微力传感器系统设计及在AFM中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于测量范德华力制成的原子力显微镜(Atomic Force Microscopy,AFM),现在已经广泛应用于化学、物理、表面科学等微观领域。压电式传感器和执行器具有结构简单、响应速度快、高频适用性强、驱动和处理电路简单等特点,在精密位移,精密定位、声学及力学量的检测等方面已经得到了广泛的应用。压电微悬臂在AFM中的应用是近十年的研究工作,一般用于位移传感、力传感和高速反馈定位。
     本文研究了基于PZT双片压电悬臂的微力传感器特性,并对该传感器应用于AFM进行了初步探索。为了提取和检测双片微弱的压电信号,搭建了基于电荷放大模块与锁相放大模块的微弱信号检测模块,具有体积小、重量轻和使用方便等优点。结合双片压电微悬臂在AFM中的实际应用模式,对其进行了机械特性和电学特性的测试测量,包括微悬臂法向弹性系数测量、准静态传感特性分析、静态执行特性测试、执行传感集成的谐频响应特性测试和一阶固有频率检测,并利用压电双晶片对双片对样品表面形貌扫描的微力测试进行了模拟,验证了双片结构的压电梁在微力感知与微位移检测方面的适用性。压电陶瓷管扫描器是AFM中的核心器件之一,在AFM工作时完成对样品X、Y方向的扫描,为了精确控制其扫描偏移量,搭建了基于LabVIEW虚拟仪器技术的测试平台,对其X/Y方向的微位移进行了检测,根据等间隔扫描的工作特点,提出简易非线性校正方法,大大降低了位移滞回偏差。
     研究表明双片结构的PZT压电微悬臂由于集成了执行与传感能力,在微力感知与微位移检测方面是适用的。在现有工艺和测量方法的基础上,若继续改善尺寸结构提高其电荷位移分辨率,则最终可以代替传统微悬臂应用到AFM系统。
Atomic Force Microscopy(AFM), made through testing the micro-force, is widely used in chemistry、physics、surface sciences、material sciences and life sciences, etc. Piezoelectric sensors and actuators with many advantages including simple structure, fast response, high frequency and simple driving, have been extensively applied. The research on the AFM application of micro piezoelectric cantilever is carried in these ten years, generally utilized in displacement sensing、force sensing and fast feedback orientation.
     The characteristic of the 2-segmented piezoelectric micro-cantilever is studied, along with its application in AFM. The main work includes making the separated micro-cantilever, forming the testing module for micro- piezoelectric signal, testing the mechanic and electric characteristics of the cantilever, building a simple way of measurement and correction for micro-displacement of ceramic tube, and analyzing its apply feasibility on the AFM. For the distilling and measuring of sensing charge, a special charge amplifying bulk and a special lock-in amplifying bulk for the 2-segmented PZT piezoelectric micro-cantilever are designed and facture, which have the advantages in small volume、low weight and convenient trait, etc. The mechanical and electric characters of the piezoelectric micro-cantilever are studied aimed at its application on AFM, including force constant testing、the sensing test under AC actuating voltages、the relationship researching between DC actuating and the force or displacement of the micro-cantilever、resonance frequent testing and the surface simulating under the piezoelectric bimorphs. A simple way to measure and correct micro-displacement of piezoelectric ceramic tube with intended use in AFM is introduced. Nonlinear correction is realized by applying non-equidistant control voltage series while scanning to equidistant pixel. The maximum hysteresis error is largely reduced, and the proposed system can easily adjust the scanning frequency and pixel resolution for the tube.
     The research indicates that the 2-segment piezoelectric cantilever is feasible in microforce sensing and mirodisplacement detecting. On the base of facturing and testing, perfecting the parameters of the cantilever, it can be used in AFM taking place of traditional cantilever.
引文
[1]Brandolini A,Gandelli A,Ottoboni R.Multi-purpose interface for both capacitive and piezoelectric sensors.IEEE Region 10 International Conference on Microelectronics and VLSI,1995:168-170.
    [2]Schweyer M.G,Hilton J.A,Munson J.E,etc.A novel monolithic piezoelectric sensor.IEEE International Symposium on Frequency Control,Orlando,1997:249-252
    [3]Fujita H.A decade of MEMS and its future.IEEE.Tenth Annual Interna-tional Workshop on Micro Electro Mechanical Systems,Nagoya,1997:1-7.
    [4]王立鼎,罗怡.中国MEMS的研究与开发进程.仪表技术与传感器,2003,1:1-3.
    [5]Senturia S.D,Azuru N,White J.Simulating the behavior of MEMS devices:computational methods and needs.IEEE Computational Science and Engineering,1997,4(1):30-43.
    [6]C Lee,T Itoh,G.Sasaki,T Siga.Sol-gel derived PZT force sensor for scanning force microscopy.Materials Chemistry and Physics,1996(44):25-29.
    [7]B Rogers,L Manning,T Sulchek,J D Adams.Improving tapping mode atomic force microscopy with piezoelectric cantilevers.Ultramicroscopy,2004(100):267-276
    [8]J D Adams,L Manning,B Rogers,M Jones,S C Minne.Self-sensing tapping mode atomic force microscopy.Sensors and Actuators,2005(121):262-266.
    [9]T Akiyama,U Stauger,V F de Rooij.Self-sensing and self-actuating probe based on quartz tuning fork with microfabricated cantilever for dynamic mode atomic force microscopy.Applied Sruface Science,2003(210):18-21.
    [10]白春礼,田芳,罗克.扫描力显微术.北京:科学出版社,2000年.
    [11]唐倩,朱才朝,成功.微悬臂的平衡和稳定性研究.机械设计与研究,2006,22(1):68-70.
    [12]Lin Wenhui,Zhao Yapu.Dynamic behaviour of banoscale electrostatic actuators.Chinese Physics Letter,2003,20(11):2070-2073.
    [13]包定华,张良莹,姚熹.压电微悬臂在原子力显微镜中的应用.压电与声光,1998,20(4):245-249.
    [14]肖增文,赵学增.AFM压电微悬臂振动影响测量图像的研究.压电与声光,2006,28(1):99-101.
    [15]Fujii T,W atanabe S.Feedback positioning cantilever using lead zirconate titanate thin film for force microscopy observation of micropattern.Appl Phys Lett,1996;68(4):467-468.
    [16]Fujii T,W atanabe S,Suzuk iM et al.Application of lead zirconate t itanate th in film displacement sensors for the atom force microscope.J Vac Sci Technol,1995,13B(3):1119-1122.
    [17]W atanabe S,Fujiu T,Fujii T.PZT thin film actuator sensor for atomic force microscope.IEEE ISAF_96,1996:199-204.
    [18]Itoh T,Lee C,Suga T.Deflection detection and feedback actuation using a self-excited piezoelectric Pb(Zr,Ti) O_3 micro-cantilever for dynamic scanning force microscopy.Appl Phys Lett,1996,69(14):2036-2038.
    [19]Lee C,Itoh T,Suga T.Micro-machined piezoelectric force sensors based on PZT thin films.IEEE Ultra Ferro Freq Contr,1996,43(4):553-559.
    [20]Itoh T,Suga T.Self-excited force-sensing microcantilevers with piezoelectric thin films for dynamic scanning force microscopy.Sens&Actua,1996,A54:477-481.
    [21]M analis S R,M inne S C,Quate C F.Atomic force micro scopy for high speed imaging using cantilevers with an integrated actuator and sensor.Appl Phys Lett,1996,68(6):871-873.
    [22]T Akiyama,U Stauger,V F de Rooij.Self-sensing and self-actuating probe based on quartz tuning fork with microfabricated cantilever for dynamic mode atomic force microscopy.Applied Sruface Science,2003(210):18-21.
    [23]张福学,王丽坤.现代压电学(上).北京:科学出版社,2001年,84-86.
    [24]张沛霖,张仲渊.压电测量.北京:国防工业出版社,1983.
    [25]包定华,张良莹,姚熹.薄膜压电性能的测量方法.硅酸盐通报,1999,3:18-22.
    [26]刘新星,胡岳华.原子力显微镜及其在矿物加工中的应用.矿冶工程,2000,20(1):32-35.
    [27]李晓军,孙洁林等.振动模式扫描极化力显微镜及其应用.电子显微学报,2003,22(4):344-351.
    [28]曾庆勇.微弱信号检测.杭州:浙江大学出版社,1994.
    [29]唐洪宾.同步积分器-噪声中提取微弱信号的一种方法.南京大学学报(自然科学版),1979.
    [30]陈佳圭.微弱信号检测.中央广播电视大学出版社,1987.
    [31]Jiang Xu-dong,Zhou Li-zhu.A multi-table join algorithm for data warery processing.Journal of Software,2001,10(2):190-195.
    [32]林凌,等.一种新型锁相放大器检测电路.天津大学学报,2005.
    [33]李舜酩.高速旋转机械运行状态检测与故障诊断方法的研究.西安:西安交通大学建筑工程与力学学院,1998.
    [34]李泽蓉.基于噪声和混沌振子的微弱信号检测.机械制造与研究,2003.
    [35]魏东,张志杰,裴东兴.电荷放大器可靠性分析.中国测试技术,2007,33(1):86-87.
    [36]金以立.微弱信号检测的一种方法.湖北大学学报,1998,1:49-53.
    [37]朱瑞.锁相放大器及其应用介绍.国外电子元器件,2005,11.
    [38]夏勇.锁相放大技术在蓄电池内阻检测中的应用.自动化与仪器仪表,2004,3:21-23.
    [39]AD630数据手册.美国ADI公司 1999.
    [40]周平,王雪,吴骏.大噪声背景下微弱信号检测技术研究.无线电技术,2007:17-25.
    [41] Toril A, Sasaki M, Hzne K, et al.A method for determining the spring constant of cantilevers for atomic force microscopy. Measurement Science and Technology, 1996 (7): 179-184.
    [42] Holbery J D, Eden V L. A comparison of scanning microscopy cantilever force constants determined using a nano-indentation testing apparatus. Journal of Micromechanics and Microengineering. 2000, 10: 85-92.
    [43] Jericho S K, Jericho M H. Devices for the determination of spring constants of atomic force m icro scope cantilevers and micro-machined springs. Review of ScientificInstruments, 2002, 73(6): 83-85
    [44] Gibson C T , Watson G S, M yh ra S, Determination of the spring constants of probes for force microscopy /spectroscopy. Nanotechnology, 1996 (7): 259-262
    [45] Cornelia B T, ScanlonM R. The determination of the elastic modulus of micro-cantilever beams using atom ic force microscopy. Journal of Materials Science, 2000, 35: 567-572
    [46] Cleveland J P, Manne S, Bocek d, et al.A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Review of Scientific Instruments, 1993, 64 (2): 403-405
    [47] Sader J E, Larson L, Mulvaney P, et al. Method for the calibration of atom ic force microscope cantilevers. Review of Scientific Instruments, 1995, 66 (7): 3789-3798
    [48] Gibson C T, Johnson D J, Anderson C, A bell C, et al. Method to determine the spring constant of atomic force microscope cantilevers. Review of Scientific Instrument, 2004, 75 (2): 565-567
    [49] Butt H J, Jaschke M. Calculation of thermal noise in atom ic force microscopy. Nanotechnology, 1995(6): 1-7.
    [50] 鲍海飞,李昕欣,王跃林.微悬臂法向弹性系数的标定方法与分析.测试技术学报,2006, 20(1):21-26.
    [51] M. A. Dubois, P. Muralt. Measurement of the effective transverse piezoelectric coefficient of A1N and Pb (Zr_xTi_(1-x)) O_3 thin films. Sensors and Actuators, 1999, 77:106-112.
    [52] Isaku Kannoa, Hidetoshi Kotera, Kiyotaka Wasa. Measurement of transverse piezoelectric properties of PZT thin films. Sensors and Actuators 2003, A107:68-74.
    [53] S. P. Timoshenko, J. N. Goodier. Theory of Elasticity, Third edn. McGraw-Hill, Kogakusha, Tokyo, 1970.
    [54] Beth L. Pruitt, Thomas W. Kenny. Piezoresistive cantilevers and measurement system for characterizing low force electrical contacts. Sensors and Actuators A: Physical, 2003, 104: 68-77.
    [55]Smits J,Balloto A.Dynamic behavior of piezoelectric bimorphs.Ultrasonics Symposium,1993,463-465.
    [56]陈炳泉.孔径旋转频闪散斑照相法测量物体的固有频率.光学学报,2002,22(11):1358-1361.
    [57]马立,荣伟彬,孙立宁.三维纳米级微动工作台的设计与分析.光学精密工程,2006,14(6):1017-1024.
    [58]白春礼.扫描隧道显微镜技术及其应用.上海:上海科学技术出版社,1991.
    [59]秦磊,王振华,孙立宁.四分压电陶瓷管的动力学研究.压电与声光,2007,29(1):122-124.
    [60]王丹丹,韩立,杨忠山.压电陶瓷管非线性矫正.压电与声光,2005,27(6):714-716.
    [61]陈超,何玉琳,章海军.压电陶瓷微纳米伸缩量测试系统.光学仪器,2007,29(2):27-30.
    [62]李志扬,刘武,钟小丽.压电陶瓷扫描器在纳米加工中的应用.压电与声光,1998,20(1):25-27.
    [63]张涛,孙立宁,蔡鹤皋.压电陶瓷基本特性研究.光学精密工程,1998,6(5):26-32.
    [64]王岳宇,赵学增.补偿压电陶瓷迟滞和蠕变的逆控制算法.光学精密工程,2006,14(6):1032-1040.
    [65]王丹丹,韩立,杨忠山.压电陶瓷管非线性矫正.压电与声光,200527(6):714-716.
    [66]KOOPS R,SAWATZKY G A.New scanning device for scanning tunneling microscope applications.Review of Scientif ic Instruments,1992,63(8):4008-4009.
    [67]NEWCOMB C V,FLINN I.Improving the linearity of piezoelect ric ceramic actuators.Electronics Letters,1982,18(11):442-444.
    [68]Kawakatsu H,Higuchi T.A dual tunneling unit scanning tunneling microscopy.J Vac Sci Technol,1990,A8(1):319-322
    [69]周兵,孙鑫.单管压电陶瓷管非线性校正的计算机仿真.计算机仿真,2006,23(7):302-304.
    [70]范伟,余晓芬,奚琳.压电陶瓷驱动系统及控制方法研究.光学精密工程,2007,15(3):368-371.
    [71]曲东升,荣伟彬,孙立宁,等.压电陶瓷微位移器件控制模型的研究.光学精密工程,2002,10(6):602-607.
    [72]李晓娜,韩立,左燕生,奚爽.压电陶瓷管非线性校正的实验研究.压电与声光,2007,29(2):219-221.
    [73]CHEN W,LYNCH C S.A micro-electro-mechanical model for polarization switching of ferroelectric materials.Acta Materialia,1998,46(15):5303-5311.
    [74]GOYOMAR D.Piezoelectric ceramics nonlinear behavior:application to langevin transducer.Journal De Physique,1997,7(6):1197-1208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700