overvoltage waveform at both ends of the insulator and the overvoltage feature of the tower top, three-phase conductors, ground wires are found, the propagation range of lightning overvoltage along the transmission lines are determined, the lightning overvoltage change considering the impact of corona or not is contrasted.
     By using PSCAD/EMTDC simulation program, the characteristic of lightning overvoltage and the relationship of parameters on tower top or conductors are studied when the lightning current waveform, amplitude, arrangement mode of ground wires, tower type, conductor configuration including arrangement mode and split number as well as grounding resistance are changed, and the key factors which affect back striking and shielding failure overvoltage of EHV AC transmission lines are found. The results show that the back striking overvoltage of transmission lines is affected by lightning current waveform, amplitude, tower type and grounding resistance, while the shielding failure overvoltage is influenced by lightning current waveform, amplitude, arrangement mode of ground wires and split number of conductors. These results could lay a theoretical foundation for the study of lightning overvoltage of transmission lines, and be available for reference to increase the lightning protection level of existing transmission lines and design lightning protection of new lines.
引文
[1]梁曦东,姜齐荣,曾嵘,等.提高超高压交流输电线路的输送能力(一)[M].北京:清华大学出版社,2010.
    [2]冉红兵,何光键,李仙琪.超高压远距离输电[M].成都:西南交通大学出版社,2009.
    [3]关志成,朱英浩,周小谦.中国电气工程大典(第10卷输变电工程)[M].北京:中国电力出版社,2010.
    [4]黄志明.我国超高压输电线路的建设和发展[J].中国电力,1996,29(16):9-12.
    [5]国家电网公司.我国750kV超高压输变电技术发展和成就[J].中国科技产业,2006,(2):100-102.
    [6]刘振亚.特高压电网[M].北京:中国电力出版社,2005.
    [7]鲁铁成.电力系统过电压[M].北京:中国水利水电出版社,2009.
    [8]汪泉弟,张西鹏,朱蕾蕾.输电线雷击过电压波辐射场模型及数值分析[J].重庆大学学报(自然科学版),2006,29(9):24-27.
    [9]刘振亚.特高压交流输电线路维护与检修[M].北京:中国电力出版社,2008.
    [10]南方电网公司.南方电网线路运行统计报告[R].广州:南方电网公司,2008.
    [11]维列夏金,吴维韩.俄罗斯超高压和特高压输电线路防雷运行经验分析[J].高电压技术,1998,24(2):76-79.
    [12]刘振亚.特高压交流输电技术研究成果专辑(2008年)[M].北京:中国电力出版社,2009.
    [13]解广润.电力系统过电压[M].北京:水利电力出版社,1985.
    [14]张纬钹,何金良,高玉明.过电压防护及绝缘配合[M].北京:清华大学出版社,2002.
    [15]Golde, KH雷电(上、下卷)[M].北京:水利电力出版社,1983.
    [16]施为,郭洁.电力系统过电压计算[M].北京:高等教育出版社,2006.
    [17]H.W.Dommel电力系统电磁暂态计算理论[M].北京:水利电力出版社,1991.
    [18]王惠忱.雷电绕击机理分析[J].高电压技术,1999,25(3):52-54
    [19]陈捷.输电线路高杆塔波阻抗及反击特性的研究[D].重庆:重庆大学,2004.
    [20]莫付江,陈允平,阮江军.架空输电线路雷击感应过电压耦合机理及计算方法分析[J].电网技术,2005,29(6):72-77.
    [21]F.A.M.Rizk. Modeling of Transmission Line Exposure to Direct Lightning Strokes[J].IEEE Transactions on Power Delivery, 1990, 5(4):1983-1997
    [22]钱冠军,王晓瑜,汪雁,等.输电线路雷击仿真模型[J].中国电机工程学报,1999,19(8):39-44.
    [23]戴玲,刘俭,林福昌,等.考虑先导发展随机性的输电线路雷击仿真模型[J].高电压技术,2007,33(7):36-39.
    [24]J. Bajorek, M. Korzeniowski, G. Maslowski. Modeling of Nonlinear Elements During Lightning Overvoltage Simulations [J]. High Voltage Engineering, 2008,34 (12):2595-2600
    [25]李明贵,鲁铁成.高压架空输电线路雷击过电压的仿真计算与分析研究之一:输电线路雷电过电压仿真计算模型的建立[J].广西电力,2005,(4):7-10.
    [26]刘振亚.特高压交流输电系统过电压与绝缘配合[M].北京:中国电力出版社,2008.
    [27]DL/T620-1997.交流电气装置的过电压保护和绝缘配合[S].北京:中国电力出版社,1997.
    [28]GB/Z24842-2009.1000kV特高压交流输变电工程过电压和绝缘配合[S].北京:中国标准出版社,2009.
    [29]苏明.某500kV变电站雷电侵入波特性及防护研究[D].北京:华北电力大学,2011.
    [30]S. J. Shelemy, D. R. Swatek. Monte Carlo Simulation of Lightning Strikes to the Nelson River H VDC Transmission Lines[C]. International Conference on Power Systems Transients, Rio de Janeiro, Brazil, 24-28 June,2001.
    [31]Martinez, J.A., Gonzalez-Molina, F. Statistical evaluation of lightning overvoltage on overhead distribution lines using neural network[J]. IEEE Trans on Power Delivery, 2005.20(3):2219-2226.
    [32]Z. Zakaria, S.M. Bashi, N.F. Mailah etc. Simulation of lightning surges on tower transmission using PSCAD/EMTDC:A comparative study[C]. Research and Development, SCORED 2002, IEEE. Student Conference on 16-17 July 2002:426-429.
    [33]A. Ametani, T. Kawamura. A Method of a Lightning Surge Analysis Recommended in Japan Using EMTP[J]. IEEE Transactions on Power Delivery, 2005,20(2):867-875.
    [34]陈家宏,吕军,钱之银,等.输电线路差异化防雷技术与策略[J].高电压技术,2009,35(12):2891-2902.
    [35]陈国庆.交流输电线路绕击仿真模型及同杆双回耐雷性能的研究[D].重庆大学,2003.
    [36]何金良,张薛巍,董林,等.输电线路雷击过程分析的雷电通道分形模型[J].中国科学E辑,2009,30(11):1818-1823.
    [37]F.S.Young, J.M.Clayton, A.R.Hileman. Shielding of Transmission Lines[J]. IEE Transactions on Power Apparatus and Systems, 1963, (82):132~154.
    [38]Anderson, J.G. Monte Carlo computer calculation of transmission-line lightning performance[J]. AIEE Transactions,1961,80(8):414-420.
    [39]A.J. Eriksson. An improved electricalgeometric model for transmission line shielding Analysis[J]. IEEE Trans on Power Delivery, 1987.2(2):871~886.
    [40]A.J Eriksson. The incidence of lightning strikes to power line[J]. IEEE Trans on Power Delivery.1987, 2(3):859-870.
    [41]Rizk F A M. Modeling Of Transmission Line Exposure To Direct Lightning Strokes[J]. IEEE TPWRD, 1990.5(4):1983-1997.
    [42]L.Dellera. E.Garbagnati. Lightning Strokes Simulation By Means Of The Leader Progression Model[J]. IEEE TPWRD,1990,5(4):2009~2030.
    [43]Jinliang He, Youping Tu, Rong Zeng etc. Numeral Analysis Model for Shielding Failure of Transmission Line Under Lightning Stroke[J]. IEEE Trans. Power Del.2005,20(2):815-822.
    [44]曾嵘,耿屹楠,李雨,等.高压输电线路先导发展绕击分析模型研究[J].高电压技术,2008,34(10):2041-2046.
    [45]魏本刚,傅正财,袁海燕.改进先导模型法交流特高压线路雷电屏蔽性能分忻[J].高电压技术,2008,34(9):1880-1884.
    [46]魏本刚,傅正财,袁海燕,等.改进先导传播模型法500kV架空线路雷电绕击分析[J].中国电机工程学报,2008,28(25):25-29.
    [47]伏进,司马文霞,李建标,等.基于分形理论的超特高压线路绕击耐雷性能评估[J].高电压技术,2009,35(6):1274-1278.
    [48]司马文霞,李建标,杨庆,等.雷电先导分形特性及其在特高压线路耐雷性能分析中的应用[J].高电压技术,2010,36(1):86-91
    [49]詹花茂,林福昌.特高杆塔雷电过电压计算[J].高电压技术,2005,31(1):9-11.
    [50]王东举,周浩,陈稼苗.特高杆塔的多波阻抗模型设计及雷击暂态特性分析[J].电网技术,2007,31(23):11-16.
    [51]王辉,刘俊,何金良.输电线路杆塔对雷电流监测结果的影响[J].高电压技术,2008,34(9):1910-1914.
    [52]张永记,司马文霞,张志劲.防雷分析中杆塔模型的研究现状[J].高电压技术,2006,32(7):93-97.
    [53]张颖,高亚栋,杜斌,等.输电线路防雷计算中的新杆塔模型[J].西安交通大学学报.2004,38(4):365-368.
    [54]Hideki Motoyama. Analytical and experimental study on surge response of transmission tower[J]. IEEE Trans on Power Delivery,2000,15(2):812-819.
    [55]Yamada T, Mochizuki A, Sawada J, et al. Experimental evaluation of a UHV tower model for lightning surge analysis[J]. IEEE Trans on Power Delivery,1995,10(1):393-402.
    [56]Hara T, Yamamoto O. Modeling of a transmission tower for lightning surge analysis[J]. Generation, Transmission and Distribution, IEE Proceedings, May,1996,143(3):283-289.
    [57]Jordan C A. Lightning computations for transmission lines with overhead ground wires, part II [J]. General Electric Review,1934, (34):180-185.
    [58]Wagber C F, Hileman A R. A new approach to calculation of lightning performance of transmission lines, II:a simplified method stroke to tower[J]. AIEE Trans on Power Apparatus and Systems,1959, 78(4):996-1020.
    [59]Sargent M A, Darveniza M. Tower surge impedance[J]. IEEE Trans on Power Apparatus and Systems, 1969,88(5):680-687.
    [60]Yamada T, Mochizuki A. Ishii M, et al. Experimental evaluation of a UHV tower model for lightning surge analysis[J]. IEEE Trans on Power Delivery.1995,10(1):393-402.
    [61]Breuer G D. Schultz A J. Schlomann R H. Field studies of the surge response of a 345kV transmission tower and ground wire[J]. AIEE Trans on Power Apparatus and Systems,1957,76(3):1392-1396.
    [62]Kawai M. Studies of the surge response on a transmission line tower[J]. IEEE Trans on Power Apparatus and Systems, 1964, 83(1):30-34.
    [63]Ishii M, Kawamura T. Multistory transmission tower model for lightning surge analysis[J]. IEEE Trans on Power Delivery.1991, 6(3):1327-1335.
    [64]Hara T, Yamamoto O. Modeling of a transmission tower for lightning surge analysis[J]. IEE Proceedings--C:Generation, Transmission and Distribution,1996,143(3):283-289.
    [65]陈家宏,张勤,冯万兴,等.中国电网雷电定位系统与雷电监测网[J].高电压技术,2008,34(3):425-431
    [66]周文俊,喻剑辉,陈荣,等.雷电流全参数及避雷器状态在线监测研究[J].高电压技术,34(10):2054-2058.
    [67]束洪春,张广斌,孙士运,等.±800 kV直流输电线路雷电绕击与反击的识别方法[J].中国电机工程学报,2009,29(7):13-19.
    [68]DU Lin, DAI Bin, SIMA Wen-xia, et al. Overvoltage identification in distribution networks based on support vector machine[J]. High Voltage Engineering,2009,35(3):521-526.
    [69]齐冲.高压输电线路雷电绕击和反击的识别[D].南宁:广西大学,2007.
    [70]何正友,陈小勤.基于多尺度能量统计和小波能量熵测度的电力暂态信号识别方法[J].中国电机工程学报,2006,26(10):33-38.
    [71]谢博.输电线路雷电过电压的识别分类方法研究[D].重庆:重庆大学,2010.
    [72]司马文霞,谢博,杨庆,等.特高压输电线路雷电过电压的分类识别方法[J].高电压技术,2010,36(2):306-312.
    [73]杜林,戴斌,司马文霞,等.架空输电线路雷电过电压识别[J].高电压技术,2010,36(3):590-596.
    [74]李海峰,王钢,赵建仓.输电线路感应雷暂态特征分析及其识别方法[J].中国电机工程学报,2004,24(3):114-119.
    [75]段建东,任晋峰,张保会,等.超高速保护中雷电干扰识别的暂态研究[J].中国电机工程学报,2006,26(23):7-13.
    [76]王钢,李海峰,赵建仓,等.基于小波多尺度的输电线路直击雷暂态识别[J].中国电机工程学报,2004,24(4):139-144.
    [77]司大军,束洪春,陈学允,等.输电线路雷击电磁暂态特征分析及其识别方法研究[J].中国电机工程学报,2005,25(7):64-69.
    [78]郭宁明,覃剑.雷击输电线路故障情况下的短路点定位方法[J].电力系统自动化,2009,33(10):74-77.
    [79]中国南方电网公司.交直流电力系统仿真技术[M].北京:中国电力出版社,2007.
    [80]A.Ametani. and T.Kawamura. A Method of a Lightning Surge Analysis Recommended in Japan Using EMTP[J]. IEEE Trans on Power Delivery.2005:20(2):867-875.
    [81]Toshiaki Ueda, Takamitsu Ito. Hideto Watanabe, et al. A Comparison between Two Tower Models for Lightning Surge Analysis of 77kV System[C]. IEEE Proceedings PowerCon 2000 International Conference on Power System Technology,2000, (1):433-437.
    [82]张小青,杨大晟.基于PSCAD/EMTDC软件的过电压保护教学仿真.[J].电气电子教学学报,2008,30(2):84-89.
    [83]V.M.Martinez, E.A.Uzcategui, P.R.Jimenez. Study of Lightning Overvoltages in Valcor-Guanta II 230kV Overhead Transmission Line[C]. IEEE Transmission & Distribution Conference and Exposition, 2006:1-5.
    [84]束洪春,张广斌,孙士云,等.±800kV直流输电线路雷电绕击与反击的识别方法[J].中国电机工程学报,2009,29(7):13-19.
    [85]林良真,叶林.电磁暂态分析软件包PSCAD/EMTDC[J].电网技术,2000,14(1):65-66.
    [86]石访.电磁暂态软件PSCAD/EMTDC的应用现状与展望[J].华东电力,2008,36(12):36-38.
    [87]樊春雷.重雷区域输电线路耐雷水平影响因素的研究[D].成都:西南交通大学,2009.
    [88]肖稳安,张小青.雷电与防护技术基础[M].北京:气象出版社,2006.
    [89]赵智大.高电压技术[M].北京:中国电力出版社,2004.
    [90]张志刚.直流输电系统线路过电压的研究[D].武汉:华中科技大学,2006.
    [91]张殿生.电力工程高压送电线路设计手册(第二版)[M].北京:中国电力出版社,2003.
    [92]张小青.非标准雷电波下电晕特性的研究[D].北京:清华大学,1991.
    [93]EФИMOB B.B. BЛИЯНИе kopoHЬI B MHOГОЛPOBOДНЬIX ЛИНИЯX ЭЛeKTpoпnepeДаЧИ Ha ДeФopMauИЯ ФpoHTOB ГpOЭOЬIX BOЛИ[J]. ЭЛEKTPИИECTBO, 2002, (8):2-8.
    [94]Jr S C, Marti J R. Evaluation of corona and line models in electromagnetic transients simulations[J]. IEEE Trans, on Power Delivery, 1991, 6 (1):334-342.
    [95]袁海燕,傅正财,魏本刚,等.冲击电晕对特高压输电线路绕击耐雷水平的影响分析[J].中国电机工程学报,2009,29(25):111-117.
    [96]杨利彬.考虑冲击电晕的输电线路耐雷性能研究[D].重庆:重庆大学,2009.
    [97]陈梁金,杜斌,刘青,等.计及雷击电晕时750kV进线开关触头间暂态过电压的研究[J].高压电器,2004,40(3):167-169.
    [98]杨庆,王荆,陈林,等.计及冲击电晕的输电线路雷电绕击和反击智能识别方法[J].高电压技术,2011,37(5):1149-]157.
    [99]束洪春,宣映霞,李义,等.一种考虑冲击电晕及线路参数频变的电磁暂态仿真方法[J].继电器,2006,34(9):26-33.
    [100]陈水明,王威,于化鹏,等.计及工频电压的特高压变电站雷电侵入波过电压分析[J].高电压技术.2010,36(8):1852-1857.
    [101]周远翔,李震宇,梁曦东,等.工频电压对输电线路雷击跳闸率的影响[J].高电压技术,2007,33(9):61-65.
    [102]贾磊,舒亮,郑士普,等.计及工频电压的输电线路耐雷水平的研究[J].高电压技术,2006,32(11):111-114.
    [103]谷定燮.500 kV输变电工程设计中雷电过电压问题[J].高电压技术,2000,26(6):60-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700