基于压电材料的能量采集研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能量是发展科技的关键,历史上主要的技术发展都与新能源的利用或能源利用方法的改进相关。尤其是将自然环境中浪费掉的能量进行采集、存储并利用具有显著的环保意义,具有广阔的工程应用前景。
     本文首先分析了压电悬臂结构受简谐力激励下的能量输出,给出了一种压电陶瓷-金属复合结构压电发电器件的设计,并进行了制备;然后在此基础上进行了试验研究;最后研究了适合低频压电陶瓷-金属结构发电器件的能量采集电路。主要研究内容和结果包括:
     1.从压电方程入手,分析了压电发电元件在力作用下产生电荷,输出电压的原理,讨论了用于能量采集的压电元件等效电路模型。
     2.通过振动方程并结合力学边界条件,对悬臂压电梁能量采集进行了理论分析。结果表明:压电悬臂是一个高效率的能量采集结构,尤其适合应用在低频振动环境中。
     3.给出了压电陶瓷-金属层叠结构的悬臂式压电发电机设计方案并进行了工艺制备,构建了试验平台,进行了试件的试验研究,研究分析了激振力作用下产生的能量输出效果。
     4.给出了压电发电机功率转换与调整电路的设计并进行了实验评测。实验结果表明:悬臂式压电器件在振动稳定且持续的环境中具有较好的应用效果,电容储存的电能可提供微瓦功率量级负载使用,初步实现了电能的存储利用。
Energy is the key to the technology development. Throughout history, major advancements in technology were always duo to the new energy’s discover or methods improvement for energy utilization. Harvesting, conserving and using the wasted energy in nature are very significant for environment protection, which has strong real application fields.
     In this paper, firstly, the energy output of the piezoelectric cantilever structure is analyzed under a sinusoidal excitation; then a design of the piezoelectric power generation element is given and the PZT-Metal composite structure is fabricated; finally, experimental study is carried on the base of that, and energy harvesting circuit which is appropriate to the low frequency application is studied. Main research contents and results are as the following:
     1. The basic principle of the electric charge’appearance and the voltage’s output is studied when the piezoelectric power generation element is the force inspirit. The equivalent circuit model used for the harvest of the energy is analyzed.
     2. Academic analysis of the energy harvest for the piezoelectric cantilever is made according to the vibration equation and the dynamic limit condition. Results show that piezoelectric cantilever is an efficient energy harvest structure. And it is very appropriate to be applied in the low frequency environment.
     3. The design scheme of one piezoelectric cantilever structure for energy harvest is given, and it is also fabricated. Experimental study is made to analyze the relation between the energy output and the inspired force.
     4. The circuit design of the PEG’s (PiezoElectric power Generators) power transition is given and the experimental test is also made. The results show that piezoelectric cantilever element has a good performance if it is applied in a steady and durative vibration environment. And the stored micro power in capacitance can be employed, which realized the fundamental aim in this research
引文
[1]王革华,田雅林,袁婧婷编著,能源与可持续发展.北京:化学工业出版社2005.1
    [2]温邦椿等著,振动利用工程。北京:科学出版社,2005
    [3]张福学.现代压电学(下册).北京:科学出版社,2001
    [4] Schmidt, V.H., Piezoelectric Energy Conversion in Windmills, Ultrasonic’s symposium, 1992 , pp897-904
    [5] Kim S., Thomas J. Johnson. Harvesting energy from a cantilever piezoelectric beam. Smart Structures and Materials 2004, Proc. Of SPIE Vol.5386
    [6] S. Roundy, P. K. Wright, and J. Rabaey,“A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes,”Computer Communications, 26(11), pp. 1131-1144, 2003.
    [7] P Glynne-Jones, S. P. Beeby, and N.M. White, "Towards a piezoelectric vibration-powered micro-generator," IEE Proc. Sci. Meas. Technol.,Vo1.148,No.2,pp. 68-72,2001
    [8] M.J.Ramsay and W.W. Clark. Piezoelectric energy harvesting for bio MEMS applications. In Proceedings of SPIE The International Society for Optical Engineering, volume 4332, pages 429-438, 2001.
    [9] Clark, W. and Ramsay, M. J., 2000.“Smart Material Transducers as Power Sources for MEMS Devices,”International Symposium on Smart Structures and Microsystems, Hong Kong.
    [10] Jeon Y B,Sood R,Jeong J H,et a1.MEMS power generator with transverse mode thin film PZT[J].Sensors and Actuators A,2005,(122):16-22.
    [11] P. Glynne-Jones, S. P. Beeby, E. P. James, and N. M. White. The modelling of a piezoelectric vibration powered generator for microsystems. In Proc. Transducers'01 / Eurosensors XV, volume 1, pages 46-49, June 2001.
    [12] Bayrashev A,Robbins W P.Ziaie B.Low frequency wireless powering of Microsystems using piezoelectric-magnetostrictive laminate composites[J].Sensors and Actuators A 2004,(114):244—249.
    [13] D. Joseph-Anthony. Energy harvesting projects. IEEE Pervasive Computing, March 2005。
    [14] P. J. Cornwell, J. Goethal, J. Kowko, and M. Damianakis. Enhancing power harvesting using a tuned auxiliary structure. Journal of Intelligent Material Systems and Structures, 16(10):825-834, 2005.
    [15] M. Ericka, D. Vasic, F. Costa, G. Poulin, and S. Tliba. Energy harvesting from vibrationusing a piezoelectric membrane. Journal De Physique, 2005.
    [16] E. Lefeuvre, A. Badel, A. Benayad, L.Lebrun, C. Richard, and D. Guyomar. A comparison between several approaches of piezoelectric energy harvesting. Journal De Physique, 2005.
    [17] S. R. Platt, S. Farritor, K. Garvin, and H. Haider. The use of piezoelectric ceramics for electric power generation within orthopedic implants. IEEE/ASME Transactions on Mechatronics, 10:455-461, 2005.
    [18] S.R. Platt, S. Farritor, and H. Haider. On low-frequency electric power generation with PZT ceramics. IEEE/ASME Transactions on Mechatronics, 10:240-252, 2005.
    [19] J. W. Sohn, Seung B. Choi, and D. Y. Lee. An investigation on piezoelectric energy harvesting for MEMS power sources. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 219(4):429-443, April 2005.
    [20] G. K. Ottman, H.F. Hofmann, A.C. Bhatt, and G.A. Lesieutre. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply IEEE Transactions on Power Electronics, 17(5):669-676, September 2002.
    [21] J. Kymissis, C. Kendall, J. Paradiso, N. Gershenfeld, Parasitic power harvesting in shoes, in: Proceedings of the Second IEEE International Conference on Wearable Computing ISWC, pp.132–336, Pittsburgh, PA, USA,1998.
    [22] N.Shenck and J.Paradiso, Energy scavenging with shoe-mounted piezoelectrics,IEEE Micro,vol.21,pp.30-42,May-June 2001
    [23] Goldfarb, M. and Jones, L. D., 1999.“On the Efficiency of Electric Power Generation with Piezoelectric Ceramic,”Journal of Dynamic Systems, Measurement, and Control, Vol. 121, pp 566-571.
    [24] Sodano H A, Lloyd J and Inman D J. An experimental comparison between several active composite actuators for power generation. Proc. Smart Structure and Materials Conf, SPIE 5390 370-8
    [25] Henry A. Sodano. Macro-Fiber Composites for Sensing, Actuation and Power Generation. Virginia: Virginia Polytechnic Institute and State University[D], 2003
    [26] H. A. Sodano, D. J. Inman, and G. Park,Generation and Storage of Electricity from Power Harvesting Devices,”Journal of Intelligent Material Systems and Structures, 16(1), pp. 67-75, 2005.
    [27] Ammar Y,Buhrig A, Marzencki M,et a1.Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator[C].Joint sOc-EUSAI conference,2005.1-6.
    [28] Jeon Y B,Sood R,Jeong J H,et a1.MEMS power generator with transverse mode thin film PZT[J].Sensors and Actuators A,2005,(122):16-22.
    [29] Mingjie Guan and Wei-Hsin Liao.On the energy storage devices in piezoelectric energy harvesting. Smart Structures and Materials 2006.
    [30] FANG Hua-Bin, LIU Jing-Quan,”A MEMS-Based Piezoelectric Power Generator for Low Frequency Vibration Energy Harvesting”, Chinese Physics Letters,pp.732-734,2006
    [31]唐亚呜,丁鑫.桥监测无线传感压电电源.传感器技术, 2003年第22卷第9期
    [32]李映平,赖百坛,陈荷娟,黄晓毛,一种新型的可蓄能压电电源原理研究.兵工学报.Vol25,No.4,2004
    [33]胡晓冰,李龙土,任飞,桂治轮.双叠片弯曲压电陶瓷换能器及振动模态分析测量.功能材料.Vo1.33,No.6,2002
    [34]陈伟民,管得,诸德超,李敏.压电陶瓷晶片受迫振动分析及其应用。北京航空航天大学学报.Vo1.27,No.l,pp66-68,2001
    [35]陈至立,殷庆瑞,林盛卫等译,能量转换器件及其应用.上海:上海科学技术文献出版社,1992,1.
    [36] Kim S.Low power energy harvesting with piezoelectric generators. PhD thesis University of Pittsburgh
    [37]栾桂冬,张金铎,王仁乾。压电换能器和换能器阵〔M〕北京:北京大学出版社,2005.7
    [38]孙慷,张福学主编.压电学。北京:国防工业出版社,1984,5.
    [39] http://www.piezo.com/tech2intropiezotrans.html#IntroGenerators.
    [40]张云电著,夹心式压电换能器及其应用。北京:科学出版社,2006.12
    [41]李邓化等著,新型压电复合换能器及其应用.北京:科学出版社,2007
    [42] Piezo Film Sensors Technical Manual, Amp, Incorporated, 1993.
    [43] Shih-Nung Chen, Gou-Jen Wang. Analytical modeling of piezoelectric vibration-induced micro power generator.Mechatronics 16 (2006) 379-387
    [44] J Ajitsaria, S Y Choe. Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Smart Mater. Struct. 16 (2007) 447–454
    [45] J.G.Smits and A.Ballato , Dynamic admittance matrix of piezoelectric cantilever bimorphs. Journal of Microelectromechanical Systems 3(1994),pp.105-112
    [46] Jan G.Smits, Arthur Ballato, Dynamic Admittance Matrix of Piezoelectric Cantilever Bimorphs. Journal Of Microelectroechnical Systems, Vol.3.,No.3,September,1994
    [47]胡海岩,孙久厚,陈怀海等,机械振动与冲击(修订版)北京:航空工业出版社,2002.5
    [48]肖纪美,朱逢吾著,材料能量学:能量的关系、计算和应用.上海:上海科学技术出版社1999.12
    [49] Qing-Ming Wang, L.Eric.Cross. Theoretical analysis of the sensor effect of cantilever piezoelectric benders. Journal of applied physics,Volume 85,number 3,1999
    [50] R.J.Roark and W.C. Young, Formulas for Stress and Strain, 5th ed. (McGraw-Hill, New York, 1975), pp.113-115
    [51]李荣久主编,陶瓷-金属复合材料(第二版)。北京:冶金工业出版社,2004,3
    [52]戴枝荣,张远明主编,工程材料及机械制造基础—工程材料(第二版)。北京:高等教育出版社,2006,3
    [53]樊栓狮,德青,杨向阳等编著.储能材料与技术.北京:化学工业出版,2004,8
    [54]龚华生等编著。元器件自学通。北京:电子工业出版社,2005.2
    [55] http://www.semiconductors.philips.com

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700