车用PEMFC空气供给系统建模及控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)是燃料电池电动汽车的主要动力源,而空气供给系统是PEMFC的主要组成部分之一,其空气流量和空气压力不仅影响燃料电池堆化学反应速度和质子交换膜性能,而且影响燃料电池堆发电效率和负载能力。由于空气供给系统存在较强的非线性、参数强耦合性,对其建模与控制非常困难。为了提高空气供给系统的响应速度,保证燃料电池运行在最佳工作状态,本文开展车用PEMFC空气供给系统建模及控制策略研究,主要研究内容及成果如下:
     根据Elman动态神经网络对非线性模型的自适应辨识能力,提出了基于Elman神经网络的空气流量、空气压力目标值与燃料电池输出功率之间的预测模型,并通过仿真验证了预测模型的有效性。通过对空气流量、空气压力给定值的预测,可有效提高车用PEMFC空气供给系统的动态响应速度,达到较好的控制效果。
     针对空气流量和空气压力之间的非线性和强耦合性,设计了空气流量、空气压力的解耦矩阵,并采用递推辨识算法,实时辨识空气流量、空气压力控制通道及其控制变量耦合通道的模型参数,通过实时调节解耦矩阵的参数,使空气流量、空气压力的控制相对独立,彼此不受或少受另外一个控制变量的影响。
     车用PEMFC空气流量随燃料电池堆输出功率的变化而改变,为提高空气流量的响应速度,提出了基于空气流量机理模型的Fuzzy-PID复合控制策略,通过设定控制阀值和控制参数的整定,使Fuzzy-PID复合控制既具有Fuzzy控制的快速性,又具有PID控制的精确性,改善了空气流量的控制性能。仿真结果表明,空气流量采用Fuzzy-PID复合控制时,其响应时间缩短为采用传统PID控制时的二分之一。
     车用PEMFC空气压力不仅与燃料电池堆输出功率的变化有关,而且与空气流量直接耦合,因此控制难度较高。提出了空气压力的神经PID控制策略,利用神经网络对非线性系统的辨识能力,在线辨识空气压力控制回路模型,并采用神经PID控制,通过神经网络的自学习和加权系数的自调整,自动调整控制参数kp、ki、kd,使空气压力控制回路的稳定状态对应于最佳PID控制参数,仿真结果表明,空气压力采用神经PID控制,对燃料电池堆输出功率和空气流量的变化具有自适应性。
     综上所述,本文针对车用PEMFC空气供给系统,建立了空气流量、空气压力给定值预测模型,并采用对角矩阵解耦法,设计了空气流量、空气压力解耦矩阵,根据空气流量、空气压力控制回路特点,分别采用机理建模和基于实验数据的实验建模方法,建立了空气流量、空气压力控制回路的控制模型,根据空气供给系统的建模方法不同,采用不同的控制策略来研究,使得空气流量对燃料电池堆输出功率的变化具有较快的响应速度,空气压力对燃料电池堆输出功率和空气流量的变化具有较强的适应性,仿真结果表明了所采用控制策略的有效性。此空气供给控制系统可以满足车用PEMFC的实际需求。
Proton exchange membrane fuel cell (PEMFC) is a main powr source of electric vehicles in fuel cells. And air supply system is one of the mainly constitute of PEMFC, its air flow and air pressure affected fuel cells' stack not only electrochemistry reactivity rate and proton exchange membrane's performance, but also generate electricity efficiency and load ability. It's very difficult to modeling and control for air supply system as its stronger nonlinear and coupling. In order to improve air supply rate to insure fuel cells running in best state, the paper studied on modeling and control strategy of air supply system in fuel cells. The main studying content and production was as follows.
     It put forward prediction model between target value of air flow and air pressure with fuel cells'output power basing on Elman dynamic ANN, according its self-adapting distinguish for non-linear model. Simulation approved that its prediction model was validity. It advanced dynamic responding speed of air supply system of PEMFC in electric vehicle, and had better control result.
     It designed decoupling matrix of air flow and air pressure aim at its non-linear and strong coupling. It adopted recursion identification arithmetic to real time identify model parameters of air flow, air pressure control channel, and its control variable coupling channel. By adjusting parameters of decoupling matrix, it made air flow, and air pressure control be independent, the one didn't affect by the other.
     Air flow of PEMFC in electric vehicles changed following output power of fuel cells. For advancing its responding speed, it brought forward Fuzzy-PID compound control strategy of air flow basing on its mechanism-model. By setting control limit value, and adjusting control parameters, Fuzzy-PID compound control improved contol performance of air flow for it had speediness of fuzzy control and accuracy of PID. Simulation result showed that air flow responding time adopting Fuzzy-PID compound control could shorten half than adopting traditional PID.
     Air pressure of PEMFC in electric vehicles changed not only following with fuel cells'output power, but also coupling with air flow, so it's difficult to control. It advanced neural-PID control strategy of air pressure so as to identify model of air pressure control loop online using ANN identifying non-linear system. And it adopted neural-PID control to adjust control parameters kp, ki and kd, through self-studying of ANN and self-regulating of authority coefficient, so that stable states of air pressure control loop were better corresponding to PID control parameters. Simulation result showed that air pressure adopting neural-PID control have adaptability for fuel cells' output power and air flow.
     On all accounts, the paper founded model of given value prediction of air flow and air pressure in PEMFC air supply system of electric vehicles. And it designed decoupling matrix of air flow and air pressure using method of on the cross matrix. It set up different control model basing on mechanism mode and experiment model according characteristics of air flow and air pressure control loops. It adopted different control strategies according different model to make air flow quickly responding output power changes, and make air pressure having stronger adaptability for output power and air flow changes. Simulation result showed that the control strategies were validity. The air supply control system could satisfy practice need of PEMFC in electric vehicles.
引文
[1]詹姆斯·拉米尼,安德鲁·迪可斯.燃料电池系统——原理、设计、应用[M].北京:科学出版社,2006:19,337
    [2]Hsin-Sen Chu,Fanghei Tsau,Yi-Yie Yan.The development of a small PEMFC combined heat and power system[J]. Journal of Power Sources,2008,176(2):494-514
    [3]黄镇江编著.燃料电池及其应用[M].北京:电子工业出版社,2005:3-6
    [4]邵庆龙.质子交换膜燃料电池的建模与鲁棒控制:[博士学位论文].上海:上海交通大学,2004:12
    [5]杨启超,李连生,赵远扬.燃料电池供气系统中空气压缩机的研发现状[J].通用机械,2008,1:33-37
    [6]Benjamin Blunierl. A Scroll Compressor with a High Performance Induction Motor Drive for the Air Management of a PEMFC System for Automotive Applications[J].IEEE Transactions on Industry Applic-ations,2008,44(6):1964-1976
    [7]Y.M.Ferng, C.C. Sun, A. Su. Numerical simulation of thermal-hydraulic characteristics in a proton exchange membrane fuel cell[J].International Journal of Energy Research,2003,27:494-511
    [8]黄亮.燃料电池发动机系统建模与预测控制研究:[博士学位论文].武汉:武汉理工大学,2009:18
    [9]谢长君.基于多模型控制的燃料电池汽车混合动力系统优化研究:[博士学位论文].武汉:武汉理工大学,2009:34
    [10]杨武.车用燃料电池动力系统的仿真研究:[硕士学位论文].北京:清华大学,2004:5
    [11]杨武,裴普成,武洁云等.燃料电池发动机空气系统特性的仿真[J].清华大学学报(自然科学版),2004,44(5):703-707
    [12]肖合林,候献军,颜伏伍.燃料电池发动机系统计算分析[J].武汉理工大学学报,2004,26(5):64-67
    [13]Akira Taniguchi, Tomoki Akita, Kazuaki Yasuda, et al. Analysis of degradation in PEMFC caused by cell reversal during air starvation[J]. International Journal of Hydrogen Energy,2008,33(9):2324-2329
    [14]Pukrushpan J T, Stefanopoulou A G, Peng H. Control of Fuel Cell Breathing:Initial Results on the Oxygen Starvation Problem [J]. IEEE Control Systems Magazine,2004,4(2):30-46
    [15]M.Fournier, J. Hamelin, K. Agbossou, et al. Fuel cell Operation with Oxygen Enrichment[J]. Fuel Cells,2002,2(2):117-122
    [16]秦敬玉,毛宗强,徐景明,解正国.过量空气系数对燃料电池发动机输出特性的影响[J].汽车工程,2004,26(4):374-381
    [17]孙红,吴玉厚.反应气体流量和背压对PEM燃料电池性能的影响[J].沈阳建筑大学学报(自然科学版),2006,22(6):1033-1037
    [18]简弃非,赵永利,刘海燕.质子交换膜燃料电池运行参数的仿真优化[J].华南理工大学学报(自然科学版),2006,34(10):6-10
    [19]王金龙,王登峰,陈静,等.影响车用质子交换膜燃料电池性能的诸因素分析及试验[J].北京交通大学学报,2007,31(6):23-25
    [20]张连洪,揭伟平,谢春刚,等.温度、压力和湿度对PEMFC堆电效率的影响[J].天津大学学报,2007,40(5):593-598
    [21]赵奕磊,毛宗强,奚树人,王诚,等.5kW氢空PEMFC的性能[J].电池,2005,35(1):6-7
    [22]S Gelfi, A G Stefanopoulou, J T Pukrushpan, et al. Dynamics of Low-Pressure and High Pre-ssure Fuel Cell Air Supply System [C]. Proceedings of the American Control Conference, 2003,3:2044-2054
    [23]D.T. Santa Rosa, D.G. Pinto, V.S. Silva, et al. High performance PEMFC stack with open ca-thode at ambient pressure and temperature conditions [J]. International Journal of Hydrogen Ener-gy,2007,32(17):4350-4357
    [24]Seong Uk Jeong, Eun Ae Cho, Hyoung-Jhun Kim, et.al. Effects of cathode open area and relative hu-midity on the performance of air-breathing polymer electrolyte membrane fuel cells[J]. Journal of Power Sources,2006,158(1):348-353
    [25]许思传,程钦,马天才.燃料电池发动机空气参数的最优控制[J].车用发动机,2006,4(2):24-28
    [26]谢晋,黄允千.温度、湿度对质子交换膜燃料电池的影响[J].上海海事大学学报,2005,26(3):60-63
    [27]J.J. Baschuk, X. Li. Modeling of polymer electrolyte membrane fuel cells with variable degr-ees of water flooding[J]. Journal of Power Sources,2000,86(2):184-191
    [28]Dongmei Chen, Huei Peng. Modeling and Simulation of a PEM Fuel Cell Humidification System[C]. Proceeding of the 2004 American Control Conference, June 30,2004:823-827
    [29]Jong Hoon Jang. A Simple Model Predicting Transient Thermal Management of PEMFC and Cooling System[C]. The 1st International Forum On Strategic Technology,Oct.,2006:394-402
    [30]T.V. Nguyen, R.E. White. A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells[J]. Journal of Electrochemical Society,1993,140(8):2178-2186
    [31]Zaw odzinski T A Jr, Springer T E, et al. Comparative Study of Water Uptake by and Transport through Fuel Cell Membranes [J]. Journal of the Electrochemical Society,1993, 140(7):1981-1985
    [32]Mustapha Najjari, Faycel Khemili, Sassi Ben Nasrallah. The effects of the cathode flooding on the transient responses of a PEM fuel cell[J]. Renewable Energy,2008,33(8):1824-1831
    [33]Sun Hong, Guo Liejin, and Liu Hongtanl.The Effect of Operating Parameters on Water Transport in PEM Fuel Cells[J]. Heat Transfer Asian Research,2006,35(2):84-100
    [34]Hao Lixing, Yu Hongmei, Hou Junbo, et al. Transient behavior of water generation in a proton exchange membrane fuel cell[J]. Journal of Power Sources,2008,177(2):403-411
    [35]Y.M. Ferng, et al. Numerical simulation of thermal-hydraulic characteristics in a proton exchange membrane fuel cell[J]. International Journal of Energy Research,2003,27(5):493-511
    [36]Jong-Woo Ahn, Song-Yul Choe. Coolant controls of a PEM fuel cell system[J]. Journal of Power Sources,2008,179(1):253-264
    [37]D. Thirumalai, R. E. White. Mathematical modeling of proton exchange-membrane fuel-cell stacks[J]. Journal of the Electrochemical Society,1997,144(5):1717-1723
    [38]J.C. Amphlett, R.M. Baumert, R.F. Mann, et al. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell[J]. Journal of Electrochemical Society,1995,142(1):4-15
    [39]J.H. Lee, T.R. Lalk, Modeling fuel cell stack systems[J]. Journal of Power Sources,1998,73(2):224-241
    [40]J.H. Lee, T.R. Lalk, A.J. Appleby. Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks[J]. Journal of Power Sources,1998,70(2):258-268
    [41]W. Turner, M. Parten, et. al. Modeling a PEM fuel cell for use in a hybrid electric vehicle[C]. Proceedings of the 1999 IEEE 49th Vehicular Technology Conference,1999, vol.2:1383-1388
    [42]Hubert A. B. te Braake, Eric J. L. van Can, et al. Control of nonlinear chemical processes using neural models and feedback linearization[J]. Computers& Chemical Engineering, 1998,22(8):1113-1127
    [43]Andrew Rowe, Xianguo Li. Mathematical modeling of proton exchange membrane fuel cells [J]. Journal of Power Sources,2001,102(2):83-96
    [44]Lukas, M.D., Lee, K.Y., and Ghezel-Ayagh, H. Development of a stack simulation model for control study on direct reforming molten carbonate fuel cell power plant[C]. IEEE Trans. on Energy Conversion,1999,vol.14:1651-1657
    [45]J. Padulles, G.W. Ault, et al. McDonald. Fuel cell plant dynamic modeling for power systems simulation[C]. Proceedings of 34th universities power engineering conference,1999,34(1):21-25
    [46]Sampath Yerramalla, Asad Davari, Ali Feliachi, et al. modeling and simulation of the dynamic behavior of a polymer electrolyte membrane fuel cell [J]. Journal of Power Sources,2003,124(1):104-113
    [47]Hatziadoniu, C.J., Lobo, A.A., Pourboghrat, F., et al, A simplified dynamic model of grid-connected fuel-cell generators[J]. IEEE Transactions on Power Delivery,2002,17(2):467-473
    [48]J. Padulles, G. W. Ault and J. R. McDonald, An integrated SOFC plant dynamic model for power systems Simulation[J]. Journal of Power Sources,2000,86(2):493-500
    [49]J.T. Pukrushpan, A.G. Stefanopoulou, H. Peng. Modeling and control issues of PEM fuel cell stack system[C]. Proceedings of the 2002 American Control Conference,2002:3117-3122
    [50]J. P. Pukrushpan, P. Huei, G. S. Anna. Control Oriented Modeling and Analysis for Automotive Fuel Cell Systems [J]. Journal of Dynamic Systems, Measurement, and Control,2004,126(1):14-25
    [51]P.Rodatz, C.Onder, L.Guzzella. Air Supply System of a PEMFC Stack Dynamic Model [J]. Fuel Cells,2005,5(1):124-132
    [52]P. R. Pathapati, X. Xue, J. Tang. A new dynamic model for predicting transient phenomena in a PEM fuel cell system[J]. Renewable Energy,2005,30(1):17-22
    [53]N. Hassanaly, K. Agbossou, et al. Air Supply State Model For a Proton Exchange Membrane Fuel Cell Control[C]. Canadian Conference on Electrical and Computer Engineering,2007:1511-1514
    [54]S. Caux, J. Lachaize, M. Fadel, et al. PEMFC Air Loop Model and Control[C].2005 IEEE Vehicle Power and Propulsion Conference,2005:597-602
    [55]全书海,张天贺,张立炎.质子交换膜燃料电池空气供应系统的建模、仿真与控制[J].武汉理工大学学报(信息与管理工程版),2007,29(10):61-64
    [56]张立炎,潘牧,全书海.燃料电池空气供应系统建模与动态仿真的研究[J].系统仿真学报,2008,20(4):850-854
    [57]Wei Guoai, Quan Shuhai, Qi Yingchuan. Fuzzy Logic Control of Air Supply System in PE-MFC for Electric Vehicles [C]. Wuhan:2008 International Conference on Computer Science and Software Engineer-ing,2008, vol.1:180-183
    [58]莫志军,朱新坚,曹广益.质子交换膜燃料电池建模与稳态分析[J].系统仿真学报,2005,17(9):2253-2259
    [59]莫志军,朱新坚.质子交换膜燃料电池建模与动态仿真[J].计算机仿真,2006,23(2):193-196
    [60]周洁,曹广益.质子交换膜燃料电池稳态模型及仿真[J].计算机仿真,2007,24(8):2294-2322
    [61]仲志丹,朱新坚,史君海.质子交换膜燃料电池混合建模研究[J].系统仿真学报,2007,19(24):5617-5623
    [62]Saengrun Anucha, Abtahi Amir, Zilouchian Ali. Neural network model for a commercial PEM fuel cell system[J]. Journal of Power Sources,2007,172(2):744-759
    [63]Samir Jemei, Daniel Hissel. A New Modeling Approach of Embedded Fuel-Cell Power Generators Based on Artificial Neural Network s[J]. IEEE Transactions on Industry Applications,2008,55(1):437-447
    [64]Nitsche C, Sehroedl S, Weiss W, Pucher E. Rapid (practical) methodology for creation of fuel cell systems models with scalable complexity[J]. Journal of Power Sources,2005,145 (2):384-391
    [65]Tirnovan R, Giurgea S, Miraoui A, Cirrincione M. Surrogate model for proton exchange membrane fuel cell(PEMFC)[J]. Journal of Power Sources,2008,175(2):774-778
    [66]Felix Grasser, Alfred Rufer. A Fully Analytical PEM Fuel Cell System Model for Control Applications [J]. IEEE Transactions on Industry Applications,2007,43(6):1494-1506
    [67]Shen C, Cao G Y, Zhu X J. Nonlinear modeling of MCFC stack based on RBF neural networks identification[J]. Simulation Modeling Practice and Theory,2002,10:104-119
    [68]Qi Zhi-dong, Zhu Xin-jian, Cao Guang-yi. Nonlinear modeling of molten carbonate fuel cell stack and FGA-based fuzzy control [J], Journal of shanghai University (English Edition),2006,10(2):144-150
    [69]卫东,曹广益,朱新坚.基于神经网络辨识的质子交换膜燃料电池建模[J].系统仿真学报,2003,15(6):817-819
    [70]陈跃华,曹广益,朱新坚.质子交换膜燃料电池的神经网络建模与控制[J].计算机仿真,2006,23(08):207-210
    [71]孙涛,闫思佳,曹广益等.基于自适应神经模糊法的PEMFC温度建模[J].计算机测量与控制,2005,13(7):663-664
    [72]孙涛,曹广益.基于改进型BP网络辨识的燃料电池建模[J].计算机仿真,2005,22(9):64-67
    [73]徐腊梅.PEM燃料电池动态特性的建模与仿真研究:[博士学位论文].武汉:武汉理工大学,2007:9
    [74]马宁,邓先瑞,杜学东.基于BP神经网络的PEMFC电堆的静态热系统建模[J].唐山师范学院学报,2007,29(5):110-112
    [75]全书海,卫国爱,潘牧等.燃料电池空气供给系统控制参数的预测及仿真[J].武汉理工大学学报,2009,31(19):3-6,23
    [76]Phatiphat Thounthong, Stephane Rael, Bernard Davat. Control Algorithm of Fuel Cell and Batteries for Distributed Generation System[J]. IEEE Transactions on Energy Conversion,2008,23(1):148-155
    [77]C. Wang, M. H. Nehrir, and H. Gao. Control of PEM Fuel Cell Distributed Generation Systems[J]. IEEE Transactions on Energy Conversion,2006,21(2):584-59
    [78]Azmy A., Erlich I. Online optimal mangement of PEM fuel cells using neural networks[J]. IEEE Transactions on Power Delivery,2005,20(21):1051-1058
    [79]Abtahi H, Ali Z, Saengrung A. Water management of PEM fuel celLs using fuzzy logic controller system[C]. IEEE International Conference on System Man and Cybemetics,2005:3486-3490
    [80]Yingfei Xiong, Xianrui Deng. Research on the Control of the Cathode Gas Flow and Pressure of A Small PEM Fuel Cell[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation,2006:7711-7715
    [81]Weibing Gao, Hung, J.C. Variable structure control of nonlinear systems:a new approach [J]. Indus trial Electronics, IEEE Transactions on,1993,40(1):43-55
    [82]Fucheng Wang, Hsuantsung Chen, et al. Multivariable robust control of a proton exchange membrane fuel cell system[J]. Journal of Power Sources,2008,177(2):393-403
    [83]Schumacher J O, Gemmar P, Denne M, et al. Control ohminiature proton exchange membrane fuel celLs based on fuzzy logic[J]. Journal of Power Sources,2004,129:144-151
    [84]Iwan L C, Stengel R F. The application of neural networks to fuel processors for fuel-cell vehicles[J]. IEEE Transactions on Vehicular Technology,2001,50:124-143
    [85]Almeid A P E, Smoesm G. Neural optimal conrrol of PEM fuel cells with parrameltric CMIAC networks[J]. IEEE Transactions on Industry Applications,2005,41(1):237-245
    [86]Almeida P.E.M., Simoes M.G. Neural optimal control of PEM Fuel Cells with parametric CMIAC networks[C]. Industry Applications Conference,38th IAS Annual Meeting,2003, vol.2:723-733
    [87]S. Dutta, S. Shimpalee, et al. Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell[J]. International Journal of Heat and Mass Transfer,2001,44(11):2024-2042
    [88]Chan H., Rad A. Real-time flow control using neural networks [J]. ISA Transactions,2000, 39(1):93-101
    [89]Yoon-Ho, Kim, Sang-Sun, Kim. An electrical modeling and fuzzy logic control of a fuel cell generat-eon system[J]. IEEE Transactions on Energy Conversion,1999,14(2):234-244
    [90]Zhan Yue-dong, Zhu Jian-guo, Guo Youguang, et al. Control of Proton Exchange Membrane Fuel Cell Based on Fuzzy Logic[C]. Proceedings of the 26th Chinese Control Conference, 2007:343-349
    [91]Cai KaiLong, Xie ShouSheng, Wu Yong.Research and experiment of pneumatic servo system based on neural network PID control [C].Proceedings of the 6th World Congress on Intellen Control and Automa-tion, Dalian:IEEE,2006:6683-6689
    [92]Yee-Pien Yang, Zhao-Wei Liu, et al. Model Reference Adaptive Control of a Low Power Proton Ex-change Membrane Fuel Cell[C]. Proceedings of the 46th IEEE Conference on Decision and Control,Dec.,2007:1314-1319
    [93]Niu Yugang, Zou Yun, Yang Chengwu.Neural network based adaptive tracking control for a class of nonlinear systems[J].Control Theory and Applications,2001,18(6):461-464
    [94]Zhi-Jun Mo, Xin-Jian Zhu, Ling-Yun We, et al. Parameter optimization for a PEMFC model with hy-brid genetic algorithm[J]. International Journal of Energy Research,2006,30(8):583-597
    [95]Mo Zhijun, Zhu Xinjian, Cao Guangyi. Design and Simulation of Fuzzy Controller for PE-MFCs[C]. Proceedings of the IEEE International Conference on Industrial Technology,2005 IEEE:220-224
    [96]Yudong Tian, Xinjian Zhu, Guangyi Cao. AN Adaptive Fuzzy Control Strategy of Movable Power Sources of Proton Exchange Membrane Fuel Cells[C].2005 International Conferen-ce on Communications, Circuits and Systems,2005,vol.2:1007-1011
    [97]田玉冬,朱新坚,曹广益.质子交换膜燃料电池的建模与控制[J].电池,2004,34(4):301-303
    [98]田玉冬,朱新坚等.质子交换膜燃料电池移动电源温度模糊控制[J].电源技术,2005,29(3):157-159
    [99]邵庆龙,曹广益等.质子交换膜燃料电池电堆温度的非线性控制[J].系统仿真学报,2004,16(11):2583-2586,2590
    [100]李曦,朱新坚,曹广益,付晓薇.基于模糊建模技术的PEMFC非线性控制[J].电源技术,2005,29(4):243-249
    [101]李曦,曹广益等.PEMFC的模糊辨识和非线性预测控制[J].计算机仿真,2005,22(2):178-181,220
    [102]向金凤,全书海.车用25kW燃料电池冷却水系统Fuzzy-PID控制器的研究[J].华中师范大学学报(自然科学版),2004,38(2):174-182
    [103]全书海,王超,宋娟.车用燃料电池发动机控制系统与协调控制研究[J].华中师范大学学报(自然科学版),2005,39(3):323-328
    [104]阮诗峰,全书海,陈启宏.可软配置燃料电池发动机控制系统研究[J].微计算机信息,2008,24(31):64-71
    [105]Liyan Zhang, Mu Pan, Shuhai Quan, et al. Adaptive Neural Control Based on PEMFC Hyb-rid Mod-eling[C]. Proceedings of the 6th World Congress on Intelligent Control and Auto-mation,2006:8314-8323
    [106]Languang Lu, Minggao Ouyang, Haiyan Huang, et al. A semi-empirical voltage degradation model for a low-pressure proton exchange membrane fuel cell stack under bus city driving cycles[J]. Journal of Power Sources,2007,164(26):306-314
    [107]S. Jemei, D. Hissel, M.C. Pera, J.M. Kauffmann. On-board fuel cell power supply modeling on the basis of neural network methodology[J]. Journal of Power Sources,2003,124(2):474-486
    [108]Andrew Rowe, Xianguo Li. Mathematical modeling of proton exchange membrane fuel cells[J]. Jour-nal of Power Sources,2001,102(2):83-96
    [109]P. R. Pathapati, X. Xue, J. Tang. A new dynamic model for predicting transient phenomena in a PEM fuel cell system[J]. Renewable Energy,2005,30(1):17-22
    [110]Sampath Yerramalla, Asad Davari, Ali Feliachi, et al. modeling and simulation of the dynamic behavior of a polymer electrolyte membrane fuel cell[J].Journal of Power Sources,2003,124(1):104-113
    [111]张吉礼.模糊-神经网络控制原理与工程应用[M].哈尔滨:哈尔滨工业大学出版社,2004:107-109
    [112]阮毅,陈维钧.运动控制系统[M].北京:清华大学出版社,2006:224-229
    [113]李华德.交流调速控制系统[M].北京:电子工业出版社,2003:244-246
    [114]杨耕,罗应立等.电机与运动控制系统[M].北京:清华大学出版社,2006:331-344
    [115]刘晨晖.多变量过程控制系统解耦理论[M].北京:水利电力出版社,1984:1-3
    [116]郭阳宽,王正林.过程控制工程及仿真[M].北京:电子工业出版社,2009:247-276
    [117]金以慧.过程控制[M].北京:清华大学出版社,1993:150-179
    [118]Bristol,E.H.,On a New Measure of Interaction for Multivariable Process Control,IEEE.Trans. Automatic Control,1966,AC-11(1):133-134
    [119]何玉彬,李新忠.神经网络控制技术及其应用[M].北京:科学出版社,2000:44
    [120]徐丽娜.神经网络控制[M].北京:电子工业出版社,2003:124,144
    [121]陶永华,尹怡新,葛芦生.新型PID控制及其应用[M].北京:机械工业出版社,1999 158-170
    [122]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003:93-116,153-163
    [123]何衍庆,姜捷,江艳君,郑莹.控制系统分析、设计和应用[M].北京:化学工业出版社,2003:269-278

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700