旋转惯性压电电机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转惯性压电电机是一种利用非对称信号驱动的新型微特电机,具有抗磁干扰、响应速度快和定位精度高等特点。该电机在生物、电子、医疗器械、精密加工及精密操作等领域具有广阔的应用前景。然而现有惯性压电电机不能够整周连续旋转,为此本文提出一种新型旋转惯性压电电机,不仅可以实现整周连续旋转,而且具有结构简单、便于小型化等优点。
     本文分析了旋转惯性压电电机的驱动原理。根据连续体振动原理,将振子简化为带有集中质量的连续,建立了简化振子的动力学模型;考虑外圆环刚度影响,利用和圆环耦合的方法建立了振子动力学模型。采用上述两种方法求解振子面内弯曲振动的固有频率和模态函数,分析了结构参数对振子面内弯曲振动固有频率和模态函数的影响规律。通过比较找出两种算法的相似模态,计算了简化振子方法和环耦合方法所求固有频率的相对偏差。研究结果表明:在圆环厚度比较薄以及圆环模态刚度对影响较小情况下,可采用简化方法。
     根据电容充放电原理,推导了压电陶瓷片两端电压的响应方程。讨论了压电陶瓷片充放电时间对驱动信号周期的影响规律。利用压电方程和拉格朗日方程推导了振子受迫振动的广义位移方程,并根据弹性体振动叠加原理,求得了振子上各点位移、速度、加速度响应方程,分析了系统参数对振子端部位移、速度、加速度响应的影响规律。利用傅里叶变换将激励信号从时域转化到频域,推导出旋转惯性压电电机振子惯性冲击力矩方程。在频域内分析了系统参数对突变时刻惯性冲击力矩及其差值的影响规律。结果表明:突变时刻的惯性冲击力矩最大差值相应于激励信号频率为振子固有频率1/2到固有频率之间区域。
     设计并研制出旋转惯性压电电机样机,利用测试系统测得在激励信号频率为6.310kHz,电压峰值为100V时,样机最大转速为59.6r/min,转矩为0.35Nmm,并且转速(转矩)随激励信号电压峰值增大而增大,试验结果验证了理论分析的正确性。
An inertial piezoelectric rotary motor is a new type of micro & special motor, drivenby asymmetric waveform voltage. It is different from traditional motor, and has theadvantages of simple mechanism, magnetic interference, fast response speed, positioningaccuracy et al. it has wide application prospects in the biological, electronics, medicalequipment, precision processing and precision operation fields and so on. However, theexisting inertial piezoelectric motor can not achieve the whole week continuous rotation,so this paper puts forward a new type of rotary inertia piezoelectric motor. It not only canachieve the whole week of continuous rotation, and has the advantages of simplestructure, easy miniaturization.
     This paper analyzes the rotary inertial piezoelectric motor driving principle.According to the principle of continuous body vibration, the dynamic model of simplifiedvibration structure has been built, and using the method of coupling beam and ring, thedynamic model has been built. Utilizing the two dynamic models, the natural frequenciesand modal functions of the vibrator bending in-plane vibration have been solved. Theinfluence laws of the two algorithms with changing the vibration structure parametershave been analyzed. Through compared and found the similar mode of two algorithms,the error of similar mode solved by two algorithms have been caculated. The results showthat: simplify the method can be used in the ring thickness is relatively thin and ringmodal stiffness of the beam smaller.
     According to the capacitance charge and discharge principle, the voltage responseequation of the ends of piezoelectric element has been deduced. The influence law ofcharge and discharge time of piezoelectric element on driving cycle is discussed.Utilizing piezoelectric equation and Lagrange equation, the generalized displacementequation of force vibration of the vibrator have been deduced. And according to elasticvibration superposition principle, the response equation of displacement, velocity andacceleration have been gained. The influence law of changing system parameters andstructure parameters of the vibrator on displacement, velocity and acceleration response of vibrator-beam has been analyzed. Utilizing Fourier transform, the excitation signal hasbeen changed from the time domain into frequency domain. The equation of inertialimpact moment of vibrator has been deduced. In the frequency domain, the influence lawof changing system parameters and structure parameters of the vibrator on inertial impactmoment of mutations moment and inertial impact moment difference of two mutationsmoments have been analyzed. The results show: When frequencies value of excitationsignal is betweenωj/2 toωj, the inertial impact moment maximum difference of twomutations moments appears.
     The rotary inertial piezoelectric motor prototype has been designed and developed.Utilizing the test system, when the excitation signal frequency is 6.310kHz and drivingvoltage peak 100V, the maximum speed of prototype is 59.6r/min, maximum torque is0.35Nmm. And the speed (torque) is increased along with the excitation signal peakvoltage increases. The control methods of prototype, adjusting voltage and frequencieshave been put forward. The test results verify the accuracy of the theoretical analysis.
引文
[1]胡敏强,金龙,顾菊平.超声波电机原理与设计[M].北京:科学出版社,2005:1-1,11-12,27-29.
    [2]赵淳生,超声电机技术与应用[M].北京:科学出版社,2007:1.
    [3]唐任远等.中国电气工程大典第9卷电机工程[M].北京:中国电力出版社,2008:840-849.
    [4]张学福,王丽坤.现代压电学(上)[M].北京:科学出版社,2002:84-99
    [5]林书玉.超声换能器的原理及设计[M].北京:科学出版社,2004:10-11
    [6] Wallaschek J.Ultrasonic motor research in Germany-past,present,future.Proceedings of theFirst International Workshop on Ultrasonic Motors and Actuators[J].Yokohama,Japan:TokyoInstitute of Technology,2005:1-1.
    [7] Williams W,Brown W.Piezoelectric motor[P].US Patent,2439499.1942-8-20.
    [8] Britten F J.Britten’s Watch and Clock Maker’s Handbook:Dictionary and Guide[M].New York:Arco Publishing Co.,1978:109.
    [9]上羽贞行,富川义郎.超声波马达理论及应用[M].杨志刚,郑学伦译.上海:上海科学出版社,1999:7-9.
    [10] Lavrinenko V V,Nekrasov M.Piezoelectric motor[P].Soviet Patent,217509,1965.
    [11] Barth H V.Ultrasonic drive motor[J].IBM Technical Disclosure Bulletin,1973,16(7):2263.
    [12] Vasiliev P,Klimavichjus R,Kondratiev A et al.Vibration motor control[P].UK Patent,GB2020857A,1979.
    [13] Kumada A.Apiezoelectric ultrasonic motor[J].Japanese Journal of Applied Physics,Supplement,1985,24(2):739-741.
    [14]于寒冰.不断发展的超声波电动机[J].日本的科学与技术,1995,(5):39-44.
    [15]胡敏强.超声电机的研究及其应用[J].微特电机,2000,(5):8-24.
    [16]赵淳生,李朝东.日本超声电机的产业化、应用和发展[J].振动、测试与诊断,1999,19(1):1-7.
    [17] Sashida T.Motor Device Utilizing Ultrasonic Oscillation[P].US patent,4562374.1984.
    [18] Sashida T.Trial construction and operation of an ultrasonic vibration driven motor[J].OyoButsiuri,1982,51(6):713-718.
    [19]周铁英,鹿存跃,陈宇.毫米压电微电机的发展与应用[J].微特电机,2005,12:42-44.
    [20] Friend J R,Satonobu J,Nakamura K,Ueha S,Stutts D S.A single-element tuning forkpiezoelectric linear actuator[J].IEEE Transactions on Ultrasonics,Ferroelectrics and FrequencyControl,2003,50(2):179-186.
    [21] Scott L. Sharp,Jeffery S.N. Paine,Jonathan D. Blotter.Design of a Linear UltrasonicPiezoelectric Motor[J].Journal of Intelligent Material Systems and Structures,2010,21(10):961-973.
    [22] Zhaoa Su,Twiefel Jens,Wallaschek Joerq.Design and experimental investigations of high powerpiezoelectric transducers for a novel squeeze film journal bearing[C].Proceedings of SPIE - TheInternational Society for Optical Engineering,2009,7288,72881G.
    [23] Lee Won-Hee,Kang Chong-Yun,Paik Dong-Soo,et al.Butterfly-shaped ultra slim piezoelectricultrasonic linear motor[J].Sensors and Actuators,2011,168,137-130.
    [24] DembéléSounkalo,Rochdi Karima.A three DOF linear ultrasonic motor for transport andmicropositioning[J].Sensors and Actuators,2006,125(2):486-493.
    [25]周铁英,陈宇,鹿存跃等.螺母型超声电机驱动的集成透镜调焦系统[J].中国科技E辑:技术科学,2009,39(10):1650-1654.
    [26] Shi Yunlai,Zhao Chunsheng,Huang Weiqing.Linear ultrasonic motor with wheel-shapedstator[J].Sensors and Actuator A:Physical,2010,161(1-2):205-209.
    [27]杨志刚,张德君,程光明,等.双作用压电薄膜泵[J].哈尔滨工业大学学报,2009,41(11):173-177.
    [28]曲建俊,王彦利.超声电机用摩擦材料的研究进展[J].摩擦学报,2010,30(9):513-518.
    [29] Maeno T.Recent progress of ultrasonic motors in Japan[C].The 1stInternational Workshop onUltrasonic Motors and Actuators.Yokohama,Japan,2005:15-17.
    [30]赵淳生.面向21世纪的超声电机技术[J].中国工程科学,2002,4(2):86-91.
    [31] Hong J K,Park C H,Lee J S,et al.The trial fabrication and characteristics of linear ultrasonicmotor for application to X-Y table[C].Proceedings of the IEEE Ultrasonic Symposium,1999,1:683-686.
    [32] Iion A,Suzuki K,Kasuga M et al.Development of a self-oscillating ultrasonic micro-motor andits application to a watch[J].Ultrasonics,2000,38(1):54-59.
    [33] Zhang Xiaofeng,Zhang Guangbin,Nakamura Kentaro,Ueha Sadayuki.A robot finger jointdriven by hybrid multi-DOF piezoelectric ultrasonic motor[J].Sensors and Actuators,A:Physical,2011,169(1):206-210.
    [34] Mashimo Tomoaki,Toyama Shigeki,Ishida Hiroshi.Development of an MRI compatiblesurgical assist manipulator using spherical ultrasonic motor (1st report)-Prototype of the sphericalultrasonic motor[J].Journal of the Japan Society for Precision Engineering,2007,73(2):275-280.
    [35] Akio S,Mutsumi M,Hideyasu M et al.Steering wheel position adjusting apparatus for avehicular steering system[P].United States Patent,5806890,1998.
    [36] Choo Liaw Hwee,Bijan Shirinzadeh,Julian Smith.Sliding-mode enhanced adaptive motiontracking control of piezoelectric actuation systems for micro/nano manipulation[J].IEEETransactions on Control Systems Technology,2008,16(4):826-833.
    [37] Ueha S,Tomikawa Y.Ultrasonic motor:theory and application[M].Oxford:Clarendon Press,1993:8-24.
    [38]陈维山,李霞,谢涛.超声电机在太空探测中的应用[J].微特电机,2007,1:42-45.
    [39]张铁民.超声电机快速响应装置的设计与分析[J].现代机械,2000,4:29-31.
    [40] Zheng Wei,Zhao Chunsheng.Test of mechanical characteristics of ultrasonic motor under hightemperature condition[J].Optics and Precision Enginering,2008,16(12):2313-2319.
    [41]郑伟,赵淳生.低温环境下超声电机定子特性[J].南京航空航天大学学报,2009,41(1):1-5.
    [42]芦丹,郑伟,赵淳生.真空环境下超声电机的速度测试与控制[J].光学精密工程,2008,16(7):1218-1222.
    [43] Jeong D H,Kweon H K,Kim Y S.Development of the precision stage with nanometer accuracyand a millimeter dynamic range[J].Key Engineering Materials,2008,382:47-48.
    [44]史敬灼,周鲁英.超声电机系统最大效率控制研究现状与展望[J].微电机,2009,2:64-66.
    [45]陈乾伟,黄卫青,赵淳生.超声电机寿命测试的方法研究[J].振动、测试与诊断,2004,1:19-22.
    [46]王彦利。超声波电机梯度摩擦材料设计及匹配行为研究[D]。哈尔滨:哈尔滨工业大学机械设计及理论学科博士学位论文,2011:5-16.
    [47] Qu J J,Zhou N N,Wang Y L.Experimental study of air squeeze effect on high-frequency frictioncontact[J].Tribology International,2010,43:2190-2195.
    [48]赵淳生.对发展我国超声电机技术的若干建议[J].微电机,2006,39(2):64-67.
    [49] Manuspiya S,Laoratanakul P,Uchino K.Integration of a piezoelectric transformer and anultrasonic motor[J].Ultrasonics,2003:83-87.
    [50] Spanner K.Survey of the Various Operating Principles of Ultrasonic Piezomo-tors[C].Proceedings of International Conference on Actuator,2006.
    [51] Morita T.Miniature piezoelectric motors[J].Sensors and Actuators.A,Physical,2003,103(3):291-300.
    [52] Dalius Mazeika,Piotr Vasiljev.Linear inertial piezoelectric motor with bimorphdisc[J].Mechanical Systems and Signal Processing,Article in Press 2011.
    [53]陈西平.压电型惯性冲击式运动机构驱动理论和试验研究[D].长春:吉林大学机械设计及理论学科博士学位论文,2003:3-9.
    [54]曾平,温建明,程光明,等.新型惯性式压电驱动机构的研究[J].光学精密工程,2006,14(4):623-627.
    [55] Liu Yung-Tien,Hiquchi Toshiro,Fung Rong-Fong.A novel precision positioning table utilizingimpact force of spring-mounted piezoelectric actuator-Part I:Experimental design andresults[J].Precision Engineering,2003,27(1):14-21.
    [56]李晓韬.压电自感式惯性驱动器的理论及试验研究[D].长春:吉林大学机械设计及理论学科博士学位论文,2010:4-15.
    [57] Han W X,Zhang Q,Ma Y T,Pan C L,et al.An impact rotary motor based on a fiber torsionalpiezoelectric actuator[J].Review of Scientific Instruments,2009,80(1):no. 014701.
    [58]李晓韬,程光明,杨志刚,等.应用惯性冲击原理的非对称夹持式压电旋转驱动器的设计[J].光学精密工程,2010,18(1):156-161.
    [59]高亮,阚珊珊,李敏,等.压电陶瓷精密转动平台的转角精度测量[J].光学精密工程,2007,15(2):206-210.
    [60]章海军,黄峰.压电陶瓷冲击驱动机构在微细进给与操作中的应用[J].浙江大学学报,2000,34(5):519-522.
    [61]鄂世举,吴博达,杨志刚.压电式微小驱动器的发展及应用[J].压电与声光,2002,24(6):447-451.
    [62]华顺明,程光明,阚君武,等.压电精密位移驱动器的研究进展[J].压电与声光,2004,26(3):192-195.
    [63] Wang Q M,Cross L E.Performance Analysis of Piezoelectric Cantilever BendingActuators[J].Ferroelectrics,1998,215:187-213.
    [64] Higuchi T,Yamagata Y,Furutani K,et al.Precise positioning mechanism utilizing rapiddeformations of piezoelectric elements[C].Proceedings.IEEE Micro Electro MechanicalSystems-An Investigation of Micro Structures,Sensors,Actuators,Machines,1990:222-226.
    [65] Higuchi Toshiro,Furutani Katsushi,Yamagata Yutaka.Improvement of velocity of impact drivemechanism by controlling friction[J].Seimitsu Kogaku Kaishi/Journal of the Japan Society forPrecision Engineering,1992,58(8):1327-1332.
    [66] Judy Jack W,Polla Dennis L,Robbins William P.A linear piezoelectric stepper motor withsubmicrometer step size and centimeter travel range[C].IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control,1990,37(5):428-437.
    [67] Judy Jack W,Polla Dennis L,Robbins William P.Experimental model and ic-process design ofa nanometer linear piezoelectric stepper motor[C].American Society of Mechanical Engineers,Dynamic Systems and Control Division (Publication) DSC,1990,19:11-17.
    [68] Zesch Wolfgang,Büchi Roland,Codourey Alain,et al.Inertial drives for micro- andnanorobots:two novel mechanisms[C].Proceedings of SPIE-The International Society for OpticalEngineering,1995:80-88.
    [69] Buechi Roland,Zesch Wolfgang,Codourey Alain,et al.Inertial drives for micro- and nanorobots:analytical study[C].Proceedings of SPIE-The International Society for Optical Engineering,1995:89-97.
    [70] Takeshi Morita,Ryuichi Yoshida,Yasuhiro Okamoto et al.A smooth impact rotation motor usinga multi-layered torsional piezoelectric autuator[C].IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,1999,46(6):655-663.
    [71] Ueno T,Zhang Z G,Higuchi T,Translatory and bending micro magnetostrictive actuator usingiron-gallium alloys (Galfenol):A new actuation approach for microrobots[J].AdvancedRobotics,2010,24(10):1423-1440.
    [72] Rakotondrabe M,Haddab Y,Lutz P.Voltage/frequency proportional control of stick-slipmicropositioning systems[C].IEEE Transactions on Control Systems Technology,2008,16 (6):1316-1322.
    [73] Morita Takeshi,Yoshida Ryuichi,Okamoto Yasuhiro,et al.Three DOF parallel link mechanismutilizing smooth impact drive mechanism[J].Precision Engineering,2002,26(3):289-295.
    [74] B Watson,J Friend,L Yeo,Piezoelectric ultrasonic micro/mille-scale actuator[J].Sensors andActuators 2009,152:219-233.
    [75] WU T,PAUL I.Dynamic peak amplitude analysis and bonding layer effects of piezoelectricbimorph cantilevers[J].Smart Materials and Structures,2004,13(1):203-210.
    [76] Christian Belly.Benefits of amplification in an inertial stepping motor[J].Mechatronics,articlein press.
    [77] Bergander A,Driesen W,Lal A,et al.Position feedback for microrobots based on scanning probemicroscopy[C].2004 IEEE/RSJ International Conference on Intelligent Robots and Systems,2004,2:1734-1739.
    [78] Bergander A,Driesen W,Varidel T,et al.Monolitihic piezoelectric push-pull actuators forinertial drives[C].IEEE Micromechatronics and Human Science,2003:309-316.
    [79] Ryuichi Yoshida,Takayuki Hoshino,Syuichi Fujii,et al.Development of smoothimpact drivemechanism-Application of positioning stage using SIDM[C].Journal of the Japan Society forPrecision Engineering,2006.
    [80] Yuasa Tomoyuki,Yoshida Ryuichi,Isono Masashi,et al.Application of micro piezo actuator(SIDM) -Lens drive for mobile phone camera[J].Journal of the Japan Society for PrecisionEngineering,2009:144-145.
    [81] Lim Kee Joe,Lee Jong Sub,Seong Park Hee,et al.Fabrication and characteristics ofimpact typeultrasonic motor[J].Journal of the European Ceramic Society,2007,27:4159-4162.
    [82] Oh Jin-Heon,Lim Kee-Joe,Kang Seong-Hwa,et al.Electric field dependence of piezoelectricconstants and resonance characteristics in modified PZT ceramics[J].Ferroelectrics,2009,379(1-2):7-14.
    [83] Takuma Nishimura,Hiroshi Hosaka,Takeshi Morita.Resonant-type Smooth Impact DriveMechanism (SIDM) actuator using a bolt-clamped Langevin transducer[J].Ultrasonics,2012,52(1):75-80.
    [84]孙立宁,刘品宽,吴善强,等.管内移动微型机器人研究与发展现状[J].光学精密工程,2003,11(4):326-332.
    [85]刘品宽,孙立宁,刘涛.惯性冲击式运动原理的理论分析与仿真[J].中国机械工程,2004,15(24):2217-2221.
    [86]刘建芳,杨树臣,杨志刚,等.新型压电精密步进旋转驱动器研究[J].光学精密工程,2006,14(4):594-601.
    [87]赵宏伟,吴博达,杨志刚,等.尺蠖型压电旋转驱动器钳位特性分析[J].西安交通大学学报,2007(9):1022-1025.
    [88]莫岳平,靳宏,Wallaschek J,等.一种新型压电超声直线电机的研究[J].微电机,2011,44(8):11-13.
    [89]陈西平,付庄,曹其新,等.压电型惯性冲击机构的驱动波形分析[J].压电与声光,2005,27(3):316-319.
    [90]杨志欣,孙宝元,董维杰.一种新型惯性式压电执行器研究[J].大连理工大学学报,2005,45(1):45-49.
    [91] Liu Yung-Tien,Wang Cheng-Wei.A self-moving precision positioning stage utilizing impactforce of spring-mounted piezoelectric actuator[J].Sensors and Actuators,2002,102(1-2):83-92.
    [92] Fung Rong-Fong,Han Chang-Fu,Chang Jer-Rong.Dynamic modeling of a high-precisionself-moving stage with various frictional models[J].Applied Mathematical Modelling,2008,32(9):1769-1780.
    [93] Fung Rong-Fong,Liu Yung-Tien,Huang Tai-Kun,et al.Dynamic Responses of a Self-MovingPrecision Positioning Stage Impacted by a Spring-Mounted Piezoelectric Actuator[J].Journal ofDynamic Systems,Measurement and Control,2003,125 (4):658-661.
    [94]卢秋红,颜国正.基于粘-滑摩擦力模型的微型压电驱动器动力学分析[J].上海交通大学学报,2004,38(8):1328-1330
    [95]卢秋红,高志军,颜国正,等.压电型惯性微驱动器研究[J].压电与声光,2004,26(2):112-115.
    [96]左建勇,颜国正,高志军,等.压电直线驱动器[J].压电与声光,2005,27(3):232-234.
    [97]张宏壮,曾平,华顺明,等.压电双晶片型惯性冲击式旋转精密驱动器研究[J].光学精密工程,2005,13(3):299-303.
    [98]曾平,温建明,程光明,等.新型压电双晶片式惯性旋转驱动机构设计[J].纳米技术与精密工程,2008,6(4):302-306.
    [99]张宏壮,程光明,华顺明,等.压电双晶片型旋转精密驱动器动态特性和控制[J].哈尔滨工业大学学报,2009,41(11):302-306.186-189.
    [100]温建明,程光明,曾平,等.新型惯性压电驱动机构的仿真分析[J].压电与声光,2008,30(4):421-424.
    [101]姜楠,刘俊标,方光荣,等.惯性冲击式压电微电机的研究[J].压电与声光,2007,29(2):187-189.
    [102]姜楠,刘俊标.旋转型压电惯性冲击马达的工作特性[J].光学精密工程,2009,17(2):350-355.
    [103]陶涛,方光荣,姜楠,等.IDM高性能驱动电源的研究[J].压电与声光,2009,31(2):221-223.
    [104]姜楠,刘俊标.惯性冲击马达的振动控制[J].压电与声光,2010,32(6):970-972.
    [105]陈翔宇,张松,李枢.一种锯齿波驱动的压电电机[J].压电与声光,2008,30(2):177-179.
    [106]陈翔宇,褚祥诚,李龙土.压电陶瓷直线驱动器的设计与实验研究[J].稀有金属材料与工程,2009,38(2):241-244.
    [107]CHU Xiang-cheng,CHEN Xiang-yu,LI Long-tu.Disk-pivot structure micro piezoelectricactuator with bimorp[J].Optics and Precision Engineerin,2008,16(12):2366-2370.
    [108]卢璇,刘俊标,方光荣.压电双晶片式惯性冲击电机的驱动研究[J].微特电机,2010,12:1-3.
    [109]Liu Yung-Tien,Higuchib Toshiro,Fung Rong-Fong.A novel precision positioning table utilizingimpact force of spring-mounted piezoelectric actuator—part II: theoretical analysis[J].PrecisionEngineering,2003,27(1):22-31.
    [110]马尚行,章海军,施洋.新型冲击驱动器及其在扫描隧道显微镜中的应用[J].中国机械工程,2005,16(3):205-208.
    [111]王矜奉,姜组桐,石瑞大.压电振动[M].北京:科学出版社,1989,36-39.
    [112]阮贵东,张金铎,王仁乾.压电还能器和换能器阵[M].北京:北京大学出版社,1990.
    [113]刘一声.压电双晶片致动元件的应用[J].压电与声光,1985(1):35-46.
    [114]Morris Christopher J,Forster Fred K.Optimization of a circular piezoelectric bimorph for amicropump driver[J].Journal of Micromechanics and Microengineering,2000,10(3):459-465.
    [115]Kim Jungsoon,Kim Moojoon,Lee Huiuk,et al.Electromechanical characteristics ofexponentially tapered Piezoelectric bimorph actuators[J].Japanese Journal of Applied Physics,20102010,49(7):07HD08.
    [116]Yan Shaoze,Zhang Fuxing,Wen Shizhu.Electro-mechanical coupling performances of apiezoelectric bimorph[J].Key Engineering Materials,2007,336-338:327-330.
    [117]刘延柱,陈文,陈立群.振动力学[M].北京:高等教育出版社,1998:130-135.
    [118]蒋纯志,李海阳.圆弧形曲的传递函数方法[J].湘南学院学报,2006,2:38-42.
    [119]Mohamed Taktak,Fakhreddine Dammak, Said Abid,Mohamed Haddar.A mixed-hybrid finiteelement for three-dimensional isotropic helical beam analysis[J].International Journal ofMechanical Sciences,2005,47:209-229.
    [120]Chouvion B,Fox C H J,McWilliam S,et al.In-plane free vibration analysis of combinedring-beam structural systems by wave propagation[J].Journal of Sound and Vibration,2010,39:5087-5104.
    [121] Wu Jong-Shyong,Chiang Lieh-Kwang.Free vibration of a circularly curved Timoshenko beamnormal to its initial plane using finite curved beam elements[J].Computers and Structures,2004,82:2525-2540.
    [122]刘协权,刘云庭,倪新华.圆环曲弯曲振动分析[C].“力学2000”学术大会论文集,2000:307-308.
    [123] Karami M. Amin,Bulent Yardimoglu,Inman Daniel J,Coupled out of plane vibrations of spiralbeams for micro-scale applications[J].Journal of Sound and Vibration,2010,329(26):5584-5599.
    [124]Magdalene Marinaki,Yannis Marinakis,Georgios E. Stavroulakis.Vibration control of beamwith piezoelectric sensors and actuators using particle swarm optimization[J].Expert Systemswith Applications,2011,38:6872-6883.
    [125](美)贾菲著.压电陶瓷.林声和译[M].北京:科学出版社,1979:25-28.
    [126]林书玉.超声换能器的原理及设计[M].北京:科学出版社,2004:18-19.
    [127]沈元隆,周井泉.信号与系统[M].北京:人民邮电出版社,2009:63-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700