磷光敏化荧光的白色有机电致发光器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:有机电致发光作为下一代的显示和照明技术一直是广大的光电研究人员关注的焦点,但是常规有机电致发光器件25%的量子效率限制成为一个不可突破理论极限。随着可以实现三线态激子电致发光的磷光材料的问世,为突破这一理论极限提供了可能,利用磷光材料制备的有机电致发光器件的发光效率在不断地提高,但是其在大电流下的电致磷光效率迅速下降问题成为影响其使用的一个瓶颈。为解决三线态激子湮灭导致的磷光材料掺杂的电致发光器件在大电流密度时发光效率的迅速下降问题,本博士论文利用荧光与磷光材料共掺杂的方式,通过能量传递的方式来降低三线态激子寿命,减少三线态激子湮灭效应。并在此基础上,通过选择与磷光材料在颜色上匹配的荧光材料,同时对发光器件的结构进行了合理的设计,最终实现了高亮度的白色电致发光器件,并对磷光敏化荧光相关的机理问题进行了详细的研究。磷光敏化荧光电致发光器件在电激发下具有更大激子形成截面,同时具有短的三线态激子寿命,会大大降低在大电流时三线态激子湮灭的发生,对提高器件发光效率具有显著作用。本文一共分为五章,第一章总结了最新的关于有机白光电致发光器件的研究进展,并介绍了相关的发光材料和器件的工作原理以及有机电致发光的研究和测试方法。第二至四章是本论文的研究部分,具体内容如下:
     第二章,首先,通过对于(Poly(9-vinylcarbazole))(PVK):Bis(2,4-difluorophenylpyridinato)(Fir6):rubrene薄膜的吸收、光致激发以及稳态光致发射光谱的研究,确定了Fir6与rubrene间能量传递过程对于薄膜的发光性质具有非常重要的作用,并通过激子动力学模型对其作用进行了说明。然后,利用瞬态发光测量技术对PVK:Fir6:rubrene薄膜的瞬态发光衰减曲线进行了研究,确定Fir6与rubrene间能量传递传递过程可以有效的降低Fir6的三线态激子寿命,证明了利用磷光材料与荧光材料之间的能量传递作用来解决磷光材料电致发光效率在大电流迅速下降问题的可行性。通过研究Fir6与rubrene间能量传递速率与rubrene浓度间的关系说明了他们之间的能量传递过程是以分子间电偶极相互作用的Foster能量传递作用为主。最后,通过电致发光器件发光效率的研究证实了Fir6与rubrene间能量传递可以改善Fir6的电致发光效率随电流下降的问题,并得到了器件效率整体的提高。说明了磷光敏化荧光的电致发光是提高大电流下电致发光效率的有效手段。
     第三章,本章主要对在磷光荧光双掺杂的电致发光器件中电致发光颜色随电压产生飘移的问题进行了研究。通过分析,我们排除了电场引起的激子复合区域的移动以及荧光掺杂客体饱和而引起颜色随电压飘移的可能。通过对PVK:Fir6:rubrene(100:10:0.3in wt.)薄膜的电调制下的稳态以及瞬态光致发光的研究,确定了Fir6与rubrene间Dexter能量传递作用随电场而得到增强的效应是导致发光器件颜色随电压飘移的一个重要原因。我们还发现掺杂客体对于载流子的直接俘获作用也是造成PVK:Fir6:rubrene薄膜电致发射光谱随电压变化的另一重要原因。最后,我们进行了利用电致激基缔合物来避免在双掺杂器件中两掺杂客体间能量传递的作用而实现白色发光的尝试并且通过perylene与(1,1-Bis[4-[N,N'-di(p-tolyl)amino]phenyl]cyclohexane)(TAPC)双掺杂的PVK聚合物发光器件实现了白光的发射。
     第四章,我们进行了利用绿色磷光材料(fac-tris (2-phenylpyridine) iridium (Ir(ppy)3)来敏化荧光材料4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4Hpyran (DCJTB)的研究,通过对器件结构上的设计,实现了对在电激发下所产生的单线态和三线态激子进行管理的办法来达到获得高亮度的白色电致发光器件的目的。通过对PVK:Ir(ppy)3:DCJTB薄膜的光致发光、三线态激子寿命和电致发光器件的发光特性的研究证实了Ir(ppy)3对于DCJTB可以实现良好的敏化效果。根据合成白光在颜色方面的考虑,选择了掺杂浓度为PVK:Ir(ppy)3:DCJTB为(100:5:0.4in wt.)的掺杂聚合物薄膜与N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-bipheny1-4,4"-diamine(NPB)蓝色荧光层搭配来实现白光。利用2,9-Dimethyl-.4,7-diphenyl-1,10-phenanthroline (BCP)的空穴阻挡作用实现对激子复合区域的控制,同时利用单线态激子与三线态激子不同长度的扩散距离,通过结构为ITO/PEDOT:PSS (30nm)/PVK:Ir(ppy)3:DCJTB (100:5:0.4in wt.)(60nm)/NPB(4nm)/BCP(10nm)/Alq3(20nm)/LiF(1nm)/Al(100nm)的电致发光器件实现了对于单线态和三线态激子管理的目的,并获得了白色发光,其亮度为8700cd/m2,最大流明效率为4lm/W。
     第五章,是结论与未来工作展望。通过上面的研究,我们得到以下结论:1,确定通过磷光敏化荧光可以改善大电流情况电致磷光效率迅速下降的问题并实现了器件整体效率的提高。2,确定了电场诱导的能量传递增强与荧光材料对载流子直接俘获作用会影响电致发射光谱的稳定性。3,通过对器件结构的设计,实现了器件的激子管理并获得了高亮度的白光发射。我们将在以下两个方面开展进一步研究。材料方面,需要找到成膜性更好能级更加匹配的聚合物主体以便可以获得更加优化的磷光敏化荧光。器件制备方面,需要通过器件结构的设计与制备方法的改进来改善器件发光的色稳定性问题。
ABSTRACT: Organic light emitting device (OLED) has been attracting a great deal of attention for its potential to be the next generation technology for lighting and display. However, this theoretical upper limit is only25%of the corresponding quantum efficiency for electroluminescence from the regular OLED, which limits the development of OLED. As phosphorescent materials were presented, it becomes possible to use triplet state to realize high efficient phosphorescence, which provides the possibility to break through the theoretical limit of25%quantum. Although the use of phosphorescent materials can significantly increase the efficiency of OLED, the rolling off of electrophosphorescent efficiency at high current density has been denounced. Some investigate shows that the rolling off of efficiency results from triplet-triplet annihilation at high current density. For sake of finding out the ways to reduce the rolling off of electrophosphorescent efficiency, in this dissertation, phosphorescent material to fluorescent material were codoped the host to reduce the lifetime of triplet state and the triplet-triplet annihilation through the energy transfer from phosphorescent material to fluorescent material. By the way, some tries to realize the high luminance white OLED were made by choosing the appropriate fluorescent dopant which could emit complementary color of phosphorescent dopant and designing a appropriated device structure. We investigated the relative principle for phosphorescent sensitized fluorescence in detail as well. The phosphorescent sensitized OLED provides a ability to enhance the efficiency of OLED for their larger exciton cross section and less triplet lifetime can prevent the triplet-triplet annihilation. The dissertation consists of five chapters. In the first chapter, we summarize the recent progress of White OLED and introduce the relative organic light emitting material, operation principle of device and the method of researching and measuring of OLED. In the other chapters, we present the detail of our research. The detail is listed as below.
     In chapter2, we verified the determined effect of the energy transfer from Fir6to rubrene on the emission from PVK:Fir6:rubrene co-dopant OLED by analyzing the absorption spectrum, excited spectrum and steady state photo-luminescence spectrum. We also proved the viability of reducing the efficiency rolling off of electrophosphorescentce at high current density by utilizing Foster energy transfer from Fir6to rubrene to reduce triplet lifetime of Fir6and realized the efficiency enhancement of phosphorescent OLED. Phosphorescent sensitized fluorescent luminescence could be a effective way to enhance the efficiency of phosphorescent OLED at high current density.
     In chapter3, we put our attention on the color-shift problem in phosphorescent and fluorescent co-dopants OLED. At first, we exclude that the shift of recombination zone under electric field and saturation of fluorescent co-dopant at high current density result in the color-shift. The electric field enhanced Dexter energy transfer from Fir6to rubrene could be responsible for the color-shift problem by analyzing the electric modulated PL spectrum and transient PL of OLED based on PVK:Fir6:rubrene. As well we found out that carrier trapping effect of rubrene is important for the spectrum-shift as voltage increasing. By avoiding the energy transfer between the two dopants in co-dopants OLED to prevent the color-shift, we realized the white emitting by combing the emission from electromer of TAPC monomer of perylene.
     In chapter4, We obtained a high luminance white OLED depending on the structure designing with excitons management, in which green phosphorescent material (Ir(ppy)3) sensitize the red fluorescent material(DCJTB). For the sake of improving the chromaticity dependence of white color on the applied voltage, PVK:Ir(ppy)3:DCJTB (100:5:0.4in wt.) polymer was chosen to combine with NPB blue fluorescent material to obtain the white light emitting. At last, we realized the excitons management and obtained the white OLED with8700cd/m2maximum luminance and41m/w luminous efficiency by controlling the recombination zone utilizing the device structure of ITO/PEDOT:PSS (30nm)/PVK:Ir(ppy)3:DCJTB (100:5:0.4in wt.)(60nm)/NPB(4nm)/BCP(10nm)/Alq3(20nm)/LiF(1nm)/Al(100nm).
     In chapter5, We present the conclusions and future work。Upon above research, we could conclude that1, The rolling off of electrophosphorescent efficiency at high current density could be relieved by phosphorescent sensitized fluorescence and efficiency enhancement of OLED could be achieved.2,The color stability could be affected by the electric field enhanced Dexter energy transfer from Fir6to rubrene and carrier trapping effect of rubrene.3, The exciton management and highly luminance white OLED was realized by the structure design of OLED. In my opinion, there are something more to research. The one is to achieve better phosphorescent sensitized fluorescence, the polymer host which have better film-forming and more appropriate energy bandgap was needed. The other one is the research on architecture and fabrication of OLED is needed to improve the color stability of OLED.
引文
[1]Gupta, D.; Katiyar, M.; Deepak, Various approaches to white organic light emitting diodes and their recent advancements Optical Materials (2006) 28 (4) 295-301.
    [2]Baldo, M. A.; O'Brien, D. F.; Thompson, M. E., et al., Excitonic singlet-triplet ratio in a semiconducting organic thin film Physical Review B (1999) 60 (20) 14422-14428.
    [3]Chang, Y.-L.; Yin, S.; Wang, Z., et al., Highly Efficient Warm White Organic Light-Emitting Diodes by Triplet Exciton Conversion Advanced Functional Materials (2012) 23 (6) 705-712.
    [4]D'Andrade, B. W.; Brooks, J.; Adamovich, V., et al., White Light Emission Using Triplet Excimers in Electrophosphorescent Organic Light-Emitting Devices Advanced Materials (2002)14(15) 1032-1036.
    [5]Reineke, S.; Lindner, F.; Schwartz, G., et al., White organic light-emitting diodes with fluorescent tube efficiency Nature (2009) 459 (7244) 234-238.
    [6]Wang, Q.; Ding, J.; Ma, D., et al., Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency:Fabrication and Emission-Mechanism Analysis Advanced Functional Materials (2009) 19 (1) 84-95.
    [7]Williams, E. L.; Haavisto, K.; Li, J., et al., Excimer-Based White Phosphorescent Organic Light-Emitting Diodes with Nearly 100% Internal Quantum Efficiency Advanced Materials (2007) 19 (2) 197-202.
    [8]Zhang, B.; Tan, G.; Lam, C.-S., et al., High-Efficiency Single Emissive Layer White Organic Light-Emitting Diodes Based on Solution-Processed Dendritic Host and New Orange-Emitting Iridium Complex Advanced Materials (2012) 24(14) 1873-1877.
    [9]Reineke, S.; Schwartz, G.; Walzer, K., et al., Reduced efficiency roll-off in phosphorescent organic light emitting diodes by suppression of triplet-triplet annihilation Applied Physics Letters (2007)91 (12) 123508-123508-3.
    [10]Aida, T; Meijer, E. W.; Stupp, S. I., Functional Supramolecular Polymers Science (2012) 335(6070) 813-817.
    [11]LIN, Z.-x.; GUO, T.-I., Larger screen FED video display system Journal ofFuzhou University (Natural Sciences Edtion) (2004) 5 008.
    [12]Kasahara, M.; Ishikawa, Y.; Morita, T., PDP display drive pulse controller for preventing light emission center fluctuation. In Google Patents:2002.
    [13]Blonder, G. E., LCD display with multifaceted back reflector. In Google Patents:1992.
    [14]Sturm, J. C.; Wu, C. C.; Marcy, D., et al., Fabrication of organic semiconductor devices using ink jet printing. In Google Patents:2000.
    [15]Alexander, C.; Andersson, H. S.; Andersson, L. I., et al., Molecular imprinting science and technology:a survey of the literature for the years up to and including 2003 Journal of Molecular Recognition (2006) 19(2) 106-180.
    [16]Sun, Y.; Forrest, S. R., Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography Journal of Applied Physics (2006) 100 (7) 073106-073106-6.
    [17]Arnold, M. S.; McGraw, G. J.; Forrest, S. R., et al., Direct vapor jet printing of three color segment organic light emitting devices for white light illumination Applied Physics Letters (2008)92(5) 053301-053301-3.
    [18]Yan, H.; Chen, Z.; Zheng, Y., et al., A high-mobility electron-transporting polymer for printed transistors Nature (2009) 457 (7230) 679-686.
    [19]Hosokawa, C.; Matsuura, M.; Eida, M., et al., Organic multicolor EL display with fine pixels Journal of the Society for Information Display (1997) 5 (4) 331-334.
    [20]Pope, M.; Kallmann, H.; Magnante, P., Electroluminescence in organic crystals The Journal of Chemical Physics (1963) 38 (8) 2042-2043.
    [21]Helfrich, W.; Schneider, W., Recombination radiation in anthracene crystals Physical Review Letters (1965) 14(7) 229-231.
    [22]Vincett, P.; Barlow, W.; Hann, R., et al., Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films Thin solid films (1982) 94 (2) 171-183.
    [23]Tang, C.; VanSlyke, S., Organic electroluminescent diodes Applied Physics Letters (1987) 51 (12) 913-915.
    [24]Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R., et al., Light-emitting diodes based on conjugated polymers. In Nature Publishing Group:(1990)347 539-541.
    [25]Cao, Y.; Smith, P.; Heeger, A. J., Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers Synthetic Metals (1992)48(1) 91-97.
    [26]Sun, Y.; Giebink, N. C.; Kanno, H., et al., Management of singlet and triplet excitons for efficient white organic light-emitting devices Nature (2006) 440 (7086) 908-912.
    [27]Lee, T.-W.; Noh, T.; Choi, B.-K., et al., High-efficiency stacked white organic light-emitting diodes Applied Physics Letters (2008) 92 043301.
    [28]Bae, S.; Kim, H.; Lee, Y, et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes Nature nanotechnology (2010) 5 (8) 574-578.
    [29]Hsiao, C.-H.; Chen, Y.-H.; Lin, T.-C., et al., Recombination zone in mixed-host organic light-emitting devices Applied physics letters (2006) 89 (16) 163511-163511-3.
    [30]Grem, G.; Leditzky, G.; Ullrich, B., et al., Realization of a blue-light-emitting device using poly (p-phenylene) Advanced Materials (1992) 4 (1) 36-37.
    [31]Yang, Z.; Sokolik, I.; Karasz, F., A soluble blue-light-emitting polymer Macromolecules (1993)26(5) 1188-1190.
    [32]Kido, J.; Matsumoto, T., Bright organic electroluminescent devices having a metal-doped electron-injecting layer Applied Physics Letters (1998) 73 (20) 2866-2868.
    [33]Leo, K., Organic light-emitting diodes:Efficient and flexible solution Nature Photonics (2011)5(12) 716-718.
    [34]Langevin, P., L'lonization de gaz Ann. Chim. Phys (1903) 28 289-384.
    [35]Grover, M. K.; Silbey, R., Exciton-Phonon Interactions in Molecular Crystals The Journal of Chemical Physics (1970) 52 2099.
    [36]Kayanuma, Y., Wannier exciton in microcrystals Solid state communications (1986) 59 (6) 405-408.
    [37]Smothers, W. K.; Wrighton, M. S., Raman spectroscopy of electronic excited organometallic complexes:a comparison of the metal to 2,2'-bipyridine charge-transfer state of fac-(2,2'-bipyridine) tricarbonylhalorhenium and tris (2,2'-bipyridine) ruthenium (Ⅱ) Journal of the American Chemical Society (1983) 105 (4) 1067-1069.
    [38]Baldo, M. A.; O'Brien, D. F.; Thompson, M. E., et al., Excitonic singlet-triplet ratio in a semiconducting organic thin film Physical Review B (1999) 60 (20) 14422.
    [39]M.A. Baldo, C. A., S. R. Forrest, Transient analysis of organic electrophosphorescence. Ⅱ. Transient analysis of triplet-triplet annihilation Physical Review B (2000) 62 10967-10977.
    [40]Blumstengel, S.; Meinardi, F.; Tubino, R., et al., Long-range energy transfer of singlet and triplet excitations in dye-doped tris(phenylquinoxaline)J. Chem. Phys. (2001) 115 (7) 3249-3255.
    [41]Wohlgenannt, M.; Tandon, K.; Mazumdar, S., et al., Formation cross-sections of singlet and triplet excitons in pi-conjugated polymers Nature (2001) 409 (6819) 494-7.
    [42]Chen, F.-C.; He, G.; Yang, Y., Triplet exciton confinement in phosphorescent polymer light-emitting diodes Applied Physics Letters (2003) 82 (7) 1006.
    [43]Dandrade, B. W.; Forrest, S. R., Effects of exciton and charge confinement on the performance of white organic p-i-n electrophosphorescent emissive excimer devices Journal of Applied Physics (2003) 94 (5) 3101-3109.
    [44]Segal, M.; Baldo, M.; Holmes, R., et al., Excitonic singlet-triplet ratios in molecular and polymeric organic materials Physical Review B (2003) 68 (7).
    [45]Tsuboi, T.; Tanigawa, M., Optical characteristics of PtOEP and Ir(ppy)3 triplet-exciton materials for organic electroluminescence devices Thin Solid Films (2003) 438-439 301-307.
    [46]Baldo, M.; Segal, M., Phosphorescence as a probe of exciton formation and energy transfer in organic light emitting diodes physica status solidi (a) (2004) 201 (6) 1205-1214.
    [47]Kalinowski, J.; Stampor, W.; Cocchi, M., et al., Triplet energy exchange between fluorescent and phosphorescent organic molecules in a solid state matrix Chemical Physics (2004)297(1-3) 39-48.
    [48]Giebink, N. C.; Sun, Y.; Forrest, S. R., Transient analysis of triplet exciton dynamics in amorphous organic semiconductor thin films Anglais (2006) 7 (5) 375-386.
    [49]Qian, L.; Bera, D.; Holloway, P. H., Electrophosphorescence from triplet excimers in poly-(N-vinylcarbazole) Applied Physics Letters (2007) 90 (10) 103511.
    [50]Schwartz, G.; Pfeiffer, M.; Reineke, S., et al., Harvesting Triplet Excitons from Fluorescent Blue Emitters in White Organic Light-Emitting Diodes Advanced Materials (2007) 19 (21) 3672-3676.
    [51]Hedley, G. J.; Ruseckas, A.; Samuel,I. D. W., Ultrafast luminescence in Ir(ppy)3 Chemical Physics Letters (2008) 450 (4-6) 292-296.
    [52]Singh-Rachford, T. N.; Castellano, F. N., Pd(II) Phthalocyanine-Sensitized Triplet-Triplet Annihilation from Rubrene The Journal of Physical Chemistry A (2008) 112 (16) 3550-3556.
    [53]Sudha Devi, L.; Al-Suti, M. K.; Dosche, C., et al., Triplet energy transfer in conjugated polymers. I. Experimental investigation of a weakly disordered compound Physical Review 5(2008)78(4) 045210.
    [54]Liao, H.-H.; Yang, C.-M.; Wu, C.-H., et al., Large enhancement of intersystem crossing in polyfluorenes by iridium-complex doping Applied physics letters (2007) 90 (1) 013504-013504-3.
    [55]Dresselhaus, G., Spin-orbit coupling effects in zinc blende structures Physical Review (1955) 100(2) 580-586.
    [56]Kaupp, M.; Malkina, O. L.; Malkin, V. G., et al., How Do Spin-Orbit-Induced Heavy-Atom Effects on NMR Chemical Shifts Function? Validation of a Simple Analogy to Spin-Spin Coupling by Density Functional Theory (DFT) Calculations on Some Iodo Compounds Chemistry-A European Journal (1998) 4(1) 118-126.
    [57]Lichtman, J. W.; Conchello, J.-A., Fluorescence microscopy Nature Methods (2005) 2 (12) 910-919.
    [58]MA Baldo, D. O. b., Y You, Highly efficient phosphorescent emission from organic electroluminescent devices Nature (1998) 395 151-154.
    [59]Adamovich, V. I.; Cordero, S. R.; Djurovich, P. I., et al., New charge-carrier blocking materials for high efficiency OLEDs Anglais (2003) 4 (2-3) 77-87.
    [60]D'ANDRADE; W., B.; HOLMES, et al., Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer (2004) 16 (7) 5.
    [61]D'Andrade, B. W.; Holmes, R. J.; Forrest, S. R., Efficient Organic Electrophosphorescent White-Light-Emitting Device with a Triple Doped Emissive Layer Advanced Materials (2004) 16 (7) 624-628.
    [62]Lei, G.; Wang, L.; Qiu, Y., Blue phosphorescent dye as sensitizer and emitter for white organic light-emitting diodes Applied Physics Letters (2004) 85 (22) 5403.
    [63]Mattoussi, H.; Murata, H.; Merritt, C. D., et al., Photoluminescence quantum yield of pure and molecularly doped organic solid films Journal of Applied Physics (1999) 86 (5) 2642-2650.
    [64]Baldo, M. A.; Thompson, M. E.; Forrest, S. R., High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer Nature (2000) 403 (6771) 750-753.
    [65]Jou, J.-H.; Wu, M.-H.; Wang, C.-P., et al., Efficient fluorescent white organic light-emitting diodes using co-host/emitter dual-role possessed di(triphenyl-amine)-1,4-divinyl-naphthalene Anglais(2007) 8 (6) 735-742.
    [66]Yip, W. T.; Levy, D. H.; Kobetic, R., et al., Energy Transfer in Bichromophoric Molecules: The Effect of Symmetry and Donor/Acceptor Energy Gap The Journal of Physical Chemistry A (1998) 103(1) 10-20.
    [67]Kawamura, Y.; Yanagida, S.; Forrest, S. R., Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers Journal of Applied Physics (2002) 92 (1) 87.
    [68]Becker, K.; Lupton, J. M.; Miiller, J., et al., Electrical control of Forster energy transfer Nature Materials (2006) 5 (10) 777-781.
    [69]Fukuda, T.; Wei, B.; Ichikawa, M., et al., Transient characteristics of organic light-emitting diodes with efficient energy transfer in emitting material Thin Solid Films (2009) 518 (2) 567-570.
    [70]Laquai, F.; Park, Y.-S.; Kim, J.-J., et al., Excitation Energy Transfer in Organic Materials: From Fundamentals to Optoelectronic Devices Macromolecular Rapid Communications (2009)30(14) 1203-1231.
    [71]Zhu, X.; Lee, D. H.; Chae, H., et al., Abrupt change of luminescence spectrum in single-layer phosphorescent polymer light emitting diode Journal of Luminescence (2012) 132 (1) 12-15.
    [72]Holmes, R. J.; D'Andrade, B. W.; Forrest, S. R., et al., Efficient, deep-blue organic electrophosphorescence by guest charge trapping Applied Physics Letters (2003) 83 (18) 3818-3820.
    [73]Kalinowski, J.; Giro, G.; Cocchi, M., et al., Unusual disparity in electroluminescence and photoluminescence spectra of vacuum-evaporated films of 1,1-bis ((di-4-tolylamino) phenyl) cyclohexane Applied Physics Letters (2000) 76 (17) 2352-2354.
    [74]Cocchi, M.; Kalinowski, J.; Murphy, L., et al., Mixing of molecular exciton and excimer phosphorescence to tune color and efficiency of organic LEDs Anglais (2010) 11 (3) 388-396.
    [75]Kalinowski, J., Recombination radiation from organic solids Macromolecular Symposia (2004)212(1) 25-38.
    [76]Jan, K., Bimolecular excited species in optical emission from organic electroluminescent devices Journal of Non-Crystalline Solids (2008) 354 (35-39) 4170-4175.
    [77]Granlund, T.; Pettersson, L. A. A.; Anderson, M. R., et al., Interference phenomenon determines the color in an organic light emitting diode Journal of Applied Physics (1997) 81(12) 8097-8104.
    [78]Rehm, D.; Weller, A., Kinetics of fluorescence quenching by electron and H-atom transfer Isr. J. Chem (1970) 8 (2) 259-272.
    [79]Anger, P.; Bharadwaj, P.; Novotny, L., Enhancement and quenching of single-molecule fluorescence Physical review letters (2006) 96 (11) 113002.
    [80]Dulkeith, E.; Morteani, A.; Niedereichholz, T., et al., Fluorescence quenching of dye molecules near gold nanoparticles:radiative and nonradiative effects Physical review letters (2002) 89 (20) 203002.
    [81]Tolstoy, P. M.; Smirnov, S. N.; Shenderovich, I. G., et al., NMR studies of solid state-solvent and H/D isotope effects on hydrogen bond geometries of 1:1 complexes of collidine with carboxylic acids Journal of molecular structure (2004) 700 (1) 19-27.
    [82]Ahn, S.1.; Kim, W. K.; Ryu, S. H., et al., OLED with a controlled molecular weight of the PVK (poly (9-vinylcarbazole)) formed by a reactive ink-jet process Organic electronics (2012) 13 (6) 980-984.
    [83]Cespedes-Guirao, F.; Garcia-Santamaria, S.; Fernandez-Lazaro, F., et al., Efficient electroluminescence from a perylenediimide fluorophore obtained from a simple solution processed OLED Journal of Physics D:Applied Physics (2009) 42 (10) 105106.
    [84]Gordon, K. C.; Walsh, P. J.; McGale, E. M., Electroluminescence from PVK-based polymer blends with metal complex dyes Current Applied Physics (2004) 4 (2) 331-334.
    [85]Hagen, J. A.; Li, W.; Steckl, A., et al., Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer Applied Physics Letters (2006) 88(17) 171109-171109-3.
    [86]Khalifa, M. B.; Vaufrey, D.; Bouazizi, A., et al., Hole injection and transport in ITO/PEDOT/PVK/A1 diodes Materials Science and Engineering:C (2002) 21 (1) 277-282.
    [87]Li, X.-f.; Deng, Z.-b.; Zhang, Y.-y., et al., Emission Mechanism in the Tb Complex Doped PVK System Chinese Journal of Luminescence (2007) 28 (1) 39.
    [88]Mizoguchi, S. K.; Santos, G.; Andrade, A. M., et al., Luminous efficiency enhancement of PVK based OLEDs Synthetic Metals (2011) 161 (17) 1972-1975.
    [89]Pschenitzka, F.; Sturm, J. C. In Patterned dye diffusion using transferred photoresist for polymer OLED displays, International Symposium on Optical Science and Technology, 2001; International Society for Optics and Photonics:2001; pp 59-68.
    [90]Ahn, J. H.; Wang, C.; Perepichka, I. F., et al., Blue organic light emitting devices with improved colour purity and efficiency through blending of poly (9,9-dioctyl-2,7-fluorene) with an electron transporting material Journal of Materials Chemistry (2007) 17 (29) 2996-3001.
    [91]Bauer, R.; Finkenzeller, W. J.; Bogner, U., et al., Matrix influence on the OLED emitter Ir (btp)2 acac) in polymeric host materials-Studies by persistent spectral hole burning Organic Electronics (2008) 9 (5) 641-648.
    [92]Francis, T.; Mermer,O.; Veeraraghavan, G., et al., Large magnetoresistance at room temperature in semiconducting polymer sandwich devices New Journal of Physics (2004) 6 (1) 185.
    [93]Giovanella, U.; Pasini, M.; Freund, C., et al., Highly efficient color-tunable OLED based on poly (9,9-dioctylfluorene) doped with a novel europium complex The Journal of Physical Chemistry C (2009) 113(6) 2290-2295.
    [94]Ohmori, Y.; Hino, Y; Kin, Z., et al. In White light and color tuning of OLED with phosphorous and fluorescent materials by solution process, Optics & Photonics,2006; International Society for Optics and Photonics:2006; pp 63330P-63330P-8.
    [95]Shao, M.; Yan, L.; Li, M., et al., Triplet-charge annihilation versus triplet-triplet annihilation in organic semiconductors Journal of Materials Chemistry C (2013) 1 (7) 1330-1336.
    [96]Xiong, Y.; Xu, W.; Li, C., et al., Utilizing white OLED for full color reproduction in flat panel display Organic Electronics (2008) 9 (4) 533-538.
    [97]Zhao, L.; Zhou, Z.-L.; Guo, Z., et al. In Development of new polymer systems and quantum dotspolymer nanocomposites for low-cost, flexible OLED display applications,"MRS Proceedings,2011; Cambridge Univ Press:2011.
    [98]Chiu, T.-L.; Lee, P.-Y.; Lee, J.-H., et al., Oxadiazole host for a phosphorescent organic light-emitting device Journal of Applied Physics (2011) 109 (8) 084520-084520-7.
    [99]Lee, J.; Lee, J.-I.; Song, K.-I., et al., Effects of interlayers on phosphorescent blue organic light-emitting diodes Applied Physics Letters (2008) 92 203305.
    [100]Lee, J.-H.; Huang, C.-L.; Hsiao, C.-H., et al., Blue phosphorescent organic light-emitting device with double emitting layer Applied Physics Letters (2009) 94 (22) 223301-223301-3.
    [101]Namdas, E.; Markham, J.; Anthopoulos, T., et al. In 67.1:Invited Paper:Dendrimers— Efficient Solution-Processed Phosphorescent OLED Materials, SID Symposium Digest of Technical Papers,2005; Wiley Online Library:2005; pp 1862-1865.
    [102]Shih, P.-I.; Chiang, C.-L.; Dixit, A. K., et al., Novel carbazole/fluorene hybrids:Host materials for blue phosphorescent OLEDs Organic letters (2006) 8 (13) 2799-2802.
    [103]Song, J.-B.; Lee, S.-H.; Kim, S.-Y, et al., White organic light emitting device (OLED). In Google Patents:2012.
    [104]Zhang, W.; Yu, J.; Wen, W., et al., Study on triplet exciton diffusion length of mCP in phosphorescent organic light-emitting devices using electroluminescent spectra Journal of Luminescence (2011) 131 (7) 1260-1263.
    [105]Burrows, P.; Forrest, S.; Zhou, T., et al., Operating lifetime of phosphorescent organic light emitting devices Applied Physics Letters (2000) 76 (18) 2493-2495.
    [106]DAndrade, B. W.; Baldo, M. A.; Adachi, C., et al., High-efficiency yellow double-doped organic light-emitting devices based on phosphor-sensitized fluorescence Applied Physics Letters (2001) 79 (7) 1045-1047.
    [107]Goushi, K.; Kwong, R.; Brown, J. J., et al., Triplet exciton confinement and unconfinement by adjacent hole-transport layers Journal of applied physics (2004) 95 (12) 7798-7802.
    [108]Kanno, H.; Ishikawa, K.; Nishio, Y, et al., Highly efficient and stable red phosphorescent organic light-emitting device using bis [2-(2-benzothiazoyl) phenolato] zinc (II) as host material Applied physics letters (2007) 90 (12) 123509-123509-3.
    [109]Lee, J.-H.; Tsai, H.-H.; Leung, M.-K., et al., Phosphorescent organic light-emitting device with an ambipolar dxadiazole host Applied physics letters (2007) 90 (24) 243501-243501-3.
    [110]Sawateev, V.; Chen-Esterlit, Z.; Aylott, J., et al., Integrated organic light-emitting device/fluorescence-based chemical sensors Applied physics letters (2002) 81 (24) 4652-4654.
    [111]Tokito, S.; Iijima, T.; Suzuri, Y., et al., Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices Applied physics letters (2003) 83 (3) 569-571.
    [112]Zou, L.; Sawateev, V.; Booher, J., et al., Combinatorial fabrication and studies of intense efficient ultraviolet-violet organic light-emitting device arrays Applied Physics Letters (2001)79(14) 2282-2284.
    [113]Colle, M.; Gmeiner, J.; Milius, W., et al., Preparation and Characterization of Blue-Luminescent Tris (8-hydroxyquinoline)-aluminum (Alq3) Advanced Functional Materials (2003) 13 (2) 108-112.
    [114]Niu, Y.-H.; Liu, M. S.; Ka, J.-W., et al., Thermally crosslinked hole-transporting layers for cascade hole-injection and effective electron-blocking/exciton-confinement in phosphorescent polymer light-emitting diodes Applied Physics Letters (2006) 88 (9) 093505-093505-3.
    [115]Huang, F.; Niu, Y. H.; Zhang, Y., et al., A Conjugated, Neutral Surfactant as Electron-Injection Material for High-Efficiency Polymer Light-Emitting Diodes Advanced Materials (2001)19(15) 2010-2014.
    [116]Sun, Y.; Forrest, S. R., High-efficiency white organic light emitting devices with three separate phosphorescent emission layers Applied Physics Letters (2007) 91 (26) 263503-263503-3.
    [117]Eom, S.-H.; Zheng, Y.; Wrzesniewski, E., et al., Effect of electron injection and transport materials on efficiency of deep-blue phosphorescent organic light-emitting devices Organic Electronics (2009) 10 (4) 686-691.
    [118]Farinola, G. M.; Ragni, R., Electroluminescent materials for white organic light emitting diodes Chemical Society Reviews (2011) 40 (7) 3467-3482.
    [119]Zhu, X.;, D.-H. L.;, H. C., et al., Abrupt change of luminescence spectrum in single-layer phosphorescent polymer light emitting diode Journal of Luminescence (2012) (132) 12-15.
    [120]Uchida, M.; Adachi, C.; Koyama, T., et al., Charge carrier trapping effect by luminescent dopant molecules in single-layer organic light emitting diodes Journal of Applied Physics (1999)86(3) 1680-1687.
    [121]Cheng, G.; Zhang, Y.; Zhao, Y., et al., Improved efficiency for white organic light-emitting devices based on phosphor sensitized fluorescence Applied Physics Letters (2006) 88 (8) 083512-083512-3.
    [122]Baek, H.-I.; Lee, C., Simple white organic light emitting diodes with improved color stability and efficiency using phosphorescent and fluorescent emitters Journal of Applied Physics (2008) 103 (12) 124504-124504-5.
    [123]Cheng, G.;, T. F.;, Y. Z., et al., Highly efficient white organic light-emitting devices based on a multiple-emissive-layer structure Thin Solid Films (2008) 5163.
    [124]Jiang, W.-I.; Ding, G.-y.; Wang, J., et al., An organic light-emitting devices of highly efficient white phosphor using an electron/exciton blocker Optoelectronics Letters (2008) 4(1) 26-29.
    [125]Goushi, K.; Kawamura, Y.; Sasabe, H., et al., Unusual phosphorescence characteristics of Ir (ppy) 3 in a solid matrix at low temperatures Japanese journal of applied physics (2004) 43 937.
    [126]Holzer, W.; Penzkofer, A.; Tsuboi, T., Absorption and emission spectroscopic characterization of Ir(ppy)3 Chemical Physics (2005) 308 (1-2) 93-102.
    [127]Kwong, R. C.; Nugent, M. R.; Michalski, L., et al., High operational stability of electrophosphorescent devices Applied Physics Letters (2002) 81 (1) 162-164.
    [128]Tanaka, I.; Tabata, Y.; Tokito, S., Comparison of phosphorescence properties of green-emitting Ir (ppy) 3 and red-emitting Btp21r (acac) Japanese journal of applied physics (2004)43 1601.
    [129]Tsuboi, T.; Jeon, W. S.; Kwon, J. H., Observation of phosphorescence from fluorescent organic material Bebq2 using phosphorescent sensitizer Optical Materials (2009) 31(12) 1755-1758.
    [130]Zhou, G.; Ho, C. L.; Wong, W. Y, et al., Manipulating Charge-Transfer Character with Electron-Withdrawing Main-Group Moieties for the Color Tuning of Iridium Electrophosphors Advanced Functional Materials (2008) 18 (3) 499-511.
    [131]Qin, D.; Tao, Y, White organic light-emitting diode comprising of blue fluorescence and red phosphorescence Applied Physics Letters (2005) 86 (11) 113507-113507-3.
    [132]Lyu, Y Y.; Kwak, J.; Jeon, W. S., et al., Highly Efficient Red Phosphorescent OLEDs based on Non-Conjugated Silicon-Cored Spirobifluorene Derivative Doped with Ir- Complexes Advanced Functional Materials (2009) 19(3) 420-427.
    [133]Fong, H.; Lun, K.; So, S., Hole transports in molecularly doped triphenylamine derivative Chemical physics letters (2002) 353 (5) 407-413.
    [134]Kido, J.; Shionoya, H.; Nagai, K., Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly (N-vinylcarbazole) Applied physics letters (1995) 67 (16) 2281-2283.
    [135]Kim, C.-H.; Shinar, J., Bright small molecular white organic light-emitting devices with two emission zones Applied physics letters (2002) 80 (12) 2201-2203.
    [136]Kim, Y. M.; Park, Y. W.; Choi, J. H., et al., Spectral broadening in electroluminescence of white organic light-emitting diodes based on complementary colors Applied physics letters (2007) 90 (3) 033506-033506-3.
    [137]Baldo, M.; O'brien, D.; You, Y, et al., Highly efficient phosphorescent emission from organic electroluminescent devices Nature (1998) 395 (6698) 151-154.
    [138]Baldo, M.; Thompson, M.; Forrest, S., High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer Nature (2000) 403 (6771) 750-753.
    [139]Bulovic, V.; Shoustikov, A.; Baldo, M., et al., Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts Chemical Physics Letters (1998) 287 (3) 455-460.
    [140]Liu, T.-H.; Iou, C.-Y.; Chen, C. H., Doped red organic electroluminescent devices based on a cohost emitter system Applied Physics Letters (2003) 83 (25) 5241-5243.
    [141]Tang, H.; Li, Y.; Wang, X., et al., Improvement of efficiency and stability utilizing a wide band gap material as the host for red organic light-emitting diodes Semiconductor science and technology (2007) 22 (3) 287.
    [142]Zhang, X.; Liu, M.; Wong, O., et al., Blue and white organic electroluminescent devices based on 9,10-bis(2'-naphthyl)anthracene Chemical physics letters (2003) 369 (3) 478-482.
    [143]Li, G.; Shinar, J., Combinatorial fabrication and studies of bright white organic light-emitting devices based on emission from rubrene-doped 4,4'-bis (2,2'-diphenylvinyl)-1,1'-biphenyl Applied physics letters (2003) 83 (26) 5359-5361.
    [144]Murata, H.; Merritt, C. D.; Kafafi, Z. H., Emission mechanism in rubrene-doped molecular organic light-emitting diodes:direct carrier recombination at luminescent centers Selected Topics in Quantum Electronics, IEEE Journal of (1998) 4 (1) 119-124.
    [145]Stassen, A.; De Boer, R.; Iosad, N., et al., Influence of the gate dielectric on the mobility of rubrene single-crystal field-effect transistors Applied physics letters (2004) 85 (17) 3899-3901.
    [146]Halls, J.; Friend, R., The photovoltaic effect in a poly (p-phenylenevinylene)/perylene heterojunction Synthetic metals (1997) 85 (1) 1307-1308.
    [147]Hirata, S.; Lee, T. J.; Head-Gordon, M., Time-dependent density functional study on the electronic excitation energies of polycyclic aromatic hydrocarbon radical cations of naphthalene, anthracene, pyrene, and perylene The Journal of chemical physics (1999) 111 8904.
    [148]Kazmaier, P. M.; Hoffmann, R., A theoretical study of crystallochromy. Quantum interference effects in the spectra of perylene pigments Journal of the American Chemical Society (1994) 116 (21) 9684-9691.
    [149]Wurthner, F.; Thalacker, C.; Sautter, A., Hierarchical organization of functional perylene chromophores to mesoscopic superstructures by hydrogen bonding and π-π interactions Advanced Materials (1999) 11 (9) 754-758.
    [150]Choukri, H.; Fischer, A.; Forget, S., et al., White organic light-emitting diodes with fine chromaticity tuning via ultrathin layer position shifting Applied physics letters (2006) 89 (18) 183513-183513-3.
    [151]Chuen, C.; Tao, Y.; Wu, F., et al., White organic light-emitting diodes based on 2,7-bis (2, 2-diphenylvinyl)-9,9'-spirobifluorene:Improvement in operational lifetime Applied physics letters (2004) 85 (20) 4609-4611.
    [152]Kim, M.; Jeong, C.; Lim, J., et al., White top-emitting organic light-emitting diodes using one-emissive layer of the DCJTB doped DPVBi layer Thin Solid Films (2008) 516 (11) 3590-3594.
    [153]Lee, N.-H.; Lee, M.-J.; Song, J.-H., et al., Efficient white organic electroluminescent devices consisting of blue-and red-emitting layers Materials Science and Engineering:C (2004)24(1) 233-235.
    [154]Wang, G.-d.; Wang, L.; Jiang, W.-l., et al., The impact of different DPVBi thickness and position on the organic light-emitting devices Chinese Journal of Luminescence (2007) 28 (2) 189.
    [155]Xie, W.; Liu, S.; Zhao, Y., A nondoped-type small molecule white organic light-emitting device Journal of Physics D:Applied Physics (2003) 36(11) 1246.
    [156]Zheng, X.; Zhu, W.; Wu, Y., et al., A white OLED based on DPVBi blue light emitting host and DCJTB red dopant Displays (2003) 24 (3) 121-124.
    [157]Chen, W.-B.; Xiang, H.-F.; Xu, Z.-X., et al., Improving efficiency of organic photovoltaic cells with pentacene-doped CuPc layer Applied Physics Letters (2007) 91 (19) 191109- 191109-3.
    [158]Parthasarathy, G.; Adachi, C.; Burrows, P., et al., High-efficiency transparent organic light-emitting devices Applied Physics Letters (2000) 76 (15) 2128-2130.
    [159]Reis, F.; Mencaraglia, D.; Oould Saad, S., et al., Characterization of ITO/CuPc/AI and ITO/ZnPc/Al structures using optical and capacitance spectroscopy Synthetic metals (2003) 138 (1) 33-37.
    [160]Sullivan, P.; Heutz, S.; Schultes, S., et al., Influence of codeposition on the performance of CuPc-C 60 heterojunction photovoltaic devices Applied physics letters (2004) 84 (7) 1210-1212.
    [161]Wang, J.; Wang, H.; Yan, X., et al., Organic heterojunction and its application for double channel field-effect transistors Applied Physics Letters (2005) 87 (9) 093507-093507-3.
    [162]Xie, W.; Zhao, Y.; Hou, J., et al., Spectroscopic ellipsometry studies of CuPc and other materials for organic light-emitting devices Japanese journal of applied physics (2003) 42 (3) 1466-1469.
    [163]You, H.; Dai, Y; Zhang, Z., et al., Improved performances of organic light-emitting diodes with metal oxide as anode buffer Journal of applied physics (2007) 101 (2) 026105-026105-3.
    [164]Yu, W.-L.; Pei, J.; Cao, Y., et al., Hole-injection enhancement by copper phthalocyanine (CuPc) in blue polymer light-emitting diodes Journal of Applied Physics (2001) 89 (4) 2343-2350.
    [165]Chen, H.; Lam, W.; Luo, J., et al., Highly efficient organic light-emitting diodes with a silole-based compound Applied physics letters (2002) 81 (4) 574-576.
    [166]Deng, Z.; Lee, S.; Webb, D., et al., Carrier transport in thin films of organic electroluminescent materials Synthetic metals (1999) 107 (2) 107-109.
    [167]Kato, T.; Mori, T.; Mizutani, T., Effect of fabrication conditions on photoluminescence and absorption of hole transport materials Thin Solid Films (2001) 393 (1) 109-113.
    [168]Lee, W.; Fang, Y.-K.; Chiang, H.-C, et al., Dramatic improving luminous efficiency of organic light emitting diodes under low driving current using nitrogen doped hole transporter Solid-State Electronics (2003) 47 (6) 1127-1130.
    [169]Mu, H.; Klotzkin, D.; de Silva, A., et al., Temperature dependence of electron mobility, electroluminescence and photoluminescence of Alq3 in OLED Journal of Physics D: Applied Physics (2008) 41 (23) 235109.
    [170]Pisignano, D.; Mazzeo, M.; Gigli, G., et al., Controlling non-radiative energy transfer in organic binary blends:a route towards colour tunability and white emission from single- active-layer light-emitting devices Journal of Physics D:Applied Physics (2003) 36 (20) 2483.
    [171]Santerre, F.; Bedja, I.; Dodelet, J., et al., Hole Transport Molecules in High T g Polymers: Their Effect on the Performance of Organic Light-Emitting Diodes Chemistry of materials (2001) 13 (5) 1739-1745.
    [172]Schmitz, C.; Posch, P.; Thelakkat, M., et al. In Efficient screening of materials and fast optimization of vapor deposited OLED characteristics, Macromolecular Symposia,2000; Wiley Online Library:2000; pp 209-222.
    [173]Colle, M.; Forero-Lenger, S.; Gmeiner, J., et al., Vibrational analysis of different crystalline phases of the organic electroluminescent material aluminium tris (quinoline-8-olate)(Alq3) Physical Chemistry Chemical Physics (2003) 5(14) 2958-2963.
    [174]Kim, Y.; Keum, J.; Lee, J. G., et al., Non-linear charge conduction and emission behaviour of OELD fabricated with Alq3 and TPD-doped soluble polyimide Advanced Materials for Optics and Electronics (2000) 10(6) 273-283.
    [175]Liao, S.-H.; Shiu, J.-R.; Liu, S.-W., et al., Hydroxynaphthyridine-derived group Ⅲ metal chelates:wide band gap and deep blue analogues of green Alq3 (Tris (8-hydroxyquinolate) aluminum) and their versatile applications for organic light-emitting diodes Journal of the American Chemical Society (2008) 131 (2) 763-777.
    [176]Mori, T.; Fujikawa, H.; Tokito, S., et al., Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy Applied physics letters (1998) 73 (19) 2763-2765.
    [177]Choulis, S. A.; Choong, V.-E.; Mathai, M. K., et al., The effect of interfacial layer on the performance of organic light-emitting diodes Applied physics letters (2005) 87 (11) 113503-113503-3.
    [178]Kawabe, Y.; Abe, J., Electron mobility measurement using exciplex-type organic light-emitting diodes Applied physics letters (2002) 81 (3) 493-495.
    [179]LEI, J.-f.; HAO, Y.-y.; FAN, W.-h., et al., Theory on Geometrical Structure and Electronic Configuration of Electroplex at the TPD/PBD Interface in Organic Light-emitting Diodes Chinese Journal of Luminescence (2009) 5011.
    [180]Nothaft, M.; Hohla, S.; Jelezko, F., et al., Electrically driven photon antibunching from a single molecule at room temperature Nature Communications (2012) 3 628.
    [181]Pschenitzka, F.; Long, K.; Sturm, J. In Solvent-enhanced Dye Diffusion in Polymer This-Filmsfor OLED Application, MRS Proceedings,2001; Cambridge Univ Press:2001.
    [182]Yap, C.; Yahaya, M.; Salleh, M., The effect of DCJTB concentration on the photoluminescent and electroluminescent properties of PVK-PBD-perylene-DCJTB thin films Materials Science-Poland (2009) 27 (1).
    [183]Zhao, D.-W.; Xu, Z.; Zhang, F.-J., et al., The effect of electric field strength on electroplex emission at the interface of NPB/PBD organic light-emitting diodes Applied surface science (2007) 253 (8) 4025-4028.
    [184]Deshpande, R. S.; Bulovic, V.; Forrest, S. R., White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer Applied Physics Letters (1999) 75 (7) 888-890.
    [185]Su, Z. S.; Fung, M. K.; Lee, C. S., et al., Memory effect and negative differential resistance in tris-(8-hydroxy quinoline) aluminum/bathocuproine bilayer devices Applied Physics Letters (2008) 93 (8) 083301.
    [186]Yang, S.; Jiang, M., White light generation combining emissions from exciplex, excimer and electromer in TAPC-based organic light-emitting diodes Chemical Physics Letters (2009)484(1-3) 54-58.
    [187]Cheng, G.; Zhang, Y.; Zhao, Y, et al., White organic light-emitting devices with a phosphorescent multiple emissive layer Applied physics letters (2006) 89 (4) 043504-043504-3.
    [188]D'Andrade, B. W.; Thompson, M. E.; Forrest, S. R., Controlling exciton diffusion in multilayer white phosphorescent organic light emitting devices Advanced Materials (2002)14(2) 147-151.
    [189]Gao, M.; Richter, B.; Kirstein, S., White-light electroluminescence from self-assembled Q-CdSe/PPV multilayer structures Advanced Materials (1997) 9 (10) 802-805.
    [190]Kamtekar, K. T.; Monkman, A. P.; Bryce, M. R., Recent Advances in White Organic Light-Emitting Materials and Devices (WOLEDs) Advanced Materials (2010) 22 (5) 572-582.
    [191]Kido, J.; Kimura, M.; Nagai, K., Multilayer white light-emitting organic electroluminescent device Science (1995) 267 (5202) 1332-1334.
    [192]Lei, G.; Wang, L.; Qiu, Y, Multilayer organic electrophosphorescent white light-emitting diodes without exciton-blocking layer Applied physics letters (2006) 88 (10) 103508-103508-3.
    [193]Lei, G.; Yi, X.; Duan, L., et al., Multilayer white organic light-emitting diodes with a single host material Semiconductor science and technology (2006) 21 (10) 1455.
    [194]Xie, W.; Zhao, Y.; Li, C., et al., High colour rendering index non-doped-type white organic light-emitting devices with a RGB-stacked multilayer structure Semiconductor science and technology (2005) 20 (12) L57.
    [195]Chang, C.-C.; Chen, J.-F.; Hwang, S.-W., et al., Highly efficient white organic electroluminescent devices based on tandem architecture Applied Physics Letters (2005) 87 (25) 253501-253501-3.
    [196]Forrest, S.; Burrows, P.; Shen, Z., et al., The stacked OLED (SOLED):a new type of organic device for achieving high-resolution full-color displays Synthetic Metals (1997) 91 (1) 9-13.
    [197]Gu, G.; Khalfin, V.; Forrest, S., High-efficiency, low-drive-voltage, semitransparent stacked organic light-emitting device Applied physics letters (1998) 73 (17) 2399-2401.
    [198]He, G.; Rothe, C.; Murano, S., et al., White stacked OLED with 38 lm/W and 100,000-hour lifetime at 1000 cd/m2 for display and lighting applications Journal of the Society for Information Display (2009) 17 (2) 159-165.
    [199]Kanno, H.; Giebink, N. C.; Sun, Y., et al., Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters Applied physics letters (2006) 89 (2) 023503-023503-3.
    [200]Law, C.; Lau, K.; Fung, M., et al., Effective organic-based connection unit for stacked organic light-emitting devices Applied physics letters (2006) 89 (13) 133511-133511-3.
    [201]Sun, J.; Zhu, X.; Peng, H., et al., Effective intermediate layers for highly efficient stacked organic light-emitting devices Applied Physics Letters (2005) 87 (9) 093504-093504-3.
    [202]Kohler, A.; Bassler, H., Triplet states in organic semiconductors Materials Science and Engineering:R:Reports (2009) 66 (4-6) 71-109.
    [203]Lee, J.; Lee, J.-I.; Lee, J. Y., et al., Stable efficiency roll-off in blue phosphorescent organic light-emitting diodes by host layer engineering Organic Electronics (2009) 10 (8) 1529-1533.
    [204]Staroske, W.; Pfeiffer, M.; Leo, K., et al., Single-Step Triplet-Triplet Annihilation:An Intrinsic Limit for the High Brightness Efficiency of Phosphorescent Organic Light Emitting Diodes Physical Review Letters (2007) 98 (19) 197402.
    [205]Su, S.-J.; Gonmori, E.; Sasabe, H., et al., Highly Efficient Organic Blue-and White-Light-Emitting Devices Having a Carrier- and Exciton-Confining Structure for Reduced Efficiency Roll-Off Advanced Materials (2008) 20 (21) 4189-4194.
    [206]Zang, F. X.; Sum, T. C.; Huan, A. C. H., et al., Reduced efficiency roll-off in phosphorescent organic light emitting diodes at ultrahigh current densities by suppression of triplet-polaron quenching Applied Physics Letters (2008) 93 (2) 023309-023309-3.
    [207]Zhao, J.; Ji, S.; Guo, H., Triplet-triplet annihilation based upconversion:from triplet sensitizers and triplet acceptors to upconversion quantum yields RSC Advances (2011) 1 (6).
    [208]WU Xiao-Ming, H. Y.-L., WANG Zhao-Qi, YIN Shou-Gen, ZHENG Jia-Jin, DENG Jia-Chun, M. C. Petty, Pure RGB Emissions Based on a White OLED Combined with Optical Colour Filters Chin. Phys. Lett. (2006) 23 (4) 1012-1014.
    [209]Wang Jun, W. X.-Q., Rao Hai-Bo, Cheng Jian-Bo, Jiang Ya-Dong, High-efficiency and high-stability phosphorescent OLED based on new Ir complex Acta Phys. Sin (2007) 56 (2) 1156-1161.
    [210]Zhang Li-Juan, H. Y.-L., Wu Xiao-Ming, Wang Yu, Yin Shou-Geng, White organic light-emitting device with\both phosphorescent and fluorescent emissive layers Chin. Phys. B (2008)17(8) 3097-3102.
    [211]Baldo, M. A.; Forrest, S. R., Interface-limited injection in amorphous organic semiconductors Physical Review B (2001) 64 (8) 085201.
    [212]Baldo, M. A.; O'Brien, D. F.; You, Y, et al., Highly efficient phosphorescent emission from organic electroluminescent devices Nature (1998) 395 (6698) 151-154.
    [213]Kalinowski, J., Electroluminescence in organics Journal of Physics D: Applied Physics (1999)32(24) R179.
    [214]Szmytkowski, J.; Stampor, W.; Kalinowski, J., et al., Electric field-assisted dissociation of singlet excitons in tris-(8-hydroxyquinolinato) aluminum (Ⅲ) Applied Physics Letters (2002)80(8) 1465.
    [215]Kalinowski, J.; Cocchi, M.; Virgili, D., et al., Magnetic field effects on emission and current in Alq3-based electroluminescent diodes Chemical Physics Letters (2003) 380 (5-6) 710-715.
    [216]Tu, G.; Zhou, Q.; Cheng, Y, et al., White electroluminescence from polyfluorene chemically doped with 1,8-napthalimide moieties Applied physics letters (2004) 85 (12) 2172-2174.
    [217]Wang, Q.; Ding, J.; Ma, D., et al., Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis Advanced Functional Materials (2009) 19 (1) 84-95.
    [218]Zhang, Q.; Zhou, Q.; Cheng, Y, et al., Highly Efficient Green Phosphorescent Organic Light-Emitting Diodes Based on CuI Complexes Advanced Materials (2004) 16 (5) 432-436.
    [219]Gong, X.; Ostrowski, J. C.; Moses, D., et al., Electrophosphorescence from a Polymer Guest-Host System with an Indium Complex as Guest:Forster Energy Transfer and Charge Trapping Advanced Functional Materials (2003) 13(6) 439-444.
    [220]Yang, K.; Gao, W.; Zhao, J., et al., An efficient and bright organic white-light-emitting device Synthetic Metals (2002) 132 (1) 43-47.
    [221]Li, G.; Shinar, J., Combinatorial fabrication and studies of bright white organic light-emitting devices based on emission from rubrene-doped 2,2diphenylvinyl Applied Physics Letters (2003) 83 (26) 5359-5361.
    [222]Holmes, R. J.; Dandrade, B. W.; Forrest, S. R., et al., Efficient, deep-blue organic electrophosphorescence by guest charge trapping Applied Physics Letters (2003) 83 (18) 3818-3820.
    [223]Yook, K. S.; Lee, J. Y., Organic Materials for Deep Blue Phosphorescent Organic Light-Emitting Diodes Advanced Materials (2012) 24 (24) 3169-3190.
    [224]D'Angelo, P.; Barra, M.; Cassinese, A., et al., Electrical transport properties characterization of PVK (poly N-vinylcarbazole) for electroluminescent devices applications Solid-State Electronics (2007) 51(1) 123-129.
    [225]Lee, D. H.; Xun, Z.; Chae, H., et al., Effect of electron- and hole-transporting materials on the performance of Flrpic-doped PVK phosphorescent devices Synthetic Metals (2009) 159(15-16) 1640-1643.
    [226]Chen, F.-C.; Chen, Y.-S.; Chien, S.-C., et al., Suppression of phase separation through blending of electron transporting materials in polymer electrophosphorescent devices Journal of Luminescence (2011) 131 (4) 565-569.
    [227]Ahn, J.; Wang, C.; Widdowson, N., et al., Thermal annealing of blended-layer organic light-emitting diodes Journal of applied physics (2005) 98 (5) 054508-054508-7.
    [228]Zhang, T.; Deng, Y; Johnson, S., et al., Highly efficient blue polyfluorene-based polymer light-emitting diodes through solvent vapour annealing Journal of Physics D:Applied Physics(2009)42(14) 145104.
    [229]Chen, F.-C.; Chang, S.-C.; He, G., et al., Energy transfer and triplet exciton confinement in polymeric electrophosphorescent devices Journal of Polymer Science Part B:Polymer Physics(2003)41(21) 2681-2690.
    [230]Cusumano, P.; Buttitta, F.; Di Cristofalo, A., et al., Effect of driving method on the degradation of organic light emitting diodes Synthetic metals (2003) 139 (3) 657-661.
    [231]Huang, J.; Hou, W.-J.; Li, J.-H., et al., Improving the power efficiency of white light-emitting diode by doping electron transport material Applied physics letters (2006) 89 (13) 133509-133509-3.
    [232]Jou, J.-H.; Chiu, Y.-S.; Wang, R.-Y., et al., Efficient, color-stable fluorescent white organic light-emitting diodes with an effective exciton-confining device architecture Organic electronics (2006) 7 (1) 8-15.
    [233]Lee, Y. G.; Kee, I. S.; Shim, H. S., et al., White organic light-emitting devices with mixed interfaces between light emitting layers Applied physics letters (2007) 90 (24) 243508-243508-3.
    [234]Yook, K. S.; Lee, J. Y., Recombination zone study of phosphorescent organic light-emitting diodes with triplet mixed host emitting structure Journal of Industrial and Engineering Chemistry (2010) 16 (2) 181-184.
    [235]Park, J.; Kim, Y.; Lee, J., et al., Effect of dye dopants in poly(methylphenyl silane) light-emitting devices Current Applied Physics (2005) 5 (1) 71-74.
    [236]Zheng, T.; Choy, W. C. H., High Efficiency Blue Organic LEDs Achieved By an Integrated Fluorescence-Interlayer-Phosphorescence Emission Architecture Advanced Functional Materials (2010) 20 (4) 648-655.
    [237]Tang, X.; Yu, J.; Li, L., et al., White organic light-emitting diodes with improved performance using phosphorescent sensitizer and ultrathin fluorescent emitter Displays (2009)30(3) 123-127.
    [238]Chang, C.-H.; Lu, Y.-J.; Liu, C.-C., et al., Efficient White OLEDs Employing Phosphorescent Sensitization J. Display Technol. (2007) 3 (2) 193-199.
    [239]Wang, X. R.; You, H.; Tang, H., et al., Efficient red organic light-emitting diode sensitized by a phosphorescent Ir compound Journal of Luminescence (2008) 128 (1) 27-30.
    [240]Bulovic, V.; Deshpande, R.; Thompson, M. E., et al., Tuning the color emission of thin film molecular organic light emitting devices by the solid state solvation effect Chemical Physics Letters (1999) 308 (3-4) 317-322.
    [241]Williams, D.; Adolph, J., Diffusion length of triplet excitons in anthracene crystals The Journal of Chemical Physics (1967) 46 4252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700