ZnO光学性质与掺杂的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种新型的Ⅱ-Ⅵ族多功能直接带隙化合物半导体材料,在室温下禁带宽度为3.37eV,束缚激子能高达60meV。在晶格特性和能带结构方面与GaN有许多相似之处,拥有可以比拟的光电特性,而且还具有更高的激子束缚能以及较低的生长温度,被认为是有望取代GaN的新一代短波长光电子材料,因而成为半导体材料科研领域的一个热门课题。但是,从1996年首次报导ZnO薄膜的室温紫外发射距今已有十余年,ZnO基激光二极管、发光二极管等短波长光电器件仍未达到实用化的水平,其中一个主要原因是高质量的p型ZnO薄膜的稳定、可重复制备工艺尚未实现。
     围绕这种背景,本论文基于密度泛函理论,以第一性原理为研究方法,对本征ZnO及掺杂ZnO进行模拟研究,从以下四个方面开展了工作:
     首先,研究了本征ZnO的电子结构,通过对能带结构、总体态密度、分波态密度的分析,说明了ZnO为直接宽带隙半导体,呈现出n型导电性,计算结果同时表明锌填隙( Zn_i)是造成p型掺杂困难的主要原因。
     其次,我们还详细地计算了本征ZnO的复介电函数、复折射率、反射光谱、吸收光谱、能量损失函数等光学性质,探讨了微观结构与宏观光学响应的关系。通过比较,我们的计算结果和其他理论、实验值符合的很好。
     然后,研究分析了以Ⅲ族(B、Al、Ga、In)原子对ZnO进行n型掺杂,在导带底出现掺杂原子贡献的大量电子,引起ZnO体系电导率的提高。随着Al掺杂浓度的增大,ZnO的整个能带向低能方向漂移,费米能级进入导带,简并化加剧。由掺杂模型的几何结构优化之后所得的晶格常数与实验值非常=接近,说明我们的计算结果是可信的。
     最后,以不同N掺杂浓度和N+Al共掺的方式分别进行p型掺杂,计算结果表明:N单元掺杂时由于ZnO的自补偿作用,受主N在ZnO中的溶解度较低,难以实现p型掺杂;而N+Al共掺能有效提高受主N的溶解度,提高了ZnO体系空穴浓度,在价带顶附近形成了浅受主能级,有利于p型ZnO的形成,为实验上制备p型ZnO薄膜提供理论依据。
Zinc oxide (ZnO) is a new multifunctional compound semiconductor of II-VI group, with a wide direct band-gap of 3.37eV and a high exciton binding energy of 60meV at room temperature. Compared with GaN, it has many similarities in the crystal lattice characteristics and the band structure, and has photo-electric properties which may compare, moreover, it also has a higher exciton binding energy as well as the low growth temperature, therefore, it was considered to be a new kind of photo-electric material in shortwave length as GaN, and becomes a popular topic of semiconducting material scientific research domain. However, from 1996, stimulated UV emission of Zn0 thin film at room temperatwe was reported for the first time, it has passed more than ten years by now, but the short wave length photoelectric such as the ZnO base light emitting diode and the light emitter diode apparatus had still not achieved the practical level. One of the most important reasons is that the reliable and reproducible technique to grow high quality p-type ZnO is not found yet.
     Regarding these reasearch background, and based on the density functional theory (DFT), we take the first principles as research technique to investigate natural ZnO and doped ZnO, specifically include the following four aspects:
     Firstly, we study the geometric structure of the natural ZnO, through the analysis of the band structure, the total density of states and partial density of states, we know that ZnO is a direct wide band-gap semiconductor, which presents n-type conductivity, the computed results also indicate that the zinc calking is the main difficulty in p-doping.
     Secondly, to explore the relationship between the micro-structure and the macroscopical optical response, we calculate the dielectric function, refractive index, reflectance spectra, absorption spectra, the energy loss function and other optical properties in detail. By comparison, the resultse obtained by our calculations are in good agreement with other theoretical results and experimental data.
     Then, by analysing the properties of the n-type ZnO doped byⅢgroup atoms (B,Al,Ga,In), We found that there are a lot of carrier in the bottom of the conduction band, which causes the improvement for conductivity of the ZnO system. When doped with different concentration of Al, following the increase of the concentrations, the whole band drift to the lower-energy, and the Fermi level move into the conduction band, appear greatly limited. Our crystal constants, obtained from the doped geometry structure, are close to the experimental datas, which shows that our computed result is credible.
     Lastly, we have researched on p-type doping and p-type codoping for ZnO, by doped with different concentrations of N and codoped with N and Al, respectively. Our calculations shows that N-doped is difficult to achieve p-type doping for ZnO because of the self-compensation, while codoped with N and Al can effectively improve the solubility of the acceptor N and the hole concentration of ZnO system, then form a shallow acceptor level near the top of valence band, which is very helpful for p-type doping for ZnO. Of course, it provide the theory basis for making ZnO thin film in experimental methods.
引文
[1] S.Nakamura, N.Iwata, M.Sench, et al. Hole compensation mechanism of p-type GaN films[J]. Jan.J.Appl.Phys.,1992,31:1258-1266
    [2] P.Yu, Z.K.Tang, et al. 23rd Int Conf on the Physics of Semiconductors,World Scientific[J]. Singapoer,1996,1452-1456.
    [3] D.M.Bangall, Y.F.Chen, Z.Zhu, et al.Optical pumped lasing of ZnO at room temperature[J]. Appl.Phys.Lett.,1997,70(17):2230-2232.
    [4] R.F.Service. Will UV lasers beat the blues[J]. Science, 1997,276:895-897.
    [5]陈荣.光电功能膜材料研究进展[J].无机化学学报,2004, 20(7):879-880.
    [6]格林.光伏技术的最新进展[J] .太阳能,2004, 5: 1.
    [7] S.J.Pearton, D.P.Norton, K.Ip, Y.W.Heo, T.Steiner. Recent progress in processing and properties of ZnO[J]. Progress in Materials Science, 2005, 50(3):293-340.
    [8] D.P.Norton, Y.W.Heo, M.P.Lvill, K.Ip, S.J.Pearton. ZnO: growth,doping and processing[J].Materials Today, 2004, 7(6): 34-40.
    [9] O.Regan, M.Gratzel. A low cost and high efficiency solar cell based on dye-sensitized colloidal TiOz films[J]. Nature, 1991, 353: 737-740.
    [10]曾隆月,史成武,方霞琴,张华.纳米Zn0在染料敏化薄膜太阳电池中的应用[J].中国科学院研究生院学报,2004, 21(3): 393-397.
    [11] H.Kobayashi, H.Mori, T.Ishida, Y.Nakato. Zinc oxide/n-Si junction solar cells produced by spray-pyrolysis method[J]. J. Appl. Phys. 1995, 77(3): 1301-1307.
    [12]孔凡太,戴松元.染料敏化太阳电池研究进展[J].化学进展,2006,18 (11):1409-1424.
    [13]杨清宗.半导体紫外探测器的现状和进展[J].国际光电与显示,2002, 5.
    [14] Wei Yang. Wide bandgap MgXZn1-XO semiconducting thin film and applications to solar/visible blind ultraviolet photodetectors[J]. Dissertation of University of Maryland,USA, 2002.
    [15]张昊翔.硅基GaN薄膜材料及紫外探测器原型器件研究[D].[博士学位论文] .杭州:浙江大学,2001.
    [16]王俊,赵德刚,刘宗顺,玛淦. GaN基MSM结构紫外光探测器(G辑) [J].中国科学,2003, 33(1): 34-38.
    [17] M.Razeghi, A.Rogalski. Semiconductor ultraviolet detectors[J]. J. Appl. Phys. ,1996,79(10): 7433-7473.
    [18] H.Z.Xu, Z.G.Wang, M.Kawabe. Fabrication and characterization of metal-semiconductor-metal ultraviolet photodetectors on undoped GaN/sapphire grown by MBE[J]. J.Crystal.Growth, 2000, 218(1):1-6.
    [19] D.Walker, E.Monroy, P.Kung, et al. High-speed and low-noise metal-semi- conductor-metal ultraviolet photodetectors based on GaN[J]. Appl.Phys. Lett.,1999,74(5):762-764.
    [20]叶志镇,张银珠,陈汉鸿,何乐年. Zn0光电导紫外探测器的制备和特性研究[J].电子学报,2003, 31(11):1605-1607.
    [21] Y.Liu, R.C.Gorla, S.Liang. Ultraviolet detectors based on epitaxial Zn0 film grown by MOCVD[J]. J. Elec. Mater., 2000, 29(1): 60-64.
    [22] M.Abouzaid, P.Ruterana, C.Liu, H.Morkoc. Formation of precipitates in Mn doped Zn0 layers deposited by magnetron sputtering[J]. Physica Status Solidi A-Applications and Materials science, 2007,204 (1): 99-105.
    [23] M.S.Lu, Z.Y.Pang, X.W.Xiu, et al. Effect of RF power on the properties of transparent conducting zirconium-doped zinc oxide films prepared by RF magnetron sputtering[J]. Chinese Pysics, 2007, 16 (2): 548-552.
    [24] H.Honig. Laser-induced emission of electrons and positive ions from metals and semiconductors[J].Appl.phys.Lett. 1963,3(l):8-11.
    [25]赵嘉学,童洪辉.磁控溅射原理的深入探讨[J].真空.2004,41(4):74-79.
    [26]徐步衡,薛俊明,赵颖等. MOCVD制备用于薄膜太阳电池的ZnO薄膜研究[J].光电子·激光. 2005,16(5) :515-518.
    [27]兰伟,朋兴平,刘雪芹等.溶胶凝胶法制备ZnO薄膜及性质研究[J].兰州大学学报(自然科学版). 2006,42(1):67-71.
    [28]汪雷.ZnO薄膜生长技术的最新研究进展[J].材料导报,2002,16(9):33-36.
    [29]梁红伟,吕有明,申德振等.等离子体增强分子束外延生长ZnO薄膜及光电特性的研究[J].人工晶体学报. 2003,32(6):579-584.
    [30]王兆阳,胡礼中,孙捷等.激光分子束外延技术及其在氧化锌薄膜制备中的应用[J].中国稀土学报. 2003,21(增刊):141-143.
    [31]刘坤,季振国.氧化锌薄膜制备技术的评价[J].真空科学与技术. 2002,22(4):282-286.
    [32] M.Joeeph, H.Tabata, T.Kawai. Ferroelectric behavior of Li-doped Zn0 thin films on Si(100) by pulsed laser deposition[J]. Appl Phys Lett,1999,74(17):2534- 2536.
    [33] J.H.Hu, R.G.Gardon.Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition [J].J Appl Phys,1992,71(2):880 -890.
    [34] T.Minami, T.Yamamoto, T.Miyata. Highly transparent and conductive rare earth-doped Zn0 thin films prepared by magnetron sputtering[J].Thin Solid Films, 2000, 366(1-2)63-68.
    [35] B.M.Ataev, A.M.Bagamadova, V.V.Mamedov, A.K.Omaev, M.R.Rabadanov. Highly conductive and transparent thin Zn0 films prepared in situ in a low pressure system[J].J Cryst Growth,1999,198-199:1222-1225.
    [3] Tadatsugu Minami, Shingo Suzuki.Transparent conducting impurity-co-doped Zn0 Al thin films prepared by magnetron sputtering[J]. Thin Solid Films, 2001, 398-399:53-58.
    [37] S.Suzuki, T.Miyata, M. Ishii, T.Minami.Transparent conducting V-co-doped AZO thin films prepared by magnetron sputtering[J]. Thin Solid Films, 2003,434(1-2);14-19.
    [38] S.J.Chen, Y.C.Liu, J.G.Ma, Y.M.Lu, J.Y.Zhang, D.Z.Shen , X.W.Fan. Effects of thermal treatment on the properties of ZnO films deposited on MgO-buffered Si substrates[J]. Journal of Crystal Growth, 2003, 254 (1-2):86-91.
    [39] Shinobu Fujihara, Yusuke Ogawa, Asayo Kasai. Tumable visible photoluminescence from ZnO thin films through Mg-doped and annealing[J]. Chem. Mater,2004,16(15):2965-2968.
    [40] F.K.Shan, B.I.Kim, Z.F.Liu, J.Y.Sohn, et al. blueshift of near edge emission in Mg doped ZnO thin films and aging[J]. Appl Phys,2004,95(9),4772-4776.
    [41] M.Kadota, M.Minakata. Piezoelectric properties of Zn0 films on a sapphire substrate deposited by an RF-magnetron-mode ECR sputtering system[J]. Appl Phys, 1998,37(5B):2923-2926.
    [42] L.M.Kukreja, S.Barik, P.Mishra.Variable band gap ZnO nanostructures grown by pulsed laser deposition[J]. Journal of Crystal Growth, 2004,268(3-4):531-535.
    [43] H.M.Cheng, H.C.Hsu, Y.K.Tseng, L.J.Lin, et al. Raman Scattering and Efficient UV Photoluminescence from Well-Aligned ZnO Nanowires Epitaxially Grown on GaN Buffer Layer[J]. Phys Chem B, 2005,109(18):8749-8754.
    [44] Y.R.Ryu, S.Zhu, D.C.Look, et al. Synthesis of p-type ZnO films[J]. J. Cryst. Grouth, 2000, 216(1): 330-334.
    [45] Joseph Mathew, Tabata Hitoshi, Kawai Tomoji.P-type electrical conduction in ZnO thin films by Ga and N codoping[J].Japanese Journal of Applied Physics, Part 2 Letters, 1999,38(11A),L1205-L1207.
    [46] T.Aoki, Y.Hatanaka, D.C.Look. ZnO diode fabricated by excimer-laser doping[J]. Appl. Phys. Lett., 2000, 76(22): 3257-3258.
    [47] Z.G.Fei, Z.Z.Ye, P.Li et al. Electrical and optical properties of A1-N co-doped p-type zinc oxide films[J]. Journal of Crystal Growth, 2004,268(1-2):163-168.
    [48] F.H.Nicol. Ultraviolet ZnO laser pumped by an electron beam[J]. Appl. Phys. Lett., 1966, 9(1): 13-15.
    [49] H.Karzel, W.Potzel, M.K?fferlein, W.Schiessl, et al. Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures[J]. Phys.Rev.B,1996,53(17):11425-11438.
    [50] D.P.Norton, Y.W.Heo, et al. ZnO: growth, doping&processing[J]. Mate Today,2004,34(7):34-40.
    [51]吴兴惠,项金钟.现代材料计算与设计教程[M].北京:电子工业出版社,2002.
    [52]李正中.固体理论(第二版)[M].北京:高等教育出版社,2002,329-334.
    [53] W.Kohn, L.J.Sham. Self-consistent equations including exchange and correlation effects[J]. Phys Rev,1965(A1133):140.
    [54] R.O.Jones, O.Gunnarsson. Rev.Mod.Phys.,1989(61):589.
    [55] D.R.Hamann, M.Schluter, C.Chiang.Norm-conserving pseudopotentials[J] .Phys. Rev.Lett.,1979, 43: 1494-1497.
    [56] Anderson Janotti, Chris G. et al. Journal of Crystal Growth,2006(287):58-65.
    [57] S.B.Zhang, S.H.wei, Alex Zunger.Phys.Rev.B63,075205 2001.
    [58]沈学础.半导体光学性质[M].北京:科学出版社,1992, 1-11、24-33.
    [59]刘恩科,朱秉升,罗晋生等.半导体物理学[M].北京:电子工业出版社,2003, 321-325
    [60] R.Matz, H.Luth. Ellipsometric spectroscopy of the ZnO nonpotar (1100) surface[J]. Appl. Phys.1979,18: 123.
    [61] S.B.Zhang, S.H.Wei, et al. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO[J]. Phys. Rev. B, 2001(63):075205-075211.
    [62] A.F.Kohan, G.Leder, D.Morgan. First-principles study of native point defects in ZnO[J].Phys. Rev. B, 2000(61):15019-15027.
    [63] H.Deng, R.N.Lamb, et al. Microstructure control of ZnO thin films prepared by single source chemical vapor deposition[J].Thin Solid Films,2004,458:43-46.
    [64] Sylvie Fa?, Jér?me Steinhauser, Nuno Oliveira, Evelyne Vallat-Sauvaina and Christophe Ballif.Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells[J].Thin Solid Films,2007,515(24):8558-8561.
    [65] B.N.Pawar, S.R.Jadkar , M.G.Takwale . Deposition and characterization of transparent and conductive sprayed ZnO:B thin films[J]. The Journal of physics and chemistry of solids ,2005,66(10): 1779-1782.
    [66] K.Sato, H.Katayama-yoshida. Material Design for Transparent Ferromagnets with ZnO-Based Magnetic Semiconductors[J]. Jpn J Appl Phys, 2000, 39: L555-558.
    [67] G.A.Hirata, J.McKittrick, T.Cheeks, et al.Gallium Doped Zinc Oxide Transparent Electrodes[J]. Thin Solid Films, 1996,288 (1-2): 29-31.
    [68] P.Nunes, E.Fortunato, P.Tonello, et al. Effect of different dopant elements on the properties of ZnO thin films [J]. Vacuum, 2002, 64(2-3): 281-285.
    [69]张富春.ZnO电子结构与属性的第一性原理研究[D]. [硕士学位论文].西安:西北大学,2006.
    [70] E.Burstein. Anomalous optical absorption limit in InSb[J]. Phys. Rev., 1954, 93(3):632-633.
    [71] A.Kobayashi, O.F.Sankey, J.D.Dow. Deep energy levels of defects in the wurtzite semiconductors AIN, CdS, CdSe, ZnS, and ZnO[J]. Physics Review B, 1983(28):946-956.
    [72] T.Yamamoto and H.Katayama-Yoshida.Unipolarity of Zn0 with a wide-band gap and its solution using codoping method[J]. J. Cryst. Growth. 2000, (214-215): 552-555.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700