基于多模型控制的燃料电池汽车混合动力系统优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内燃机动力体现了整整一个世纪人类智慧的精华,但它致命的弱点是造成环境污染,而且世界的石油资源已日益枯竭,内燃机很难从根本上摆脱这一被动的不利局面。开发电动汽车,在能源环保形式日益严峻的情况下倍受瞩目。燃料电池电动汽车(FCEV,Fuel Cell Electric Vehicle)是20世纪70年代产生而最近10年兴起开发的一种高效、清洁、零污染的车型。以质子交换膜燃料电池为动力源的汽车称为燃料电池电动汽车,而整车的动力系统结构及能量管理策略则是整个燃料电池电动汽车研究的热点及关键技术。
     本文正是以开发研究燃料电池电动汽车为背景,以燃料电池电动汽车动力系统为研究对象,从燃料电池电动汽车的电电混合动力系统结构入手,基于Advisor平台建立了电电混合动力系统的基本模型,并提出基于多模型切换控制的动力系统能量管理策略,仿真计算结果证明了该控制策略的有效性。本文主要研究成果如下:
     (1)提出了一种燃料电池电动汽车三能源电电混合动力系统的结构,即采用燃料电池系统、磷酸铁锂电池组及超级电容器组共同构成混合动力系统,在分析各能源特性及动力系统构型的基础上优化了电电混合动力系统的结构,并设计和确定了整车基本性能指标及动力系统关键参数;基于Advisor平台,以模块化的方式对动力系统每个子部件进行建模,在整车车辆模型研究的基础上,建立了整个电电混合动力系统的仿真模型。
     (2)针对难以用一个单一模型及控制方法来描述整个动力系统行为的问题,提出基于多模型切换控制的动力系统能量管理优化策略。通过对电电混合动力系统在不同工作模式(启动模式、加速爬坡模式、巡航模式及减速制动模式)下的能量管理模式及功率分配关系进行研究,设计了基于模糊监督规则的动力系统能量流多模型切换控制策略。
     (3)由于燃料电池系统动态响应偏软的特性将导致整车动力性不足,故在建立的动力系统能量流多模型基础上,提出了动力系统能量管理与燃料电池系统控制综合优化方案,即在加速爬坡模式下,有针对性的设计了燃料电池系统输出功率神经网络预测控制策略,提高了整车的动力性能。
     (4)对燃料电池电动汽车动力系统常用能量管理策略及本文提出的基于多模型切换控制的能量管理策略进行了分析比较,仿真结果表明,嵌入基于多模型切换控制的动力系统能量管理策略后,整车燃料经济性指标相比嵌入功率跟随模式控制策略的经济性指标降低了3.3%。提出燃料电池电动汽车动力系统混合度的概念,并对不同结构及混合度的动力系统进行了仿真计算,基于仿真结果对整车动力系统结构及混合度做了进一步优化。
     综上所述,本文以燃料电池电动汽车电电混合动力系统结构及能量管理策略为优化对象,提出了一种三能源混合的动力系统结构,并采用基于多模型切换控制的动力系统能量流管理策略,仿真计算结果证明了该策略的有效性,这为燃料电池电动汽车动力系统的结构设计,配置选型以及系统优化控制方面提供了一种思路和参考。
Internal-combustion engine incarnates the distillate of human wisdom in the full century, but the fatal weakness of it is to cause pollution. As the petroleum resource in the world has dried up day by day, internal-combustion engine can hardly breaks away from the passive complexion. In consideration of energy saving and environment protection, to develop Electric Vehicle is indispensable. Fuel Cell Electric Vehicle is a kind of high-efficient, clean and non-emission automobiles, which originated in the 1970s, and became the research focus in recent ten years. The main power energy source of fuel cell electric vehicle is proton exchange membrane fuel cell, and power system structure and energy management strategy is the focus technology of the entire research field of fuel cell electric vehicle.
     This article took the power system of fuel cell electric vehicle as researching object under the background of developing fuel cell electric vehicle. Analysis of electric-electric hybrid power system structure of Fuel Cell Vehicle, the basic model of hybrid power system was established based on the Advisor platform. The power system energy management strategy based on multiple model switch control was brought forward and simulation results would prove that the strategy was very effective to the whole system. The main research production and innovation point are as follows:
     (1) The electric-electric hybrid power system structure of Fuel Cell Vehicle was designed, that is, the whole power system included the fuel cell system, the LiFePO_4 battery pack and the ultra capacitor pack. Analysis of every energy source characteristic and configuration of power system, the electric-electric hybrid power system structure was optimized, and the vehicles basic performance index and power system crucial parameter was designed. Based on the Advisor platform, the each components model of power system was established by the modular way, including the fuel cell system, the LiFePO_4 battery pack, the ultra capacitor system, the DC/DC converter and the DC brushless motor. Based on the Advisor platform, the basic model of electric-electric hybrid power system was established on the basis of researching vehicles body model.
     (2) Because there were not one single model and control method which could describe the whole power system, the power system energy management optimization strategy based on multiple model switch control was designed. There were various working modes to the electric-electric hybrid power system, which included start-up mode, accelerating or climbing mode, cruising mode and braking mode, and the energy management target and power distribution method of respective working mode was researched and designed. By applying the fuzzy supervised rule, the power system energy flow management strategy based on multiple model switch control was designed.
     (3) The dynamic response soft characteristic of fuel cell system will result in poor dynamic performance, so the integration optimization methods combining power system energy management and fuel cell system control were brought forward. In the accelerating mode, the neural network predictive control strategy of fuel cell system output power was adopted, and the simulation and experimentation results proved that the system dynamic performance could be improved by the predictive control strategy.
     (4) To compare other energy management strategy of Fuel Cell Vehicle power system with energy management strategy based on multiple model switch control proposed on this article, the simulation system was established. The simulation and experimentation results were presented, which indicated/showed that vehicle fuel economy index decreased 3.3% compared with power following control strategy by applying the power system energy management strategy based on multiple model control. The concept of hybrid ration about power system was proposed, and the power system structure and hybrid ratio was further optimized on the basis of simulation of power system with different structure and hybrid ratio.
     In a word, this article took the electric-electric hybrid power system structure and energy management strategy of Fuel Cell Electric Vehicle as optimization object, and proposed one kind of three energy source hybrid power system structure, and adopted power system energy management strategy based on multiple model switch control. In the end, the simulation results had indicated this strategy's validity, which could provide a kind of roadway and reference on the aspect of optimizing power system structure of fuel cell electric vehicle, system configuration and control strategy.
引文
[1]陈清泉,孙立清.电动汽车的现状和发展趋势.科技导报,2005.23(4):24-28.
    [2]胡骅,宋慧.电动汽车.北京:人民交通出版社,2003.34-43.
    [3]Power W F,Nicastri P R.Automotive vehicle control challenges in the 21st century.Control Engineering Practice,2000.8(6):605-618.
    [4]陈清泉,孙逢春,祝嘉光.现代电动汽车技术.北京:北京理工大学出版社,2002.3-7.
    [5]肯道尔.WWF报告《电动汽车:石油时代的终结》.2008.
    [6]万沛霖.电动汽车的关键技术.北京:北京理工大学出版社,1998.5-9.
    [7]陈光祖.汽车业迎来氢动力时代.中关村,2004.16:68-70.
    [8]衣宝廉.燃料电池的原理、技术状态与展望.北京:北京化学工业出版社,2003.56-60.
    [9]毛宗强.燃料电池.北京:化学工业出版社,2005.120-145.
    [10]陈全世,仇斌,谢起成,等.燃料电池电动汽车.北京:清华大学出版社,2005.78-92.
    [11]郑重德,王丰,胡涛,等.质子交换膜燃料电池研究进展.电源技术,1998.22(3):33-43.
    [12]C C Chan.The state of the art of electric and hybrid vehicles.Proceeding of IEEE,2002.90:247-275.
    [13]H Moghbelli,Y Gao,R Langari.Investigation of hybrid fuel cell technology applications on the future passenger railroad transportation.Proceedings of the 2003 IEEE/ASME Joint,2003.39-53.
    [14]C R Akli,X Roboam,B Sareni.Energy management and sizing of a hybrid locomotive.2007 European Conference on,2007.1-10.
    [15]C C Chan,Chau K T.Modern electric vehicle technology.New York:Oxford University Press,2001.165-168.
    [16]孙逢春.电动汽车-21世纪的重要交通工具.北京:北京理工大学出版社,1997.
    [17]白木,周艳琼.世界电动车发展现状.世界汽车,2001.22(3):4-9.
    [18]李兴虎.电动汽车概论.北京:北京理工大学出版社,2005.
    [19]杨为琛,孙逢春.混合电动汽车的技术现状.车辆与动力技术,2001.4:32-38.
    [20]Eizo Tabo.Fuel Cell Vehicle Technology Trends and MMC Initiatives.New Technologies,2004.16(2):78-85.
    [21]刘呈则,朱新坚.质子交换膜燃料电池系统控制与应用现状.能源技术,2004.12(1):13-20.
    [22]Hwang J J,Wang D Y,Shih N C.Development of a lightweight fuel cell vehicle.Journal of Power Sources.2005.141:108-115.
    [23]何彬,卢兰光,李建秋,等.燃料电池混合动力汽车能量控制策略仿真研究.公路交通科技,2006.23(1):78-83.
    [24]Caux S.Modelling and control of a Fuel Cell System and Storage Elements in transport applications.Journal of Process Control,2005.15(4):481-491.
    [25]谢长君.燃料电池电动轿车整车控制及能量流管理系统的研究与实现:[硕士学位论 文].武汉:武汉理工大学自动化学院,2004.
    [26]Rasul F.The next generation of Power.Canada:Ballard Power Systems IncAnnual Report,1999.
    [27]Wipke K,Markel T,Nelson D.Optimizing Energy Management Strategy and Degree of Hybridization for a Hydrogen Fuel Cell SUV.Proceedings of 18th Electric Vehicle Symposium.Berlin,Germany,2001.
    [28]欧阳明高.新能源汽车发展与汽车产业振兴.群言(参政议政),2009.
    [29]欧阳明高.奥运示范运行成功技术路径呈多元化.中国科技产业(节能减排),2008.
    [30]T Markel,M Zolot,K B Wipke.Energy storage requirements for hybrid fuel cell vehicles.Advanced Automotive Battery,2003.10-13.
    [31]王勇,吴保全.燃料电池电动汽车能量流控制策略.武汉理工大学学报,2005.26(4):56-59.
    [32]赵英杰,刘永文,苏明,等.混合动力FCEV控制策略的仿真研究.系统仿真学报,2003.15(5):75-81.
    [33]冉振亚,曹文明,杨超,等.燃料电池/蓄电池双能源电动汽车动力系统仿真.重庆大学学报,2004.27(10):90-97.
    [34]吴友宇,谢长君,张成才.燃料电池电动车整车控制器研究.武汉理工大学学报,2004.26(5):77-79.
    [35]Wu Y,Gao H.Optimization of Fuel Cell and Supercapacitor for Fuel-Cell Electric Vehicles.Vehicular Technology,2002.11(4):84-90.
    [36]Wang Zening,Fei Shumin,Feng Chunbo.Optimal control design for a class of switching hybrid systems.Journal of Southeast university(Natural Science Edition),2002.32(13):12-19.
    [37]Jefferson C M,Barnard R H.Hybrid vehicle propulsion.Southampton UK:WIT Press,2002.12-21.
    [38]莫志军,朱新坚,曹广益.质子交换膜燃料电池建模与稳态分析.系统仿真学报,2005.24(2):24-31.
    [39]吴金锋,侯明,衣宝廉,等.质子交换膜燃料电池及系统建模的研究与进展.电源技术,2004.13(1):57-63..
    [40]高大威,金振华,卢青春.基于Matlab的燃料电池汽车动力系统仿真.系统仿真学报,2005.17(8):97-102.
    [41]李曦.质子交换膜燃料电池电堆温度特性的模糊建模.上海交通大学学报,2005.18(3):87-91.
    [42]苗青,曹广益,朱新坚.燃料电池的模糊神经网络辨识建模与电压控制.上海交通大学学报,2005.19(1):17-23.
    [43]Che Dongmei.Modeling and Simulation of a PEM Fuel Cell Humidification System.Proceeding of the 2004 American Control Conference,2004.32-41.
    [44]Kolavennu,Panini K.Modeling of a fuel cell power system for automotive applications.Fuel Cell Science Engineering and Technology,2004.177-181.
    [45]冯宗磊,杨福源,任亮,等.发动机的组合神经网络建模.清华大学学报(自然科学版),2005.45(11):123-129.
    [46]D Buntin,J W Howze.A switching logic controller for a hybrid electric/ICE vehicle.Proceeding of the American Control Conference,1995.2:1169-1175.
    [47]E S Koo,H D Lee,S K Sul.Torque control strategy for parallel hybrid vehicle using fuzzy logic.Proceeding of the 33rd IEEE Industrial Applications Society Annual Meeting,1998.1715-1720.
    [48]M Carpaneto,G Ferrando,M Marchesoni.A New Conversion System for the Interface of Generating and Storage Devices in Hybrid Fuel-Cell Vehicles.Proceedings of the IEEE International Symposium,2000.4:1477-1482.
    [49]Kent Holland,Fang Z.Control Strategy for Fuel Cell Vehicle Traction Drive Systems Using the Z-Source Inverter.Vehicle Power and Propulsion Conference,2005.639-644.
    [50]Markel T,Brooker A,Hendricks T.A systems analysis tool for advanced vehicle modeling.Journal of Power Sources,2002.110:255-266.
    [51]朱元,孙鸿航,田光宇,等.燃料电池客车整车控制系统的研究.汽车工程,2005.27(2):136-140.
    [52]陈超,曹桂军,卢兰光,等.功率混合型燃料电池汽车动力系统的恒压式能量分配算法.汽车工程,2007.29(2):101-106.
    [53]王登峰,王金龙,贾迎春.燃料电池混合动力轿车控制策略与参数优化.江苏大学学报(自然科学版),2005.26(4):298-301.
    [54]钱立军,袭著永,赵韩.基于模糊神经网络的混合动力汽车控制策略仿真.系统仿真学报,2006.18(5):34-39.
    [55]卢兰光,包成,欧阳明高.燃料电池客车混合动力系统能量分配的遗传优化组合算法.汽车技术,2004.12(2):47-51.
    [56]全书海,王超,宋娟.车用燃料电池发动机控制系统与协调控制研究.华中师范大学学报(自然科学版),2005.39(1):325-328.
    [57]陈桂兰,温旭辉,孙晓.质子交换膜燃料电池控制系统的研究.电源技术,2004.13(2):43-50.
    [58]Tankagi T,Sugeno M.Fuzzy identification of systems and its application to modeling and control.IEEE Transaction on SMC,1985.15:116-132.
    [59]Murry Smith R,Johansen T A.Multiple model approach to modeling and control,1997.London:Taylor and Francis.234-247.
    [60]徐前锋.多模型优化模糊控制算法的应用研究:[硕士学位论文].西安:西安理工大学自动化学院,2005.
    [61]Hunt K J,Johansen T A.Design and analysis of gain-scheduled control using local controller networks.International Journal of Control,1997.66(5):619-651.
    [62]Lainiots D G.Partitioning:a unifying framework for adaptive systems.Proceeding of the IEEE,1976.64:1126-1143,1182-1197.
    [63]Athans M.The stochastic control of the F-8C aircraft using multiple model adaptive control (MMAC)method.IEEE Transaction on Automatic Control,1977.22:768-780.
    [64]Granger C W.Combining forecast:Twenty years later.Journal of Forecasting,1989.8:167-173.
    [65]Gangsaas D,Brace K V,Blight J D.Application of modern synthesis of aircraft control-Three case studies.IEEE Transaction on Automatic Control,1986.31:995-1014.
    [66]Eikes B,Karim M N.Process identification with multiple neural network models.International Journal of control,1999.72(7):576-590.
    [67]G Aly,A Badr,Z Binder.Multi-model control of MIMO systems:location and control algorithm.International Journal of Systems,1988.19(9):1687-1698.
    [68]席预庚,王凡.非线性系统预测的多模型混合方法.自动化学报,1996.22(4):456-460.
    [69]Narendra K S,Ciliz M K.Adaptation and learning using multiple models,switching and tuning.IEEE Transaction on Control System,1995.15(3):37-51.
    [70]Narendra K S,Xing C.Adaptive control of discrete-time system using multiple models.Proc.of 37th Conference on Decision and Control.Tampa,Florida,USA,1998.3978-3983.
    [71]费树岷,王泽宁,冯纯伯.一类开关系统的开关控制策略设计.自动化学报,2001.27(2):247-251.
    [72]Ronald F Mann,John C Amphlett,Michael Hooper.Development and application of a generalized steady-state electrochemical model for a PEM fuel cell.Journal of Power Sources,2001.86:173-180.
    [73]C Wang,M H Nehrir,H Gao.Control of PEM Fuel Cell Distributed Generation Systems.IEEE Transaction on Energy Conversion,2006.21(2):12-19.
    [74]Felix Grasser,Alfred C Rufer.A fully analytical PEM fuel cell system model for control applications.IEEE Transaction on Automatic Control,2006.47-55.
    [75]Wei Dong,Xu Hong,Zhu Xinjian.Identification and novel adaptive fuzzy control of nonlinear system for PEMFC stack.Journal of Harbin Institute of Technology,2006.13(2):91-97.
    [76]翟军勇,费树岷,达飞鹏.基于神经网络多模型自适应切换控制研究.中国电机工程学报,2005.25(24):15-21.
    [77]孙泽昌,马天才.燃料电池发动机控制系统设计.车用发动机,2005.22(1):15-21.
    [78]麻友良,陈全世,齐占宁.电动汽车用电池SOC定义与检测方法.清华大学学报(自然科学版),2001.41(11):27-31.
    [79]郭孔辉,周晓晖,丁海涛,等.多能源汽车镍氢动力蓄电池组的建模.吉林大学学报(理学版),2007.45(2):279-282.
    [80]强国斌,李忠学,陈杰.混合电动车用超级电容能量源建模.能源技术,2005.26(2):23-29.
    [81]T Christen,M W Carlen.Theory of Ragone plots.Joural of Power Sources,2000.91:210-216.
    [82]T Christen,C Olher.Optimizing energy storage devices using Ragone plots.Joural of Power Sources,2002.11:107-116.
    [83]齐占宁,陈全世,赵六奇.基于遗传算法的燃料电池车控制策略优化.公路交通科技,2004.12(4):74-79.
    [84]刘呈则,朱新坚.PEMFC电气输出特性的自适应模糊PID控制.系统仿真学报,2005.17(4):37-42.
    [85]赵振宇,徐用懋.模糊理论和神经网络的基础与应用.北京:清华大学出版社,2006. 61~72.
    [86]杨平,彭道刚,韩璞.神经网络预测控制算法及其应用.控制工程,2003.10(4):21-26.
    [87]Gorgun,Haluk.Control-oriented modelling of fuel processing reactors in fuel cell power systems.Journal of Electrical and Electronics Engineering,2005.5(1):1279-1286.
    [88]Boyali A,Demirci M,Acarman T.Modeling and Control of a Four Wheel Drive Parallel Hybrid Electric Vehicle.Control Applications,2006 IEEE International Conference,2006.
    [89]田玉冬,朱新坚,曹广益.质子交换膜燃料电池的建模与控制.电池,2004.15(1):12-19.
    [90]卫东,曹广益,朱新坚.基于自适应模糊神经技术的质子交换膜燃料电池建模与控制.系统仿真学报,2004.16(5):987-991.
    [91]田玉冬,朱新坚,曹广益.基于预测控制的燃料电池温度控制系统的建模.移动电源与车辆,2003.15(1):47-53.
    [92]徐腊梅.PEM燃料电池动态特性的建模与仿真研究:[博士学位论文].武汉:武汉理工大学材料学院,2007.
    [93]Paulo M,Castanon D,Dunn K,et al.The control of the Fuel Cell using a CMAC Neural Network method.IEEE Transaction on Automatic Control,2006.22(5):768-780.
    [94]S N Huang,K K Tan,T H Lee.Neural-network-based predictive learning control of ram velocity in injection molding.IEEE Transaction on Systems,Man and Cybernetics,Part C,2004.34(3):363-368.
    [95]陈启宏.遥操作机器人系统的智能控制研究:[博士学位论文].南京:东南大学自动化学院,2003.
    [96]Chang Liuchen.Recent developments of electric vehicles and their propulsion systems.Aerospace and Electronic Systems Magazine,IEEE,2006.45-52.
    [97]Cheng Yonghua,Joeri Van Mierlo.Energy Sources Control and Management in Hybrid Electric Vehicles.12th International Power Electronics and Motion Control Conference,2005.
    [98]Pichot M A.Active magnetic bearings for energy storage systems for combat vehicles Magnetics.Journal of Power Sources,2001.102(22):318-323.
    [99]Zhu T,Shaw S R,Leeb S B.Transient recognition control for hybrid fuel cell systems.IEEE Transaction on Energy Conversion,2006.21(1):195-201.
    [100]Narendra K S,George K.Adaptive control of simple nonlinear systems using multiple models.Proceedings of the American Control Conference.Anchorage,AK,2002.1779-1784.
    [101]Pill-Soo Kim,Yong Kim,Byung-You Hong.A method for future cost estimation of hybrid electric vehicle.Power Electronics and Drive Systems,1999.123-132.
    [102]Ericsson.Overview of power management in hybrid electric vehicles.Energy Conversion and Management,2002.43(2):1953-1968.
    [103]Cho H Y,Gao W,Ginn H L.A new power control strategy for hybrid fuel cell vehicles.Power Electronics in Transportation,2004.21(2):159-166.
    [104]David Friedman,Timothy Lipman,Anthony Eggert.Hybridization:Cost and Efficiency Comparisons for PEM Fuel Cell Vehicles.SAE,2000-01-3078.1176-1189.
    [105]De Vlieger,Yap H T,Bingham C M.Hybrid energy sources for electric and fuel cell vehicle propulsion.2005 IEEE Vehicle Power and Propulsion Conference,2005.
    [106]Xie Changjun,Quan Shuhai,Chen Qihong.Control Strategy of Hybrid Power System for Fuel Cell Electric Vehicle based on Neural Network Optimization,2008 IEEE International Conference on Automation and Logistics,2008.
    [107]Xie Changjun,Quan Shuhai,Chen Qihong.Multiple model control for hybrid power system of Fuel Cell Electric Vehicle,2008 IEEE Vehicle Power and Propulsion Conference,2008.
    [108]童毅.并联式混合动力系统动态协调控制问题的研究:[博士学位论文].北京:清华大学汽车学院,2004.
    [109]曹文明.燃料电池/蓄电池双能源电动汽车动力系统匹配的研究:[硕士学位论文].重庆:重庆大学汽车学院,2006.
    [110]谢长君,全书海,陈启宏,等.自主机器人燃料电池多能源动力系统研究.上海交通大学学报(自然科学版),2008.42:164-167.
    [111]王登峰.车用质子交换膜燃料电池及其混合动力系统性能研究:[博士学位论文].吉林:吉林大学汽车学院,2006.
    [112]刘教瑜,何青,杨艳.质子交换膜燃料电池车载系统智能控制算法.汽车科技,2005.11(1):77-81.
    [113]杨良会,何洪文,孙立清,等.燃料电池电动客车动力系统结构及控制系统研究.车辆与动力技术,2005.11(2):44-49.
    [114]黄勇,曾帆,陈全世,等.燃料电池城市客车混合动力系统的自适应控制.公路交通科技,2006.23(9):19-24.
    [115]Jemei S,Hissel D,Pera M C.Dynamical recurrent neural network towards modeling of on-board fuel cell power supply.Industrial Electronics,2004.22:44-49.
    [116]Qian Lijun,Xi Zhuyong,Zhao Han.Simulation of Hybrid Electric Vehicle Control Strategy Based on Fuzzy Neural Network.Journal of System Simulation,2006.18(5):1-7.
    [117]谢长君,全书海,杜传进.燃料电池电动汽车能量管理系统研究.汽车工程,2007.29(9):758-760.
    [118]Rosado S,Prasai A,Wang F.Study of the energy flow characteristics in power electronic conversion systems.Electric Ship Technologies Symposium,2005.
    [119]Zhao Yingjie,Liu Yongwen,Su Ming.Research of Control Strategy of Fuel Cell Electric Vehicle Simulation.Journal of System Simulation,2003.15(5):71-77.
    [120]Jiang Zhenhua,Dougal,Roger A.Control strategies for active power sharing in a fuel-cell-powered battery-charging station.IEEE Transactions on Industry Applications,2004.40(3):917-924.
    [121]李炯,张承宁.基于混合系统理论的电动汽车能量管理策略系统.系统仿真学报,2006.18(10):2932-2935.
    [122]赵慧勇,罗永革,杨启梁,等.并联式混合动力汽车燃油经济性分析方法研究.湖北汽车工业学院学报,2005.19(4):1-4.
    [123]程莹,冯能莲,李克强,等.ADVISOR混合动力电动汽车仿真系统的二次开发和应用.汽车工程,2004.12(3):249-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700