铁电移相材料Ba_(1-x-y)Pb_xSr_yTiO_3的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相控阵天线用铁电薄膜移相器是一种基于铁电材料的新型移相器,具有扫描速度快、精度高、驱动功率小、波控系统简单、工作温度范围宽、多目标跟踪与处理、价格低廉等优点,是目前军事、航天等领域雷达系统的研究热点之一。本文研究了Ba_(1-x-y)Pb_xSr_yTiO_3(BPST)铁电材料的制备、表征、电学特性以及基于BPST薄膜的电容器加载共面波导移相器的仿真设计等内容。
     在分析铁电移相器工作原理的基础上论证了铁电材料应用于移相器的可行性,设计出BST与PST的固溶体BPST作为移相器用可调谐介质,指出0.3≤y≤0.6的组分具有较大的移相器应用价值,为实验提供了可调谐介质材料的选择依据。
     采用固相反应法制备了BPST陶瓷材料,研究了其微结构与介电特性。发现随Pb浓度的提高,BPST陶瓷在室温下由立方相转变为四方相,晶格畸变程度逐渐加剧。介电特性分析发现Ba_(0.5)Sr_(0.5)TiO_3、Ba_(0.4)Pb_(0.1)Sr_(0.5)TiO_3、Ba_(0.3)Pb_(0.1)Sr_(0.6)TiO_3与Ba_(0.2)Pb_(0.2)Sr_(0.6)TiO_3适合于铁电移相器的应用,在10kHz测试频率下它们的室温介电常数分别为1235、1431、1140和1593;介电损耗分别为0.0029、0.0047、0.0041和0.0062。采用第一性原理计算了BPST的晶格结构,发现在Ba_(0.7-x)Pb_xSr_(0.3)TiO_3晶格中,随Pb含量的提高,Ti离子距钙钛矿结构氧八面体中心的偏移量Δc越大;而在Ba_(1-x-y)Pb_xSr_yTiO_3(_(0.4)≤y≤0.6)晶格中,当Δc=0时晶格能量最低。
     采用射频磁控溅射法制备了BPST薄膜,研究了薄膜的制备工艺、介电特性、漏电流特性与元素化学态。在所讨论的BPST薄膜中,发现Ba_(0.2)Pb_(0.2)Sr_(0.6)TiO_3薄膜最适合应用于铁电薄膜移相器。室温时,在1MHz测试频率下Ba_(0.2)Pb_(0.2)Sr_(0.6)TiO_3薄膜的介电常数为514、介电损耗为0.014、偏置电场为375kV/cm时调谐率为51%、FOM为36.43。薄膜漏电流特性分析发现,不含Pb薄膜的漏电流密度最小,含Pb薄膜的漏电流密度相对较大,并且Pb含量越高,漏电流密度越大。在375kV/cm电场作用下,Ba_(0.2)Pb_(0.2)Sr_(0.6)TiO_3薄膜的漏电流密度为6.7μA/cm~2。采用XPS研究了薄膜的元素化学态,发现Ba_(0.2)Pb_(0.2)Sr_(0.6)TiO_3薄膜的表层中有少量的非钙钛矿结构的Ba与Ti;在薄膜内部,Ba、Sr、Ti等金属元素均为单一的钙钛矿结构结合状态;Pb元素在薄膜内部出现了少量单质的化学状态,这与薄膜内部缺氧严重有关。通过元素含量计算发现薄膜中Ba、Ti含量偏高、Sr含量偏低;薄膜内部Pb元素含量与化学式符合较好,而表层中Pb含量偏低;薄膜表层与内部的钙钛矿结构氧均偏低。
     采用ADS仿真得到优化的Ba_(0.2)Pb_(0.2)Sr_(0.6)TiO_3/MgO基电容器加载共面波导移相器的结构参数:叉指宽度s、叉指间隙g、叉指交叠长度l0、单侧叉指数目m分别为5μm、10μm、45μm、1或2。通过使用不同的薄膜调谐率T仿真了具有20个周期性重复的移相单元、信号线长度为1cm的电容器加载共面波导移相器在偏置电压调控下的性能,结果显示:移相器的最大S11为-17.4dB、最小S21为-0.75dB。当T由0变化到15%时,在22GHz~23GHz频率处可获得的最大移相量为330°,适合应用于相控阵天线。
Ferroelectric films based shifter for phased array antenna using has attracted much more attention in recent years because it has the merits such as rapid scanning, high accuracy, low drive voltage, simple control system, multi-object tracking, and low cost, etc. In this dissertation, the design, fabricating and characterization of ferroelectric Ba_(1-x-y)Pb_xSr_yTiO_3 (BPST) ceramics and thin films are discussed. Meanwhile, the structure and performance of the BPST thin film based coplanar waveguide (CPW) phase shifter with capacitance loaded are simulated by the Advanced Design System (ADS).
     The principle of ferroelectric phase shifter is discussed in this thesis. The feasibility of ferroelectric materials application on phase shifter is proved. The BPST materials are designed for the phase shifter using, and the calculation result shows that suitable BPST components are those that the subscript y is in the range of 0.3 to 0.6.
     The BPST ceramics are fabricated by conventional solid state reaction method. The microstructure and dielectric properties are studied. With the Pb content increasing, the BPST lattice changes from cubic phase to tetragonal one at room temperature (RT), and the lattice distortion becomes more severe. There are four BPST components, such as Ba_(0.5)Sr_(0.5)TiO_3, Ba_(0.4)Pb_(0.1)Sr_(0.5)TiO_3, Ba0.3Pb0.1Sr0.6TiO_3 and Ba_(0.2)Pb_(0.2)Sr_(0.6)TiO_3, which are suitable for phase shifter using in all the ceramics investigated. When measured at 10 kHz, the dielectric constants of above four components are 1235, 1431, 1140 and 1593, respectively. The loss tangents are 0.0029, 0.0047, 0.0041 and 0.0062, respectively. The microstructure is calculated based on the first principle. Results show that the the offset of Ti ion (denoted as ?c, which represents the displacement of Ti ion that offsets from the center of oxygen octahedron) increases with the Pb content increasing in the Ba0.7-xPbxSr0.3TiO_3 ceramics. In other BPST lattices, the total energy is lowest when ?c=0.
     The BPST thin films are fabricated by RF-magnetron sputtering. The sputtering techniques, dielectric performance, leakage current and elemental chemical states are investigated. When measured at 1 MHz, the RT dielectric constant and loss tangent of the Ba_(0.2)Pb_(0.2)Sr_(0.6)TiO_3 thin film are 514 and 0.014, respectively. The tunability is 51% under a bias electric field of 375kV/cm, and the FOM is 36.43. With the Pb content increasing, the leakage current density increases in the BPST thin films. Under an electric field of 375kV/cm, the leakage current density of Ba_(0.2)Pb_(0.2)Sr_(0.6)TiO_3 thin film is 6.7μA/cm2. The chemical bonding states of all elements that appears in the BPST thin films are investigated by XPS analysis. The results show that there are few non-perovskite bonded Ba and Ti on the surface of Ba_(0.2)Pb_(0.2)Sr_(0.6)TiO_3 thin film. The interior elements of Ba, Sr, and Ti are all bonded into perovskite structure, but there is few elemental lead inside of the thin film. The elements’content calculation shows that the Ba and Ti content is a little excess, while Sr content is a little deficiency both on the surface and inside of the thin films. The Pb content is consistent with the stoichiometric proportion inside of the thin films, but there is a little deficiency on the surface. The perovskite bonded oxygen content is a little deficiency both in the inside and on the surface of the BPST thin films.
     The structure and performance of the CPW phase shifter with capacitance loaded based on Ba_(0.2)Pb_(0.2)Sr_(0.6)TiO_3/MgO are simulated by the ADS. The optimal structure of phase shifter unit are as follows: the interdigitated capacitor’s (IDC) finger width (s), gap between the fingers (g), long of the finger (l0), unilateral finger numbers (m) are 5μm, 10μm, 45μm, and (1or 2), respectively. The performance simulation of the phase shifter under various bias electric fields is studied. Results show that the maximal S11 and minimum S21 value of the CPW phase shifter are -17.4dB and -0.75dB respectively. The phase shifter can obtain a 330o phaseshift by changing the tunability from 0 to 15% in the frequency range of 22 to 23GHz. It’s suitable for the phased array antenna using.
引文
[1] C. H. Mueller, Romanofsky R. R., F. A. Miranda. Ferroelectric thin film and broadband satellite systems. Potentials, 2001, 20(2): 36-39
    [2] R. E. Thomas, J. Huang. Ultra-wideband UHF microstrip array for GeoSAR application. IEEE Antennas and Propagation Society International Symposium, 1998, 4: 2096-2099
    [3] F. A. Miranda, G. Subramanyam, F. W. Van Keuls, et al. Design and development of ferroelectric tunable microwave components for Ku and K-band satellite communication systems. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(7) :1181-1189
    [4] V. N. Keis, A. B. Kozyrev, M. L. Khazov, et al. 20 GHz tunable filter based on ferroelectric (Ba,Sr)TiO3 film varactors. Electronics Letters, 1998, 34(11):1107-1109
    [5] F. A. Miranda, G. Subramanyam, F. W. Van Keuls, et al. A K-band (HTS,gold)/ferroelectric thin film/dielectric diplexer for a discriminator-locked tunable oscillator. IEEE Transactions on Applied Superconductivity, 1999, 9(2): 3581-3584
    [6] R. N. Simons, R. Q. Lee. Planar dielectric resonator stabilized HEMT oscillator integrated with CPW/aperture coupled patch antenna. IEEE MTT-S International Microwave Symposium Digest, 1992, 1: 433-436
    [7] G. Subramanyam, F. Ahamed, R. Biggers, et al. A Si MMIC compatible ferroelectric varactor shunt switch for microwave applications. IEEE Microwave and Wireless Components Letters, 2005, 15(11):739-741
    [8] A. Mahmud, T. S. Kalkur, A. Jamil, et al. A 1-GHz active phase shifter with a ferroelectric varactor. IEEE Microwave and Wireless Components Letters, 2006,16(5): 261-263
    [9] D. Kuylenstierna, A. Vorobiev, P. Linner, et al. Composite right/left handed transmission line phase shifter using ferroelectric varactors. IEEE Microwave and Wireless Components Letters, 2006, 16(4):167-169
    [10] W. Hu, D. Zhang, M. J. Lancaster, et al. Investigation of ferroelectric thick-film varactors for microwave phase shifters. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(2):418-424
    [11] S. Gevorgian, A. Vorobiev. Tuneable metamaterials based on ferroelectric varactors. European Microwave Conference, 2007: 404-407
    [12] Kosmin, M. Dmitry, Osadchy, et al. Digital-analog phase shifters with ferroelectric varactors for 2D phased array antenna. International Conference on Microwaves, Radar & Wireless Communications, 2006, MIKON:687-691
    [13] O. G. Vendik. Insertion loss in reflection-type microwave phase shifter based on ferroelectric tunable capacitor. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(2): 425-429
    [14] R. R. Romanofsky. Advances in scanning reflectarray antennas based on ferroelectric thin-film phase shifters for deep-space communications. IEEE Proceedings, 2007, 95(10):1968-1975
    [15] W. Kim, M. F. Iskander. Integrated phased antenna array design using ferroelectric materials and the coplanar waveguide continuous transverse stub technologies. Antennas and Propagation Society International Symposium 2006:4323-4326
    [16] W. Kim, M. F. Iskander, W. D. Palmer. An integrated phased array antenna design using ferroelectric materials and the continuous transverse stub technology. IEEE Transactions on Antennas and Propagation, 2006, 54(11):3095-3105
    [17] Z. Zhao, X. Wang, K. Choi, et al. Ferroelectric phase shifters at 20 and 30 GHz. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(2): 430-437
    [18] R. R Romanofsky, A. H. Qureshi. A model for ferroelectric phase shifters. IEEETransactions on Magnetics, 2000, 36(5):3491-3494
    [19] P. T. Teo, K. A. Jose, Y. B.Gan, et al. Beam scanning of array using ferroelectric phase shifters. Electronics Letters, 2000, 36(19):1624-1626
    [20] P. T. Teo; K. A. Jose, Y. J. Wang, et al. Linear scanning array with bulk ferroelectric-integrated feed network. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2002, 49(5):558-564
    [21]钟维烈.铁电体物理学.北京:科学出版社, 1996年第1版
    [22] J. C. Burfoot. Ferrelectrics. New York:Van Nostrand, 1967
    [23]黄昆,韩汝琦.固体物理学.北京:高等教育出版社, 1988年第1版: 32-33
    [24] F. S. Galasso. Perovskite and high Tc superconductors. New York: Gordon and Breach Science Publishers,1990, 18-48
    [25] K. Kusumoto. Dielectric and piezoelectric properties of NaNbO3-BaTiO3-SrTiO3 ceramics. Sixteenth IEEE International Symposium on Applications of Ferroelectrics, 2007:686 - 687
    [26] Tian-Ling Ren; Lin-Tao Zhang; Jian-She Liu, et al. A silicon-based PT/PZT/PT sandwich structure for memory devices. Proceedings of 6th International Conference on Solid-State and Integrated-Circuit Technology, 2001, 1: 706-709
    [27] K. C. Cheng, H. L. W. Chan, C. L. Choy, et al. Single crystal PMN-0.33PT/epoxy 1-3 composites for ultrasonic transducer applications. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2003, 50(9):1177-1183
    [28] Shujun Zhang; C. A. Randall, T. R. Shrout. Recent developments in high Curie temperature perovskite single crystals. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2005, 52(4): 564-569
    [29] Qifa Zhou, Xiaochen Xu, E. L. Gottlieb, et al. PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave Doppler application. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2007, 54(3):668-675
    [30] H. Adachi, K. Wasa. Sputtering preparation of ferroelectric PLZT thin films and their optical applications. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1991, 38(6):645-655
    [31] T. Mino, S. Kuwajima, T. Suzuki, et al. Piezoelectric properties of (K, Na)NbO3 thin films deposited on (001)SrRuO3/Pt/MgO substrates. Sixteenth IEEE International Symposium on Applications of Ferroelectrics, 2007: 630-633
    [32] V. Laur, A. Rousseau, G. Tanne, et al. KTa0.6Nb0.4O3 ferroelectric thin film behavior at microwave frequencies for tunable applications. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2006, 53(12):2280-2286
    [33] F. Jona, G. Shirane. Ferroelectric Crystals. New York: Dover Publications, 1993
    [34] J. Menka. Perovskite ferroelectric thin films for tunable microwave applications. PhD Thesis, University of Puerto Rico, 2004: 10-11
    [35]李佳.钛酸铋系列铁电薄膜性能与残余应力研究.博士学位论文,华中科技大学, 2007
    [36] G. H. Haertling. Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc., 1999, 82(4): 797-818
    [37] M. Dawber, K. M. Rabe, J. F. Scott. Physics of thin-film ferroelectric oxides. Review of modern physics, 2005, 77: 1083-1131
    [38] D. L. Polla, T. Tamagawa, Chian-Ping Ye, et al. Ferroelectric thin-film materials, structures, and microsensors. Proceedings of SPIE-Sensors and Sensor Systems for Guidance and Navigation II, 1992, 1694:173-183
    [39] C. Feldman. Formation of thin films of BaTiO3 by evaporation. Rev. Sci. Instr., 1955, 26 (5): 463-466
    [40] A. E. Feuersanger, A. K. Hagenlocher, A. L. Solomon. Preparation and properties of thin barium titanate films. J. Electrochem. Soc., 1964, 111(12):1387-1391
    [41] W. J. Takei, N. P. Formigoni, M. H. Francombe. Preparation and epitaxy of sputtered films of ferroelectric Bi4Ti3O12. J. Vacuum Science and Technology, 1970,7: 442-448
    [42] S. Regnery, Y. Ding, P. Ehrhart, et al. Metal-organic chemical-vapor deposition of (Ba,Sr)TiO3: Nucleation and growth on Pt-(111). J. Appl. Phys., 2005, 98(8): 084904 -1-084904-11
    [43] F. Fitsilis, S. Regnery, P. Ehrhart, et al. BST thin films grown in a multiwafer MOCVD reactor. J. Euro. Ceram. Soc., 2001, 21(10-11):1547-1551
    [44] N. Scarisoreanu, M. Filipescu, A. Ioachim, et al. BST thin films obtained by PLD for applications in electronics. Appl. Surf. Sci., 2007, 253(19): 8254-8257
    [45] X.G. Tang, H. F. Xiong, L. L. Jiang, et al. Dielectric properties and high tunability of (100)- and (110)-oriented (Ba0.5Sr0.5)TiO3 thin films prepared by pulsed laser deposition. J. Crys. Grow., 2005, 285(4):613-619
    [46] G. C. Jha, S. K. Ray, I. Manna. Effect of deposition temperature on the microstructure and electrical properties of Ba0.8Sr0.2TiO3 thin films deposited by radio-frequency magnetron sputtering. Thin Solid Films, 2008, 516(10):3416-3421
    [47] Sheng-Xiang Wang, Ming-Sen Guo, Tao Liu, et al. Effect of K-doping on the dielectric and tunable properties of Ba0.6Sr0.4TiO3 thin films prepared by RF magnetron sputtering. J. Crys. Grow., 2007, 306(1): 22-26
    [48] Jun Wang, Tianjin Zhang, Junhuai Xiang, et al. High-tunability and low-leakage current of the polycrystalline compositionally graded (Ba,Sr)TiO3 thin films derived by a sol-gel process. Mater. Chem. Phys., 2008, 108(2-3): 445-448
    [49] P. Muralt. Piezoelectric and pyroelectric microsystems based on ferroelectric thin films. Ferroelectrics, 1996, 1: 145-151
    [50] I. L. Baginsky, E. G. Kostsov, L. N. Sterelykhina. Electronic devices based on niobate barium-strontium thin film. IEEE 7th International Symposium on Applications of Ferroelectrics, 1990: 302-305
    [51] D. Emmanuel, D. Wolozan, J. P. Blanc, et al. High pass filter with above IC integrated SrTiO3 high K MIM capacitors. Solid-State Electronics, 2007, 51(11-12):1624-1628
    [52] M. Quaddari, S. Delprat, F. Vidal, et al. Microwave characterization of ferroelectric thin film materials. IEEE Transactions on Microwave Theory and Techniques, 2005, 53: 1390-1397
    [53] Longhai Wang, Jun Yu, Xin’yi Wen, et al. Ferroelectric properties of Pt/PbTiO3 /PbZr0.3Ti0.7O3 /PbTiO3 /Pt integrated capacitors etched in noncrystalline phase. Appl. Phys. Lett. 2006, 89:182901-1-182901-3
    [54] C. H. Yang, G. D. Hu, X. Q. Sun. (Na0.5Bi0.5)0.87Pb0.13TiO3 thin films on different substrates for ferroelectric memory applications. Appl. Phys. Lett., 2007, 91:192910-1-192910-3
    [55] Jinbao Xu, Cheng Gao, Jiwei Zhai, et al. Structure-related infrared optical properties of Ba(ZrxTi1?x)O3 thin films grown on Pt/Ti/SiO2/Si substrates by low-temperature processing. J. Crys. Grow., 2006, 291(1):130-134
    [56] F. Y. Chen, Y. K. Fang, C. Y. Shu, et al. Numerical analysis of a PbTiO3 ferroelectric thin-film infrared optical diode. IEEE Transactions on Electron Devices, 1997, 44: 937-942
    [57] J. M. Sallese, F. Pierre. Switch and rf ferroelectric MEMS: a new concept. Sensors and Actuators A: Physical, 2004, 109(3):186-194
    [58] J. Cardin, D. Leduc, T. Schneider, et al. Optical characterization of PZT thin films for waveguide applications. J. Euro. Ceram. Soc., 2005, 25(12): 2913-2916
    [59] G. Unnikrishnan, M. Pohit, K. Singh. A polarization encoded optical encryption system using ferroelectric spatial light modulator. Optics Communications, 2000, 185(1-3): 25-31
    [60] R. Murgan, F. Razak, D. R. Tilley, et al. Second harmonic generation from a ferroelectric film. Comp. Mater. Sci., 2004, 30(3-4): 468-473
    [61] C. Buchal. Ion implantation for photorefractive devices and optical emitters. Nuclear instruments and methods in physics research section B: beam interactions withmaterials and atoms, 2000, 166-167: 743-749
    [62] I. M. Reaney, R. Ubic. Talking microwaves: a review of ceramics at the heart of the telecommunications network . Int. Ceram., 2000, 1: 48-52
    [63] M. Chen, D. E Riemer, D. N. Rasmussen, et al. A 20-GHz active receive phased array antenna for Navy surface ship satellite communications applications. IEEE Antennas and Propagation Society International Symposium, 1999, 4: 2310-2313
    [64] E. Rai, S. Nishimoto, T. Katada, et al. Historical overview of phased array antennas for defense application in Japan. IEEE International Symposium on Phased Array Systems and Technology, 1996: 217-221
    [65] D. C. Chang, C. I. Hung, J. H. Yao. The development of a compact point-defense phased array antenna. Antennas and Propagation Society International Symposium, 1993, 1: 230-233
    [66] R. T. Kemerley, S. Kiss. Advanced technology for future space-based antennas. IEEE MTT-S International Microwave Symposium Digest, 2000, 2: 717-720
    [67] A. S. Cherepanov, A. B. Guskov, Y. P.Yavon, et al. Innovative integrated ferrite phased array technologies for EHF radar and communication applications. IEEE International Symposium on Phased Array Systems and Technology, 1996:74-77
    [68] E. V. Komissarova, V. M. Krekhtunov. W-band phased array antenna elements with ferrite phase shifters. Microwave & Telecommunication Technology, the 17th International Crimean Conference, 2007: 380-381
    [69] M. E. Davis. Integrated diode phase shifters and performance in a 502-element X-band array. MTT-S International Microwave Symposium Digest, 1975, 75(1):164-166
    [70] H. Takasu, F. Sadaki, M. Kawano, S. Kamihashi. Ka-band low loss and high power handling GaAs PIN diode MMIC phase shifter for reflected-type phased array systems. IEEE MTT-S International Microwave Symposium Digest, 1999, 2: 467-470
    [71] J. B. L Rao, G. V. Trunk, D. P. Patel. Two low-cost phased arrays. IEEE Aerospace and Electronic Systems Magazine, 1997, 12(6): 39-44
    [72] G. M. Rebeiz,; G. L. Tan; J. S. Hayden. RF MEMS phase shifters: design and applications. IEEE Microwave Magazine, 2002, 3(2):72-81
    [73] Xun-jun He, Qun Wu, Bo-shi Jin, et al. Influence of wafer level packaging modes on RF performance of MEMS phase shifters. The 7th International Conference on Electronic Packaging Technology, 2006: 1-4
    [74] Jian Qing, Yanling Shi, Wei Li, et al. Ka-band distributed MEMS phase shifters on silicon using AlSi suspended membrane. Journal of Microelectromechanical Systems, 2004, 13, (3): 542-549
    [75] K. Topalli, O. A. Civi, S. Demir, et al. A monolithic phased array using 3-bit distributed RF MEMS phase shifters. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(2):270-277
    [76] F. A. Miranda, F. W. V. Keuls, R. R. Romanofsky, et al. Ferroelectric thin films-based technology for frequency and phase-agile microwave communication applications. Integrated Ferroelectrics, 2002, 42:131-149
    [77] F. W. V. Keuls, R. R. Romanofsky, F. A. Miranda. Several microstrip-based conductor/thin film ferroelectric phase shifter designs using (YBa2Cu3O7-d,Au)/SrTiO3/LaAlO3 structures. Integrated Ferroelectrics, 1998, 22:893-907
    [78] M. Skolnik. The radar antenna-circa 1995. J. Franklin Institute, 1995, 332B(5): 503-519
    [79] J. B. L. Rao, D. P. Patel, V. Krichevsky. Voltage-controlled ferroelectric lens phased arrays. IEEE Transactions on Antennas and Propagation, 1999, 47(3): 458-468
    [80] J. B. L. Rao, T. C. Cheston, J. Y. Choe, et al. Phased arrays with sub-array architecture. IEEE International Conference on Phased Array Systems and Technology Proceedings, 2000: 453-456
    [81] S. W. Kirchoefer, J. M. Pond, H. S. Newman, et al. Ferroelectric-ferrite tunable phase shifters. IEEE MTT-S International Microwave Symposium Digest, 2000, 3:1359-1362
    [82] J. B. L. Rao, D. P. Patel, L. C. Sengupta, et al. Ferroelectric materials for phased array applications. IEEE Antennas and Propagation Society International Symposium, 1997, 4: 2284-2287
    [83] S. R. Rengarajan, J. B. L. Rao. Arrays of overlapping sub-arrays for improved sidelobe level performance. IEEE International Conference on Phased Array Systems and Technology Proceedings, 2000: 497-500
    [84] J. B. L.Rao, P. K. Hughes, G. V. Trunk, et al. Affordable phased array for ship self-defense engagement radar. IEEE Aerospace and Electronic Systems Magazine, 1996, 11(9):35-40
    [85] F. D. Flaviis, N. G. Alexopoulos, O. M. Stafsudd. Planar microwave integrated phase-shifter design with high purity ferroelectric material. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(6): 963-969
    [86] F. D. Flaviis, N. G. Alexopoulos. Low loss ferroelectric based phase shifter for high power antenna scan beam system. IEEE Antennas and Propagation Society International Symposium Digest, 1997, 1:316-319
    [87] A. Kozyrev, V. Osadchy, A. Pavlov, et al. Application of ferroelectrics in phase shifter design. IEEE MTT-S International Microwave Symposium Digest, 2000, 3:1355-1358
    [88] R. R. Romanofsky, J. T. Bernhard, F. W. V. Keuls, et al. K-band phased array antennas based on Ba0.60Sr0.40TiO3 thin-film phase shifters.IEEE Transactions on Microwave Theory and Techniques, 2000, 48(12): 2504-2510
    [89] R. R. Romanofsky, A. H. Qureshi. A model for ferroelectric phase shifters. IEEE Transactions on Magnetics, 2000, 36(5): 3491-3494
    [90] M. F. Iskander, Zhijun Zhang, Zhengqing Yun. et al. New phase shifters and phasedantenna array designs based on ferroelectric materials and CTS technologies. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(12):2547-2553
    [91] W. Kim, M. Iskander, C. Tanaka. Low cost phase shifters and integrated phased antenna arrays designs based on the ferroelectric materials technology. IEEE Antennas and Propagation Society International Symposium, 2004, 4: 3964-3967
    [92] J. Modelsky, Y. Yashchyshyn. Microwave ferroelectric antenna arrays. Proceedings of the 2001 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, 2001, 2: 39-42
    [93] P. T. Teo, K. A. Jose, Y. B. Gan, et al. Adaptive ferroelectric phase shifters for phased array antenna. The 1999 Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications, 1999: 182-187
    [94] P. T. Teo, K. A. Jose, V. K. Varadan. Characterization and application of ferroelectric phase shifters for phased array scanning. The 2nd International Conference on Microwave and Millimeter Wave Technology, 2000:180-183
    [95] O. G.Vendik. Ferroelectric films in microwave technique: physics, characterization, and tunable devices. The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves, 2004, 1: 66-71
    [96] Hao Xin, J. B. West, J. C. Mather, et al. A two-dimensional millimeter wave phase scanned Lens utilizing analog electromagnetic crystal (EMXT) waveguide phase shifters. IEEE Transactions on Antennas and Propagation, 2005, 53(1): 151-159
    [97] N. Cramer, E. Philofsky, L. Kammerdiner, et al. Microwave measurement and modelling of capacitors with tunable dielectric constants. IEEE MTT-S International Microwave Symposium Digest, 2004, 1: 269-272
    [98] H. Diamond. Variation of permittivity with electric field in perovskite-like ferroelectrics. J. Appl. Phys., 1961, 32(5):909-915
    [99] K. M. Johnson. Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices. J. Appl. Phys., 1962, 33(9): 2826-2831
    [100] J. S. Kenney, Y. K. Yoon, M. Ahn, et al. Low-voltage ferroelectric phase shifers from L- to C-band and their applications. 2006 IEEE Aerospace Conference: 1-9
    [101] G. Subramanyam, F.W. Van Keuls, E. A. Miranda. et al. A K-band tunable microstrip bandpass filter using a thin film conductor/ferroelectric/dielectric multilayer configuration. IEEE Microwave and Guided Wave Letter, 1998, 8(2):78-80
    [102] A. T. Findikoglu, Q. X. Jia, D. W. Reagor, et al. Tunable microwave mixing in nonlinear dielectric thin film of SrTiO3 and Sr0.5Ba0.5TiO3. Electron. Lett., 1995, 31: 1814-1816
    [103] A. T. Findikoglu, Q. X. Jia, X. D. Wu, et al. Tunable and adaptive bandpass filter using a nonlinear dielectric thin film of SrTiO3. Appl. Phys. Lett., 1996, 68:1651-1653
    [104] X. T. Li, W. L. Huo, C. L. Mak, et al. Effect of Mg doping on ferroelectric PST thin films for high tunable devices. Materials Chemistry and Physics, 2008, 108(2-3): 417-420
    [105] K. T. Kim, C. I. Kim. Structure and dielectrical properties of (Pb,Sr)TiO3 thin films for tunable microwave device. Thin Solid Films, 2002, 420-421: 544-547
    [106] A. Rousseau, V. Laur, S. Députier, et al. Influence of substrate on the pulsed laser deposition growth and microwave behaviour of KTa0.6Nb0.4O3 potassium tantalate niobate ferroelectric thin films. Thin Solid Films, 2008, 516(15): 4882-4888
    [107] H. J. Bae, J. Sigman, D. P. Norton, et al. Dielectric properties of Ti-doped K(Ta,Nb)O3 thin films grown by pulsed laser deposition. Materials Science and Engineering B, 2005, 117(1):87-91
    [108] X. M. Chen, T. Wang, J. Li. Dielectric characteristics and their field dependence of (Ba, Ca)TiO3 ceramics. Materials Science and Engineering B, 2004, 113(2):117-120
    [109] V. V. Lemanov, E. P. Smirnova, P. P. Syrnikov, et al. Phase transitions and glasslike behavior in Sr1-xBaxTiO3. Phys. Rev. B, 1996, 54(5):3151-3157
    [110] H. V. Alexandru, C. Berbecaru, F. Stanculescu, et al. Ferroelectric solid solutions (Ba,Sr)TiO3 for microwave applications. Materials Science and Engineering B, 2005, 118(1-3): 92-96
    [111] A. Feteira, D. C. Sinclair, I. M. Reaney, et al. BaTiO3-based ceramics for tunable microwave applications. Journal of the American Ceramic Society, 2004, 87(6): 1082-1087
    [112] Yuanyuan Zhang, Gengshui Wang, Tao Zeng, et al. Electric field-dependent dielectric properties and high tunability of porous Ba0.5Sr0.5TiO3 Ceramics. Journal of the American Ceramic Society, 2007, 90(4): 1327-1330
    [113] M. Labeyrie, F. Guerin, T. M. Robinson, et al. Microwave charaterization of ferroelectric Ba1-xSrxTiO3 ceramics. IEEE Antennas and Propagation, 1994, 2: 710-713
    [114] L. C. Sengupta, S. Sengupta. Novel ferroelectric materials for phased array antennas. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1997, 44(4):792-797
    [115] J. Synowczynski, L. C. Sengupta. Investigation of the effect of particle size on the 10 Ghz microwave properties of Ba1-xSrxTiO3/MgO composite ceramics. Integrated Ferroelectrics, 1998, 22: 341-352
    [116] F. W. V. Keuls, C. H. Mueller, F. A. Miranda, et al. Room temperature thin film BaxSr1-xTiO3 Ku-band coupled microstrip phase shifters: effects of film thickness, doping, annealing and substrate choice. IEEE MTT-S International Microwave Symposium Digest, 1999, 2:737-740
    [117] A. V. Ivanov, O. I. Soldatenkov, N. V. Samoilov, et al. 30 GHz ferroelectric phase-shifter on the basis of loaded microstrip line. The 12th International Conference on Microwave and Telecommunication Technology, 2002: 385-386
    [118] A. B. Kozyrev, M. M. Gaidukov, A. G. Gagarin, et al. 60 GHz phase shifters based on BSTO ferroelectric film. The 11th International Conference on Microwave andTelecommunication Technology, 2001: 478-480
    [119] N. A. Pertsev, A. G. Zembilgotov, A. K. Tagantsev. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Physical Review Letters, 1998, 80(9): 1988-1991
    [120] S. Rios, J. F. Scott, A. Lookman, et al. Phase transitions in epitaxial Ba0.5Sr0.5TiO3 thin films. Journal of Applied Physics, 2006, 99: 024107-1-024107-8
    [121] W. Chang, S. W. Kirchoefer, J. M. Pond, et al. Strain-relieved Ba0.6Sr0.4TiO3 thin films for tunable microwave applications.Journal of Applied Physics, 2002, 92(3): 1528-1535
    [122] A. H. Mueller, N. A. Suvorova, E. A. Irenea. Model for interface formation and the resulting electrical propertie for barium–strontium–titanate films on silicon. Journal of Applied Physics, 2003, 93(7): 3866-3872
    [123] W. J. Kima, H. D. Wu, W. Chang, et al. Microwave dielectric properties of strained Ba0.4Sr0.6TiO3 thin films. Journal of Applied Physics, 2000, 88(9): 5448-5451
    [124] S. T. Chang, J. Y. Lee. Electrical conduction mechanism in high-dielectric-constant (Ba0.5,Sr0.5)TiO3 thin films. Applied Physics Letters, 2002, 80(4): 655-657
    [125] C. J. Lu, L. A. Bendersky, K. Chang, et al. Dissociation and evolution of threading dislocations in epitaxial Ba0.3Sr0.7TiO3 thin films grown on (001) LaAlO3 Materials. Journal of Applied Physics, 2003, 93(1):512-520
    [126] R. V. Wang, P. C. McIntyre. Point defect distributions and their electrical effects on (Ba,Sr)TiO3/Pt thin films. Journal of Applied Physics, 2003, 94(3):1926-1933
    [127] J. D. Baniecki, T. Shioga, K. Kurihara, et al. A study of current transport in (BaxSr1?x)Ti1+yO3+z thin-film capacitors containing a voltage-dependent interface state charge distribution. Journal of Applied Physics, 2005, 97:114101-1-114101-10
    [128] B. Chen, H. Yang, J. Miao, et al. Leakage current of Pt/(Ba0.7Sr0.3)TiO3 interface with dead layer. Journal of Applied Physics, 2005, 97: 024106-1-024106-4
    [129] S. Y. Lee, T. Y. Tseng. Electrical and dielectric behavior of MgO dopedBa0.7Sr0.3TiO3 thin films on Al2O3 substrate. Applied Physics Letters, 2002, 80(10): 1797-1799
    [130] M. Jain, S. B. Majumder, R. S. Katiyara, et al. Improvement in electrical characteristics of graded manganese doped barium strontium titanate thin films. Applied Physics Letters, 2003, 82(12): 1911-1913
    [131] S. J. Lee, S. E. Moon, H. C. Ryu, et al. Microwave properties of compositionally graded (B,Sr)TiO3 thin films according to the direction of the composition gradient for tunable microwave applications. Applied Physics Letters, 2003, 82(13): 2133-2135
    [132] H. W. Wang, S. W. Nien, K. C. Lee. Enhanced tunability and electrical properties of barium strontium titanate thin films by gold doping in grains. Applied Physics Letters, 2004, 84(15): 2874-2876
    [133] Z. Yuan, Y. Lin, J. Weaver, et al. Large dielectric tunability and microwave properties of Mn-doped (Ba,Sr)TiO3 thin films. Applied Physics Letters, 2005, 87:152901-1-152901-3
    [134] H. S. Kim, H. G. Kim, I. D. Kim, et al. High-tunability and low-microwave-loss Ba0.6Sr0.4TiO3 thin films grown on high-resistivity Si substrates using TiO2 buffer layers. Applied Physics Letters, 2005, 87:212903-1-212903-3
    [135] Xiaohua Sun, Bailin Zhu, Tao Liu, et al. Dielectric and tunable properties of K-doped Ba0.6Sr0.4TiO3 thin films fabricated by sol-gel method. Journal of Applied Physics, 2006, 99: 084103-1-084103-6
    [136] M. W. Cole, E. Ngo, S. Hirsch, et al. Dielectric properties of MgO-doped compositionally graded multilayer barium strontium titanate films. Applied Physics Letters, 2008, 92:072906-1-072906-3
    [137] J. Im, O. Auciello, P. K. Baumann, et al. Composition-control of magnetron-sputter-deposited (BaxSr1-x)Ti1+yO3+z thin films for voltage tunable devices. Applied Physics Letters, 2000, 76,(5):625-627
    [138] N. Scarisoreanu, M. Filipescu, A. Ioachim, et al. BST thin films obtained by PLD for applications in electronics. Applied Surface Science, 2007, 253(19): 8254-8257
    [139] Jun Wang, Tianjin Zhang, Junhuai Xiang, et al. High-tunability and low-leakage current of the polycrystalline compositionally graded (Ba,Sr)TiO3 thin films derived by a sol–gel process. Materials Chemistry and Physics, 2008, 108(2-3): 445-448
    [140] S. Regnery, P. Ehrhart, F. Fitsilis, et al. (Ba,Sr)TiO3 thin film growth in a batch processing MOCVD reactor. Journal of the European Ceramic Society, 2004, 24(2): 271-276
    [141] G. A. Smolenskii. Segnetoelektricheskie svoistva nekotorykh titanatov I tsirkonatov dvukhvalentnykh metallov, imeyushchikh strukturu tipa perovskita. Zhurnal Tekhnicheskoi Fiziki, 1950, 20(2): 137-148
    [142] S. Nomura, S. Sawada. Dielectric properties of lead-strontium titanate. Journal of the Physical Society of Japan, 1955, 10: 108-111
    [143] Y. Somiya, A. S. Bhalla, L. E. Cross. Study of (Sr, Pb)TiO3 ceramics on dielectric and physical properties. International Journal of Inorganic Materials, 2001, 3(7): 709-714
    [144] D. H. Kang, J. H. Kim, J. H. Park, et al. Characteristics of (Pb1?x Srx)TiO3 thin films prepared by a chemical solution processing. Materials Research Bulletin, 2001, 36: 265-276
    [145] V. M. Naik, D. Haddad, R. Naik, et al. Phase transitional studies of polycrystalline Pb0.4Sr0.6TiO3 films using Raman scattering. Journal of Applied Physics, 2003, 93(3): 1731-1734
    [146] K. T. Kim, C. I. Kim. Structure and dielectrical properties of (Pb,Sr)TiO3 thin films for tunable microwave device. Thin Solid Films, 2002, 420-421: 544-547
    [147] T. Karaki, J. Du, T. Fujii, et al. Electrical properties of epitaxial (Pb,Sr)TiO3 thin films prepared by RF magnetron sputtering. Japanese Journal of Applied Physics, 2002, 41: 6761-6764
    [148] K. T. Kim, C. I. Kim. Dielectric properties of highly (100) oriented (Pb0.5,Sr0.5)TiO3 thin films grown on LaNiO3 electrodes. Thin Solid Films, 2004, 447-448: 651-655
    [149] Y. Lin, X. Chen, S. W. Liu, et al. Anisotropic in-plane strains and dielectric properties in (Pb,Sr)TiO3 thin films on NdGaO3 substrates. Applied Physics Letters, 2004, 84(4): 577-579
    [150] X. T. Li, W. L. Huo, C. L. Mak, et al. Effect of Mg doping on ferroelectric PST thin films for high tunable devices. Materials Chemistry and Physics, 2008, 108: 417-420
    [151]廖承恩.微波技术基础.西安:西安电子科技大学出版社, 1994年第一版
    [152] W. Hilberg. From approximations to exact relations for characteristic impedances. IEEE Transactions on Microwave Theory and Techniques, 1969, 17(5): 259-265
    [153] P. Sun, N. Matsuura, H. E. Ruda. Crystallization and properties of PbO-doped Ba0.7Sr0.3TiO3 films. Journal of Applied Physics, 2004, 96 (6):3417-3423
    [154] Y. D. Xia, C. Cai, X. Y. Zhi, et al. Effects of the substitution of Pb for Ba in (Ba,Sr)TiO3 films on the temperature stability of the tunable properties. Applied Physics Letters, 2006, 88(18):182009-1-182909-3
    [155] Xiaohua Sun, Huiming Huang, Shengxiang Wang, et al. Dielectric and tunable properties of Pb0.25BaxSr0.75?xTiO3 thin films fabricated by a modified sol-gel method. Thin Solid Films, 2008, 516(6): 1308-1312
    [156] W. J. Merz. The effect of hydrostatic pressure on the Curie point of barium titanate single crystals, Physical Review, 1950, 78(1): 52-54
    [157] K. Igarashi, K. Koumoto, H. Yanagida, et al. Curie point of perovskite-type oxides containing bivalent ions of the 4th period in the B-site. Journal of Materials Science, 1988, 23(7): 2517-2520
    [158] M. E. Lines, A M Glass. Principles and applications of ferroelectrics and related materials. Oxford: Clarendon, 1977: 248
    [159] K. A. Müller, H. Burkard. SrTiO3: An intrinsic quantum paraelectric below 4 K. Physical Review B, 1979, 19(7): 3593-3602
    [160] K. Igarashi, K. Koumoto, Hiroaki Yanagida. Ferroelectric Curie points at perovskite-type oxides. Journal of Materials Science, 1987, 22(8):2828-2832
    [161] M. I. Marqués, C. Aragó, J. A. Gonzalo. Quantum paraelectric behavior of SrTiO3: Relevance of the structural phase transition temperature. Physical Review B, 2005, 72: 092103-1- 092103-3
    [162] P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Physical Review, 1964, 136: B864–B871
    [163] W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects, Physical Review, 1965, 140: A1133-A1138
    [164] J. P. Perdew, K. Burk, M. Ernzerhof. Generalized gradient approximation made simple, Physical Review Letters, 1966, 77: 3865-3868
    [165] J. P. Perdew, J. A. Chevary, S. H. Vosko et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Physical Review B, 1992, 46: 6671-6687
    [166] J. P. Perdew, Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 1992, 45(23): 13244-13249
    [167] M. C. Payne, M. P. Teter, D. C. Allan, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 1992, 64(4): 1045-1097
    [168] H. J. Monkhorst, J. D. Pack. Special points for Brillouin-zone integrations. Physical Review B, 1976, 13(12): 5188-5192
    [169]王渊旭,钟维烈,王春雷等.四方铁电体PbFe0.5Nb0.5O3精细结构的第一性原理研究.物理学报, 2002, 51(1): 171-173
    [170]彭毅萍,王渊旭,张磊等. K(Ta0.56Nb0.44)O3四方铁电结构的第一性原理研究.物理学报, 2000, 49(6): 1140-1143
    [171]薛卫东,李言荣,杨春. BaxSr1- xTiO3精细结构的第一性原理研究.化学物理学报, 2005, 18(2): 179-182
    [172] S. Y. Kuo, W. Y. Liao, W. F. Hsieh. Structural ordering transition and repulsion of the giant LO-TO splitting in polycrystalline BaxSr1-xTiO3. Physical Review B, 2001, 64(22): 224103-224109
    [173] J. D. Freire, R. S. Katiyar. Lattice dynamics of crystals with tetragonal BaTiO3 structure. Physical Review B, 1988, 37(4): 2074-2085
    [174] H. Shigetani, K. Kobayashi, M. Fujimoto, et al. BaTiO3 thin films grown on SrTiO3 substrates by a molecular-beam-epitaxy method using oxygen radicals. Journal of Applied Physics, 1997, 81(2): 693-697
    [175] G. S. Szabó, R. E. Cohen, H. Krakauer. First-Principles Study of Piezoelectricity in PbTiO3. Physical Review Letters, 1998, 80(19): 4321-4324
    [176] P. Ghosez, J. P. Michenaud, X. Gonze. Dynamical atomic charges: the case of ABO3 compounds. Physical Review B, 1998, 58(10): 6224-6240
    [177] C. L. Chen, J. Shen, S. Y. Chen, et al. Epitaxial growth of dielectric Ba0.6Sr0.4TiO3 thin film on MgO for room temperature microwave phase shifters. Applied Physics Letters, 2001, 78(5): 652-654
    [178] L. Wu, Y. C. Chen, Y. P. Chou, et al. Dielectric properties of Al2O3-doped barium strontium titanate for application in phase array antennas. Japanese Journal of Applied Physics, 1999, 38: 5154-5161
    [179] J. Zhai, X. Yao, L. Zhang, et al. Dielectric nonlinear characteristics of Ba(Zr0.35Ti0.65)O3 thin films grown by a sol-gel process. Applied Physics Letters, 2004, 84(16): 3136-3138
    [180] S. G. Lu, X. H. Zhu, C. L. Mak, et al. High tunability in compositionally graded epitaxial barium strontium titanate thin films by pulsed-laser deposition. Applied Physics Letters, 2003, 82(17): 2877-2879
    [181] K. V. Saravanan, K. Sudheendran, M. G. Krishna, et al. Effect of process parameters and post deposition annealing on the optical, structural and microwave dielectric properties of RF magnetron sputtered (Ba0.5,Sr0.5)TiO3 thin films. Vacuum, 2006,81(3): 307-316
    [182]汪胜祥.磁控溅射制备移相器用新型薄膜材料的研究.博士学位论文,武汉大学, 2007: 79-80
    [183]彭刚. PZT第一性原理计算及其铁电性能研究.博士学位论文,华中科技大学, 2007
    [184] T. J. Zhu, L. Lu. X-ray diffraction and photoelectron spectroscopic studies of (001)-oriented PbZr0.52Ti0.48O3 thin films prepared by laser ablation. Journal of Applied Physics, 2004, 95(1): 241-247
    [185] B. D. Qu, Y. G. Wang, W. L. Zhong, et al. Surface analysis of PbTiO3 films prepared by the sol-gel method. Journal of Applied Physics, 1992, 71(7): 3467-3470
    [186] V. Craciun, R. K. Singh. Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation. Applied Physics Letters, 2000, 76(14): 1932-1934
    [187] J. Im, S. K. Streiffer, O. Auciello, et al. Degradation of ferroelectric Pb(Zr,Ti)O3 under reducing conditions. Applied Physics Letters, 2000, 77(16): 2593-2595
    [188] Y. Fujisaki, Y. Shimamoto, Y. Matsui. Analysis of decomposed layer appearing on the surface of barium strontium titanate. Japanese Journal of Applied Physics, 1999, 38: L52-L54
    [189] C. D. Wagner, L. E. Davis, M. V. Zeller, et al. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surface Interface Analysis, 1981, 3: 211-225
    [190] D. Briggs, M. P. Seah. Practical surface analysis. New York: John Wiley and Sons, 1983, 182: 511-514
    [191] R. Igreja, C. J. Dias. Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure. Sensors and Actuators A, 2004, 112: 291-301
    [192] Y. Wang, N. Chong, Y. L. Cheng, et al. Dependence of capacitance on electrode configuration for ferroelectric films with interdigital electrodes. MicroelectronicEngineering, 2003, 66: 880-886
    [193] H. Yoon, V. K. Varadan. Design and performance of bilateral interdigital coplanar waveguide phase shifter for rf communication applications. Journal of Microlithography, Microfabrication, and Microsystems, 2005, 3(3): 459-466
    [194] A. S. Nagra, R. A. York, Distributed analog phase shifters with low insertion loss. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(9): 1705-1711
    [195] N. J. Kidner, Z. J. Homrighaus, T.O. Mason a, et al. Modeling interdigital electrode structures for the dielectric characterization of electroceramic thin films. Thin Solid Films, 2006, 496: 539-545

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700