超低铂载量膜电极与微型质子交换膜燃料电池电源系统的开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)因其比能量高、无污染、可快速低温启动等优点而受到人们的广泛关注。膜电极(MEA)是质子交换膜燃料电池的核心部件,不仅对燃料电池的性能有很大的影响,而且对降低其生产成本、加快其商业化进程具有很重要的现实意义。低温燃料电池大量使用贵金属铂做为催化剂的活性组分,成为燃料电池成本居高不下的重要因素,严重影响了低温燃料电池的商业化进程,因此,研究和开发具有低铂载量和超低铂载量的膜电极,对于有效降低燃料电池的成本,促进燃料电池的发展和商业化进程具有十分重要的意义。同时,自增湿膜电极的研究是燃料电池领域的具有挑战性的课题,自增湿的实现将大大简化燃料电池系统,降低燃料电池的成本,并且有效解决质子交换膜燃料电池水热管理困难的问题。
     本文从降低燃料电池成本和提高其性能出发,开展了超低铂载量膜电极、自增湿膜电极的研究和开发工作,同时开展了微型再生式质子交换膜燃料电池系统的研制工作。
     采用一种新型的光照下直接喷涂膜技术,通过对催化剂浆料的优化研究以及对制备技术的优化,制备出了一种高性能超低铂载量膜电极。该膜电极的阴、阳两极铂载量分别可低至0.12 mg cm~(-2)和0.04 mg cm~(-2),在0.7 V时电流密度仍高达0.7 A cm~(-2)。考察了催化剂浆料中Nafion含量以及与催化剂的比例、电池温度以及反应气体背压对这种超低铂载量膜电极性能的影响。结果表明:Nafion的最优含量约为25 wt.%左右,低于文献报道的其它方法的相应数值,表明本技术所制备的膜电极的催化层和质子交换膜之间有良好的界面接触,扫描电镜和阻抗测量证明了这种超低铂载量膜电极的催化层与膜之间的紧密接触,膜电极的内阻和质量传输阻力明显小于其它高铂载量膜电极和其它方法制备的膜电极。
     本文还研究了采用“双催化层”技术制备超低铂载量的膜电极,为了解决普通双催化层结构在保持高铂利用率和促进传质之间的内在矛盾,我们通过使用两种不同铂含量的催化剂制备了一种新型的双催化层结构阴极。将高铂含量催化剂用在内层以集中铂,而低铂含量催化剂用在外层以保持一个合适的催化层厚度。在常压下和氢-空燃料电池中,具有新型双催化层结构的膜电极的性能明显优于具有普通双催化层结构的膜电极和和单催化层结构膜电极的性能。在阴、阳两极铂载量分别低至0.12和0.04 mg cm~(-2)(超低铂载量)的情况下,新型双催化层膜电极在通常的工作电压0.65 V时的电流密度仍高达0.73 A cm~(-2),可完全媲美高铂载量单催化层膜电极。此外,这种新型双催化层超低铂载量膜电极的最大功率密度高达0.66 W cm~(-2),比单催化层电极要高出11.9%,证明了新型双催化层结构对传质过程的改善。交流阻抗和循环伏安测试说明这种超低铂载量膜电极具有高效的电化学活性层和高铂利用率。采用新型双催化层技术制备的常规铂载量(阴极:0.2 mg cm~(-2),阳极:0.1 mg cm~(-2))膜电极的性能比相同铂载量的单催化层膜电极和普通双催化层膜电极可分别提高35%和20%。
     采用课题组开发的一种新型的含有二氧化硅的Pt/SiO_2/C催化剂做为阳极催化剂,我们得到了一种具有极好自增湿(免增湿)性能的膜电极;在相对湿度为28%的低湿度条件下,采用含有10 wt.%二氧化硅的Pt/SiO_2/C催化剂做为阳极催化剂制备的膜电极可表现出非常好的性能;在电池温度50 oC时,该膜电极展示出优越的低湿度稳定性:在28%相对湿度下经过120小时测试,0.6 V时电流密度维持在0.65 A cm~(-2)左右,没有明显的衰减。实验发现:自增湿膜电极对于运行温度较为敏感,随着温度升高,膜电极的低湿度运行性能急剧下降。本文还采用XRD、SEM和吸水性测试对该复合催化剂进行了表征。
     本文尝试制作了一种微型平面6-cell组合再生式燃料电池电源系统。该系统可在电解水模式和燃料电池模式工作,电解模式时,产生的氢气可以储存在储氢合金中,供燃料电池模式工作时使用,所需要的氧可直接从空气中通过自呼吸方式得到。该微型电源系统的开路电压达4.9 V,可在20 mA cm~(-2)下恒电流放电40多分钟。在工作电压2.9 V时,系统展示出很好的电池性能和可逆性能:最大功率密度达74.8 mW cm~(-2),放电电流达34 mA cm~(-2),经过10个充放电循环,系统的性能也没有明显的衰减。该微型燃料电池电源系统为燃料电池在便携式电源方面的应用提供了一个很好的发展方向。
Proton exchange membrane fuel cells (PEMFC) have attracted much attention due to their advantages, such as high power density, zero or low exhaust and quick startup at low temperature et al. Membrane electrode assembly (MEA) is the key component of PEMFC, which has a great influence on fuel cell performance and is important for cost reduction to a commercially acceptable level. At present, carbon supported platinum is still the widely used electrocatalyst in MEA, which accounts for a large portion of PEMFC cost. In regard to there reasons, the study of membrane electrode assemblies with low or ultra-low platinum loading has always been one of the hot topics in the field of fuel cell. In addition, with the growth of energy demand in different applications, the development of self-humidifying MEA and the study of micro fuel cell have also received considerable attention.
     MEA with low and ultra-low platinum loadings and self-humidifying of MEA and miniaturization of PEMFC were studied in this thesis for cost reduction and improved cell performance. Firstly, we prepared a high performance MEA with ultra-low platinum loading by using a novel catalyst spraying technique. A cell performance of 0.7 A cm~(-2) at 0.7 V was achieved when the platinum loading of the anode and cathode was lowered to 0.04 and 0.12 mg cm~(-2) respectively. The effects of Nafion content, cell temperature and back pressures of the reactant gases on the cell performance were investigated. The optimal Nafion content in the catalyst layer was found to be ca. 25 wt.%, which was significantly lower than that for low platinum loading MEAs prepared by other methods, indicating adequate interfacial contact between the catalyst layer and membrane in our home-made MEAs. Scanning electron microscopy (SEM) observation and electrochemical impedance spectroscopy (EIS) measurements revealed that our home-made MEA possessed very thin anode and cathode catalyst layers which is in close contact with the membrane, resulting in low resistance and reduced mass transport limitations.
     Secondly, a novel double catalyst layer (DCL) cathode was prepared with different amounts of platinum at each electrode to maintain a dedicated balance between improved mass transfer and good platinum utilization: the catalyst with higher platinum loading was used in the inner layer to concentrate the platinum, and the catalystwith less platinum was used in the outer layer to maintain a suitable layer thickness. Polarization characteristics of cathode with this novel DCL, a conventional DCL, and a single catalyst layer (SCL) were obtained at ambient pressure in an H2/air PEMFC. The results showed a significant enhancement of cell performance with the novel DCL cathode. Compared with the SCL cathode, the current density of the novel DCL cathode at 0.6 V was increased by 35.9%, whereas that of the conventional DCL cathode was increased by 8.8% only.
     Thirdly, an ultra-low platinum loading MEA was prepared using above-mentioned novel DCL technique. Polarization characteristic of the MEAs with novel DCL, general DCL and SCL were evaluated in H2/air single cell system. The results showed that the novel DCL MEA performance was improved significantly, especially at high current densities. When the platinum loading of the anode and cathode was as low as 0.04 and 0.12 mg cm~(-2) respectively, the current density of the novel DCL MEA can reach 0.73 A cm~(-2) at a proposed working voltage of 0.65 V, which was comparable with that of the SCL MEA. In addition, the maximum power density of the novel DCL MEA reached 0.66 W cm~(-2) at 1.3 A cm~(-2) and 0.51 V, 11.9% higher than that of the SCL MEA, indicating mass transfer improvement for the novel MEA. EIS and cyclic voltammetry (CV) tests revealed that the novel DCL MEA possessed an efficient electrochemical active layer and good platinum utilization efficiency.
     Fourthly, we developed a novel self-humidifying MEA with Pt/SiO_2/C anode composite catalyst to improve the performance of PEMFC operating at low humidity conditions. The characteristics of the composite catalysts were investigated by XRD, SEM and water uptake measurement. The optimal performance of the MEA was obtained with 10 wt.% silica in the composite catalyst by single cell tests under both high and low humidity conditions. The low humidity performance of the novel self-humidifying MEA was evaluated in a H2/air PEMFC at ambient pressure under different relative humidity (RH) and cell temperature. The results showed that the MEA performance was almost unchanged when the RHs of both anode and cathode decreased from 100% to 28%. However, the low humidity performance of the MEA was quite susceptible to the cell temperature, which decreased steeply as the cell temperature increased. At a cell temperature of 50 oC, the MEA showed excellent stability for low humidity operating: the current density remained at 0.65 A cm~(-2) at a usual work voltage of 0.6 V without any degradation after 120 h operation under 28% RH for both the anode and cathode.
     Finally, a novel micro planar fuel cell power supplier, in which a six-cell PEM unitized regenerative fuel cell (URFC) stack was used as the power generator, was designed and fabricated. Six membrane electrode assemblies were prepared and integrated on one piece of membrane by spraying catalyst slurry on both sides of the membrane. Each cell was made by sandwiching a MEA between two graphite monopolar plates, and six cell units were mechanically fixed in two organic glass endplates. When the stack was operated in electrolysis mode, hydrogen was generated by water splitting and was stored using a hydrogen storage alloy; conversely, when the stack was operated in fuel cell mode, hydrogen was supplied by the hydrogen storage alloy and oxygen was supplied from air by self-breathing of the cathode. The open-circuit voltage (OCV) of the system reached 4.9 V at room temperature and standard atmospheric pressure; the system could discharge at a constant current density of 20 mA cm~(-2) for about 40 min at 2.9 V. The system showed good stability for 10 charge-discharge cycles. It suggests a potential orientation for the application of PEMFC in the field of portable devices.
引文
[1] Squadrito G., Barbera O., Giacoppo G., et al. Polymer electrolyte fuel cell stack research and development [J]. Int. J. Hydrogen Energy, 2008, 33(7): 1941-1946
    [2]毛宗强.燃料电池[M].北京:化学工业出版社, 2005: 1-425
    [3]陈延禧.聚合物电解质燃料电池的研究进展[J].电源技术, 1996, 20(1): 21-27
    [4] Carrette L., Friedrich K.A., Stimming U. Fuel Cells - Fundamentals and Applications [J]. Fuel Cells, 2001, 1(1): 5-39
    [5] Wee J.H. Applications of proton exchange membrane fuel cell systems [J]. Renewable Sustainable Energy Rev., 2007, 11(8): 1720-1738
    [6] Virji M.B.V., Thring R.H. Analysis of a 50 kWe indirect methanol proton exchange membrane fuel cell (PEMFC) system for transportation application [J]. Proc. Inst. Mech. Eng. Part D J. Automob. Eng., 2005, 219(D8): 937-950
    [7]衣宝廉.燃料电池-高效、环境友好的发电方式[M].北京:化学工业出版社, 2000: 47-88
    [8]衣宝廉.燃料电池-原理·技术·应用[M].北京:化学工业出版社, 2003: 1-337
    [9]刘凤君.高效环保的燃料电池发电系统及其应用[M].北京:机械工业出版社, 2005: 13-42
    [10] Wang Y., Choi S., Lee E. Fuel cell power conditioning system design for residential application [J]. Int. J. Hydrogen Energy, 2009, 34(5): 2340-2349
    [11] Oszcipok M., Zedda M., Hesselmann J., et al. Portable proton exchange membrane fuel-cell systems for outdoor applications [J]. J. Power Sources, 2006, 157(2): 666-673
    [12] Varigonda S., Kamat M. Control of stationary and transportation fuel cell systems: Progress and opportunities [J]. Comput. Chem. Eng., 2006, 30(10-12): 1735-1748
    [13] Costamagna P., Srinivasan S. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects [J]. J. Power Sources, 2001, 102(1-2): 242-252
    [14]徐磊敏.光照直接喷涂技术制备低铂载量及免增湿高性能膜电极的研究[D].广州:华南理工大学, 2009
    [15]黄倬,屠海令,张翼强,等.质子交换膜燃料电池的研究开发与应用[M].北京:冶金工业出版社, 2000: 1-20
    [16]石井弘毅.图说燃料电池原理与应用[M].白彦华,杨晓辉译.北京:科学出版社,2003: 32-33
    [17]贾荣利.石墨化沥青基超细炭粉负载Pt基电催化剂的研究[D].天津:天津大学, 2005
    [18] Wood D.L., Yi J.S., Nguyen T.V. Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells [J]. Electrochim. Acta, 1998, 43(24): 3795-3809
    [19]任素贞.直接甲醇燃料电池用新型质子交换膜的研究[D].大连:大连理工大学, 2005
    [20]黄镇江,刘凤君.燃料电池及其应用[M].北京:电子工业出版社, 2005: 36-48
    [21] Fernandez J.L., Bard A.J. Scanning electrochemical microscopy. 47. Imaging electrocatalytic activity for oxygen reduction in an acidic medium by the tip generation-substrate collection mode [J]. Anal. Chem., 2003, 75(13): 2967-2974
    [22] Kalvelage H., Mecklenburg A., Kunz U., et al. Electrochemical reduction of oxygen at pyrolyzed iron and cobalt N4-chelates on carbon black supports [J]. Chem. Eng. Technol., 2000, 23(9): 803-807
    [23] Anson F.C., Shi C.N., Steiger B. Novel multinuclear catalysts for the electroreduction of dioxygen directly to water [J]. Acc. Chem. Res., 1997, 30(11): 437-444
    [24]李小兵.燃料电池用新型质子交换膜的设计与性能研究[D].广州:华南理工大学, 2009
    [25] Genova-Dimitrova P., Baradie B., Foscallo D., et al. Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid [J]. J. Membr. Sci., 2001, 185(1): 59-71
    [26] Gil M., Ji X.L., Li X.F., et al. Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications [J]. J. Membr. Sci., 2004, 234(1-2): 75-81
    [27] Ramani V., Kunz H.R., Fenton J.M. Investigation of Nafion (R)/HPA composite membranes for high temperature/low relative humidity PEMFC operation [J]. J. Membr. Sci., 2004, 232(1-2): 31-44
    [28] Haile S.M. Fuel cell materials and components [J]. Acta Mater., 2003, 51(19): 5981-6000
    [29] Steele B.C.H., Heinzel A. Materials for fuel-cell technologies [J]. Nature, 2001, 414(6861): 345-352
    [30] Shao Z.G., Joghee P., Hsing I.M. Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of protonexchange membrane fuel cells [J]. J. Membr. Sci., 2004, 229(1-2): 43-51
    [31] Kundu A., Jang J.H., Gil J.H., et al. Micro-fuel cells - Current development and applications [J]. J. Power Sources, 2007, 170(1): 67-78
    [32] Litster S., McLean G. PEM fuel cell electrodes [J]. J. Power Sources, 2004, 130(1-2): 61-76
    [33] Eikerling M., Ioselevich A.S., Kornyshev A.A. How good are the Electrodes we use in PEFC? [J]. Fuel Cells, 2004, 4(3): 131-140
    [34]吕金艳,张学军. PEM燃料电池膜电极制备方法研究进展[J].电池工业, 2006, 11(6): 410-413
    [35] Srinivasan S., Ticianelli E.A., Derouin C.R., et al. Advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes [J]. J. Power Sources, 1988, 22(3-4): 359-375
    [36] Ticianelli E.A., Derouin C.R., Redondo A., et al. Methods to advance technology of proton-exechange mwmbrane fuel cells [J]. J. Electrochem. Soc., 1988, 135(9): 2209-2214
    [37] Ticianelli E., Derouin C., Srinivasan S. Localization of platinum in low catalyst loading electrodes to attain high power densities in SPE fuel cells [J]. J. Electroanal. Chem. Interfacial Electrochem., 1988, 251(2): 275-295
    [38] Lindstrom R.W. Electrocatalytic gas diffusion electrode employing thin carbon cloth layer [P]. USA: 4647359, 1991-05-06
    [39]张海峰,侯明,洪有陆,等.千瓦级质子交换膜燃料电池[J].电源技术, 2003, 27(004): 348-350
    [40] Wilson M., Gottesfeld S. Thin-film catalyst layers for polymer electrolyte fuel cell electrodes [J]. J. Appl. Electrochem., 1992, 22(1): 1-7
    [41] Wilson M.S., Gottesfeld S. High Performance Catalyzed Membranes of Ultra-low Pt Loadings for Polymer Electrolyte Fuel Cells [J]. J. Electrochem. Soc., 1992, 139(2): L28-L30
    [42] DuPont C. Membrane and electrode structure [P]. USA: 5330860, 1994-07-19
    [43] The Dow Chemical Company. Process for preparing a membrane/electrode assembly [P]. USA: 5702755, 1997-12-30
    [44] General Motors Corporation. Methods of preparing membrane electrode assembles [P]. USA: 6524736, 2003-02-25
    [45] Tanaka K., Kogyo K.K. Membrane electrode assembly for polymer electrolyte fuel cell[P]. USA: 6847518, 2005-01-25
    [46] General Motors Corporation. Method of making membrane electrode assemblies [P]. USA: 6933003, 2005-08-23
    [47] Yan S.G., Doyle J.C. Membrane electrode assembly prepared by direct spray of catalyst to membrane [P]. USA: 0163920, 2005-07-28
    [48] General Motors Corporation. Method of making MEA for PEM/SPE fuel cell [P]. USA: 6074692, 2000-06-13
    [49] Industrial Technology Research Institute. Method for manufacturing membrane electrode assembly of fuel cell [P]. USA: 6475249, 2002-11-05
    [50] Paul Scherrer Instttut. Membrane electrode assembly (MEA), method for its manufacturing and a method for preparing a membrane to be assembled in a MEA [P]. Europe: 031906, 2005-04-07
    [51]原鲜霞,乔永进.化学镀铂法制备质子交换膜燃料电池膜电极[J].稀有金属, 2000, 24(4): 277-281
    [52] Park J., Kim J., Lee H., et al. A novel direct deposition of Pt catalysts on Nafion impregnated with polypyrrole for PEMFC [J]. Electrochim. Acta, 2004, 50(2-3): 769-775
    [53] Taylor E.J., Anderson E.B., Vilambi N.R.K. Preparation of high platinum utilization gas diffusion electrodes for proton exchange membrane fuel cells [J]. J. Electrochem. Soc., 1992, 139(5): L45-L46
    [54] Thompson S., Jordan L., Forsyth M. Platinum electrodeposition for polymer electrolyte membrane fuel cells [J]. Electrochim. Acta, 2001, 46(10-11): 1657-1663
    [55] Ye J., Fedkiw P. Electrodeposition of high-surface area platinum in a well adherent nafion film on glassy carbon [J]. Electrochim. Acta, 1996, 41(2): 221-231
    [56] Choi K., Kim H., Lee T. Electrode fabrication for proton exchange membrane fuel cells by pulse electrodeposition [J]. J. Power Sources, 1998, 75(2): 230-235
    [57]魏子栋,曾少华.质子交换膜燃料电池电极制备新方法[P].中国: CN1472834A, 2004-02-14
    [58] Srinivasan S., Manko D.J., Koch H., et al. Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes [J]. J. Power Sources, 1990, 29(3-4): 367-387
    [59] Haug A.T., White R.E., Weidner J.W., et al. Increasing Proton Exchange Membrane Fuel Cell Catalyst Effectiveness Through Sputter Deposition [J]. J. Electrochem. Soc., 2002, 149(3): A280-A287
    [60] Pan M., Tang H., Jiang S.P., et al. Fabrication and Performance of Polymer Electrolyte Fuel Cells by Self-Assembly of Pt Nanoparticles [J]. J. Electrochem. Soc., 2005, 152(6): A1081-A1088
    [61] Gülzow E., Schulze M., Wagner N., et al. Dry layer preparation and characterisation of polymer electrolyte fuel cell components [J]. J. Power Sources, 2000, 86(1-2): 352-362
    [62] Kim C., Chun Y., Peck D., et al. A novel process to fabricate membrane electrode assemblies for proton exchange membrane fuel cells [J]. Int. J. Hydrogen Energy, 1998, 23(11): 1045-1048
    [63] Acres G., Frost J., Hards G., et al. Electrocatalysts for fuel cells [J]. Catal. Today, 1997, 38(4): 393-400
    [64] Xiong L., Manthiram A. High performance membrane-electrode assemblies with ultra-low Pt loading for proton exchange membrane fuel cells [J]. Electrochim. Acta, 2005, 50(16-17): 3200-3204
    [65] Hogarth M., Munk J., Shukla A., et al. Performance of carbon-cloth bound porous-carbon electrodes containing an electrodeposited platinum catalyst towards the electrooxidation of methanol in sulphuric acid electrolyte [J]. J. Appl. Electrochem., 1994, 24(1): 85-88
    [66] O'Hayre R., Lee S.J., Cha S.W., et al. A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading [J]. J. Power Sources, 2002, 109(2): 483-493
    [67] Samsung Electronics Co., Ltd. Method for fabricating membrane-electrode assembly and fuel cell adopting the membrane electrode assembly [P]. USA: 6749892, 2004-06-15
    [68] Khan M., Lin S. Using Pt sols to prepare low Pt-loading electrodes for polymer electrolyte fuel cells [J]. J. Power Sources, 2006, 162(1): 186-191
    [69] Sasaki K., Wang J., Balasubramanian M., et al. Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability [J]. Electrochim. Acta, 2004, 49(22-23): 3873-3877
    [70] Saha M.S., GulláA.F., Allen R.J., et al. High performance polymer electrolyte fuel cells with ultra-low Pt loading electrodes prepared by dual ion-beam assisted deposition [J]. Electrochim. Acta, 2006, 51(22): 4680-4692
    [71] Taylor A.D., Kim E.Y., Humes V.P., et al. Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells [J]. J. Power Sources, 2007, 171(1): 101-106
    [72] Kim K.H., Kim H.J., Lee K.Y., et al. Effect of Nafion? gradient in dual catalyst layer on proton exchange membrane fuel cell performance [J]. Int. J. Hydrogen Energy, 2008, 33(11): 2783-2789
    [73] Mauritz K.A., Moore R.B. State of understanding of Nafion [J]. Chem. Rev., 2004, 104(10): 4535-4585
    [74] Watanabe M., Uchida H., Seki Y., et al. Self-Humidifying Polymer Electrolyte Membranes for Fuel Cells [J]. J. Electrochem. Soc., 1996, 143(12): 3847-3852
    [75] Watanabe M., Uchida H., Emori M. Polymer Electrolyte Membranes Incorporated with Nanometer-Size Particles of Pt and/or Metal-Oxides: Experimental Analysis of the Self-Humidification and Suppression of Gas-Crossover in Fuel Cells [J]. J. Phys. Chem. B 1998, 102(17): 3129-3137
    [76] Watanabe M., Uchida H., Emori M. Analyses of Self-Humidification and Suppression of Gas Crossover in Pt-Dispersed Polymer Electrolyte Membranes for Fuel Cells [J]. J. Electrochem. Soc., 1998, 145(4): 1137-1141
    [77] Uchida H., Ueno Y., Hagihara H., et al. Self-humidifying electrolyte membranes for fuel cells: Preparation of highly dispersed TiO2 particles in Nafion112 [J]. J. Electrochem. Soc., 2003, 150(1): A57-A62
    [78] Hagihara H., Uchida H., Watanabe M. Preparation of highly dispersed SiO2 and Pt particles in Nafion(R) 112 for self-humidifying electrolyte membranes in fuel cells [J]. Electrochim. Acta, 2006, 51(19): 3979-3985
    [79] Honma I., Hirakawa S., Yamada K., et al. Synthesis of organic/inorganic nanocomposites protonic conducting membrane through sol-gel processes [J]. Solid State Ionics, 1999, 118(1-2): 29-36
    [80] Honma I., Takeda Y., Bae J. Protonic conducting properties of sol-gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules [J]. Solid State Ionics, 1999, 120(1): 255-264
    [81] Kwak S.H., Yang T.H., Kim C.S., et al. The effect of platinum loading in the self-humidifying polymer electrolyte membrane on water uptake [J]. J. Power Sources, 2003, 118(1-2): 200-204
    [82] Yang T.H., Yoon Y.G., Kim C.S., et al. A novel preparation method for a self-humidifying polymer electrolyte membrane [J]. J. Power Sources 2002, 106(1-2): 328-332
    [83] Ahn S.Y., Lee Y.C., Ha H.Y., et al. Effect of the ionomers in the electrode on the performance of PEMFC under non-humidifying conditions [J]. Electrochim. Acta, 2004, 50(2-3): 673-676
    [84] Vengatesan S., Kim H.J., Cho E.A., et al. Operation of a proton-exchange membrane fuel cell under non-humidified conditions using thin cast Nafion membranes with different gas-diffusion media [J]. J. Power Sources, 2006, 156(2): 294-299
    [85]王诚,毛宗强,徐景明,等.新型自增湿膜电极的制备及其燃料电池性能[J].高等学校化学学报, 2003, 24(1): 140-142
    [86]王诚,毛宗强,徐景明,等. PEM燃料电池的自增湿膜电极制备及其性能分析[J].中国科学: G辑, 2003, 33(2): 132-138
    [87] Wang E.D., Shi P.F., Du C.Y. A novel self-humidifying membrane electrode assembly with water transfer region for proton exchange membrane fuel cells [J]. J. Power Sources, 2007: 183-188
    [88] Vengatesan S., Kim H.J., Lee S.Y., et al. High temperature operation of PEMFC: A novel approach using MEA with silica in catalyst layer [J]. Int. J. Hydrogen Energy, 2008, 33(1): 171-178
    [89] Han M., Chan S.H., Jiang S.P. Investigation of self-humidifying anode in polymer electrolyte fuel cells [J]. Int. J. Hydrogen Energy Int J Hydrogen Energy, 2007, 32(3): 385-391
    [90] Tang H., Jiang S.P. Self-Assembled Pt/Mesoporous Silica-Carbon Electrocatalysts for Elevated-Temperature Polymer Electrolyte Membrane Fuel Cells [J]. J. Phys. Chem. C, 2008, 112(49): 19748-19755
    [91] Mitlitsky F., Myers B., Weisberg A.H. Regenerative fuel cell systems [J]. Energy Fuels, 1998, 12(1): 56-71
    [92] Cisar A., Murphy O., Clarke E. Bifunctional catalytic electrode [P]. USA: 20030068544A1, 2003-04-10
    [93] Ioroi T., Kitazawa N., Yasuda K., et al. Iridium oxide/platinum electrocatalysts for unitized regenerative polymer electrolyte fuel cells [J]. J. Electrochem. Soc., 2000, 147(6): 2018-2022
    [94] Ioroi T., Kitazawa N., Yasuda K., et al. IrO2-deposited Pt electrocatalysts for unitized regenerative polymer electrolyte fuel cells [J]. J. Appl. Electrochem., 2001, 31(11): 1179-1183
    [95] Ioroi T., Yasuda K., Siroma Z., et al. Thin film electrocatalyst layer for unitized regenerative polymer electrolyte fuel cells [J]. J. Power Sources, 2002, 112(2): 583-587
    [96] Ioroi T., Oku T., Yasuda K., et al. Influence of PTFE coating on gas diffusion backing for unitized regenerative polymer electrolyte fuel cells [J]. J. Power Sources, 2003, 124(2): 385-389
    [97] Lee H., Kim J., Park J., et al. Performance of polypyrrole-impregnated composite electrode for unitized regenerative fuel cell [J]. J. Power Sources, 2004, 131(1-2):188-193
    [98] Yim S.D., Lee W.Y., Yoon Y.G., et al. Optimization of bifunctional electrocatalyst for PEM unitized regenerative fuel cell [J]. Electrochim. Acta, 2004, 50(2-3): 713-718
    [99] Shao Z.G., Yi B.L., Han M. Bifunctional electrodes with a thin catalyst layer for 'unitized' proton exchange membrane regenerative fuel cell [J]. J. Power Sources, 1999, 79(1): 82-85
    [100] Yao W., Yang J., Wang J., et al. Chemical deposition of platinum nanoparticles on iridium oxide for oxygen electrode of unitized regenerative fuel cell [J]. Electrochem. Commun., 2007, 9(5): 1029-1034
    [101] Zhang Y., Wang C., Wan N., et al. Deposited RuO2-IrO2/Pt electrocatalyst for the regenerative fuel cell [J]. Int. J. Hydrogen Energy, 2007, 32(3): 400-404
    [102] Song S., Zhang H., Ma X., et al. Bifunctional oxygen electrode with corrosion-resistive gas diffusion layer for unitized regenerative fuel cell [J]. Electrochem. Commun., 2006, 8(3): 399-405
    [103]田丙伦.既可电解水又可发电的再生式燃料电池堆[P].中国: CN2891308, 2007-04-18
    [104]周琛.直接涂膜制备燃料电池膜电极技术的开发研究[D].广州:华南理工大学, 2007
    [105] Easton E.B., Pickup P.G. An electrochemical impedance spectroscopy study of fuel cell electrodes [J]. Electrochim. Acta, 2005, 50(12): 2469-2474
    [106] Leng Y., Wang X., Hsing I. Assessment of CO-tolerance for different Pt-alloy anode catalysts in a polymer electrolyte fuel cell using ac impedance spectroscopy [J]. J. Electroanal. Chem., 2002, 528(1-2): 145-152
    [107] Wagner N., Gülzow E. Change of electrochemical impedance spectra (EIS) with time during CO-poisoning of the Pt-anode in a membrane fuel cell [J]. J. Power Sources, 2004, 127(1-2): 341-347
    [108] Mueller J.T., Urban P.M. Characterization of direct methanol fuel cells by ac impedance spectroscopy [J]. J. Power Sources, 1998, 75(1): 139-143
    [109]崔晓莉,江志裕.交流阻抗谱的表示及应用[J].上海师范大学学报, 2001, 30(4): 53-61
    [110] Hombrados A., Gonzalez L., Rubio M., et al. Symmetrical electrode mode for PEMFC characterisation using impedance spectroscopy [J]. J. Power Sources, 2005, 151: 25-31
    [111] Song S., Wang G., Zhou W., et al. The effect of the MEA preparation procedure on bothethanol crossover and DEFC performance [J]. J. Power Sources, 2005, 140(1): 103-110
    [112] Li G., Pickup P.G. Measurement of single electrode potentials and impedances in hydrogen and direct methanol PEM fuel cells [J]. Electrochim. Acta, 2004, 49(24): 4119-4126
    [113] Zhao X., Fan X., Wang S., et al. Determination of ionic resistance and optimal composition in the anodic catalyst layers of DMFC using AC impedance [J]. Int. J. Hydrogen Energy, 2005, 30(9): 1003-1010
    [114] Yuan X.Z., Wang H.J., Sun J.C., et al. AC impedance technique in PEM fuel cell diagnosis - A review [J]. Int. J. Hydrogen Energy, 2007, 32(17): 4365-4380
    [115]曹楚南,张鉴清.电化学阻抗谱导论[M].科学出版社, 2002: 200-260
    [116] Gavach C., Pamboutzoglou G., Nedyalkov M., et al. AC impedance investigation of the inetics of ion transportation in Nafion perfluorosulfonic membranes [J]. J. Membr. Sci., 1989, 45(1-2): 37-53
    [117] Pourcelly G., Oikonomou A., Gavach C., et al. Influence of the water content on the kinetics of counter-ion transport in perfluorosulphonic membranes [J]. J. Electroanal. Chem., 1990, 287(1): 43-59
    [118] Ciureanu M., Roberge R. Electrochemical impedance study of PEM fuel cells. Experimental diagnostics and modeling of air cathodes [J]. J. Phys. Chem. B, 2001, 105(17): 3531-3539
    [119] Giorgi L., Antolini E., Pozio A., et al. Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells [J]. Electrochim. Acta, 1998, 43(24): 3675-3680
    [120] Sasikumar G., Ihm J.W., Ryu H. Dependence of optimum Nafion content in catalyst layer on platinum loading [J]. J. Power Sources, 2004, 132(1-2): 11-17
    [121] Antolini E., Giorgi L., Pozio A., et al. Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC [J]. J. Power Sources, 1999, 77(2): 136-142
    [122] Watanabe M., Igarashi H., Yosioka K. An experimental prediction of the preparation condition of Nafion-coated catalyst layers for PEFCs [J]. Electrochim. Acta, 1995, 40(3): 329-334
    [123]邵志刚,衣宝廉,韩明,等.超低铂担量质子交换膜燃料电池电极[J].电源技术, 2000, 24(1): 42-44
    [124] Stonehart P. Development of alloy electrocatalysts for phosphoric acid fuel cells (PAFC) [J]. J. Appl. Electrochem., 1992, 22(11): 995-1001
    [125] Antolini E., Cardellini F. Formation of carbon supported PtRu alloys: an XRD analysis [J]. J. Alloys Compd., 2001, 315(1-2): 118-122
    [126] Williams M.C., Strakey J.P., Surdoval W.A. The US Department of Energy, Office of Fossil Energy stationary fuel cell program [J]. J. Power Sources, 2005, 143(1-2): 191-196
    [127] Sopian K., Wan Daud W.R. Challenges and future developments in proton exchange membrane fuel cells [J]. Renewable Energy, 2006, 31(5): 719-727
    [128] Karan K. Assessment of transport-limited catalyst utilization for engineering of ultra-low Pt loading polymer electrolyte fuel cell anode [J]. Electrochem. Commun., 2007, 9(4): 747-753
    [129] Qi Z., Kaufman A. Low Pt loading high performance cathodes for PEM fuel cells [J]. J. Power Sources, 2003, 113(1): 37-43
    [130] Kim H., Subramanian N.P., Popov B.N. Preparation of PEM fuel cell electrodes using pulse electrodeposition [J]. J. Power Sources, 2004, 138(1-2): 14-24
    [131] Wei Z.D., Chan S.H., Li L.L., et al. Electrodepositing Pt on a Nafion-bonded carbon electrode as a catalyzed electrode for oxygen reduction reaction [J]. Electrochim. Acta, 2005, 50(11): 2279-2287
    [132] Gruber D., Ponath N., Müller J., et al. Sputter-deposited ultra-low catalyst loadings for PEM fuel cells [J]. J. Power Sources, 2005, 150: 67-72
    [133] Wan C.H., Lin M.T., Zhuang Q.H., et al. Preparation and performance of novel MEA with multi catalyst layer structure for PEFC by magnetron sputter deposition technique [J]. Surf. Coat. Technol., 2006, 201(1-2): 214-222
    [134] Wee J.H., Lee K.Y., Kim S.H. Fabrication methods for low-Pt-loading electrocatalysts in proton exchange membrane fuel cell systems [J]. J. Power Sources, 2007, 165(2): 667-677
    [135] Xu L.M., Liao S.J., Yang L.J., et al. Investigation of a Novel Catalyst Coated Membrane Method to Prepare Low-Platinum-Loading Membrane Electrode Assemblies for PEMFCs [J]. Fuel Cells, 2009, 9(2): 101-105
    [136] Sun L., Ran R., Wang G., et al. Fabrication and performance test of a catalyst-coated membrane from direct spray deposition [J]. Solid State Ionics, 2008, 179(21-26): 960-965
    [137] Sasikumar G., Ihm J.W., Ryu H. Optimum Nafion content in PEM fuel cell electrodes [J]. Electrochim. Acta, 2004, 50(2-3): 601-605
    [138] Caillard A., Charles C., Ramdutt D., et al. Effect of Nafion and platinum content in acatalyst layer processed in a radio frequency helicon plasma system [J]. J. Phys. D: Appl. Phys., 2009, 42: 045207
    [139] Gloaguen F., Convert P., Gamburzev S., et al. An evaluation of the macro-homogeneous and agglomerate model for oxygen reduction in PEMFCs [J]. Electrochim. Acta, 1998, 43(24): 3767-3772
    [140] Song D.T., Wang Q.P., Liu Z.S., et al. Numerical optimization study of the catalyst layer of PEM fuel cell cathode [J]. J. Power Sources, 2004, 126(1-2): 104-111
    [141] Song D.T., Wang Q.P., Liu Z.S., et al. A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells [J]. Electrochim. Acta, 2005, 50(16-17): 3347-3358
    [142] Zhao J., He X., Wang L., et al. Addition of NH4HCO3 as pore-former in membrane electrode assembly for PEMFC [J]. Int. J. Hydrogen Energy, 2007, 32(3): 380-384
    [143] Wang Q.P., Eikerling M., Song D.T., et al. Functionally graded cathode catalyst layers for polymer electrolyte fuel cells - I. Theoretical modeling [J]. J. Electrochem. Soc., 2004, 151(7): A950-A957
    [144] Xie Z., Navessin T., Shi K., et al. Functionally graded cathode catalyst layers for polymer electrolyte fuel cells - II. Experimental study of the effect of Nafion distribution [J]. J. Electrochem. Soc., 2005, 152(6): A1171-A1179
    [145] Yoon Y.G., Yang T.H., Park G.G., et al. A multi-layer structured cathode for the PEMFC [J]. J. Power Sources, 2003, 118(1-2): 189-192
    [146] Zhang X., Shi P. Dual-bonded catalyst layer structure cathode for PEMFC [J]. Electrochem. Commun., 2006, 8(8): 1229-1234
    [147] Zhang X.W., Shi P.F. Nafion effect on dual-bonded structure cathode of PEMFC [J]. Electrochem. Commun., 2006, 8(10): 1615-1620
    [148] Prasanna M., Cho E.A., Kim H.J., et al. Performance of proton-exchange membrane fuel cells using the catalyst-gradient electrode technique [J]. J. Power Sources, 2007, 166(1): 53-58
    [149] Passalacqua E., Lufrano F., Squadrito G., et al. Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance [J]. Electrochim. Acta, 2001, 46(6): 799-805
    [150] Paganin V.A., Ticianelli E.A., Gonzalez E.R. Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells [J]. J. Appl. Electrochem., 1996, 26(3): 297-304
    [151] Passos R.R., Paganin V.A., Ticianelli E.A. Studies of the performance of PEM fuel cellcathodes with the catalyst layer directly applied on Nafion membranes [J]. Electrochim. Acta, 2006, 51(25): 5239-5245
    [152] Rajalakshmi N., Pandian S., Dhathathreyan K.S. Vibration tests on a PEM fuel cell stack usable in transportation application [J]. Int. J. Hydrogen Energy, 2009, 34(9): 3833-3837
    [153] Chang H.P., Chou C.L., Chen Y.S., et al. The design and cost analysis of a portable PEMFC UPS system [J]. Int. J. Hydrogen Energy, 2007, 32(3): 316-322
    [154] Hung A.J., Chen Y.H., Sung L.Y., et al. Cost analysis of proton exchange membrane fuel cell systems [J]. AlChE J., 2008, 54(7): 1798-1810
    [155] Ramaswamy N., Arruda T.M., Wen W., et al. Enhanced activity and interfacial durability study of ultra low Pt based electrocatalysts prepared by ion beam assisted deposition (IBAD) method [J]. Electrochim. Acta, 2009, 54(26): 6756-6766
    [156] Su H.N., Liao S.J., Shu T., et al. Performance of an ultra-low platinum loading membrane electrode assembly prepared by a novel catalyst-sprayed membrane technique [J]. J. Power Sources, 2010, 195(3): 756-761
    [157] Li G.C., Pickup P.G. Ionic conductivity of PEMFC electrodes - Effect of Nafion loading [J]. J. Electrochem. Soc., 2003, 150(11): C745-C752
    [158] Siegel N.P., Ellis M.W., Nelson D.J., et al. Single domain PEMFC model based on agglomerate catalyst geometry [J]. J. Power Sources, 2003, 115(1): 81-89
    [159] Larminie J., Dicks A. Fuel Cell System Explained [M]. second ed. NewYork: Wiley, 2002: 89-97
    [160] Kannan A.M., Cindrella L., Munukutla L. Functionally graded nano-porous gas diffusion layer for proton exchange membrane fuel cells under low relative humidity conditions [J]. Electrochim. Acta, 2008, 53(5): 2416-2422
    [161] Cindrella L., Kannan A.M. Membrane electrode assembly with doped polyaniline interlayer for proton exchange membrane fuel cells under low relative humidity conditions [J]. J. Power Sources, 2009, 193(2): 447-453
    [162] Anantaraman A.V., Gardner C.L. Studies on ion-exchange membranes. Part 1. Effect of humidity on the conductivity of Nafion? [J]. J. Electroanal. Chem., 1996, 414(2): 115-120
    [163] Liu F.Q., Yi B.L., Xing D.M., et al. Development of novel self-humidifying composite membranes for fuel cells [J]. J. Power Sources, 2003, 124(1): 81-89
    [164] Zhang Y., Zhang H.M., Zhu X.B., et al. Promotion of PEM self-humidifying effect by nanometer-sized sulfated zirconia-supported Pt catalyst hybrid with sulfonatedpoly(ether ether ketone) [J]. J. Phys. Chem. B 2007, 111(23): 6391-6399
    [165] Bi C., Zhang H.M., Zhang Y., et al. Fabrication and investigation of SiO2 supported sulfated zirconia/Nafion (R) self-humidifying membrane for proton exchange membrane fuel cell applications [J]. J. Power Sources, 2008, 184(1): 197-203
    [166] Son D.H., Sharma R.K., Shul Y.G., et al. Preparation of Pt/zeolite-Nafion composite membranes for self-humidifying polymer electrolyte fuel cells [J]. J. Power Sources 2007, 165(2): 733-738
    [167] Yang B., Fu Y.Z., Manthiram A. Operation of thin Nafion-based self-humidifying membranes in proton exchange membrane fuel cells with dry H2 andO2 [J]. J. Power Sources, 2005, 139(1-2): 170-175
    [168] Liu Y.H., Yi B., Shao Z.G., et al. Pt/CNTs-Nafion reinforced and self-humidifying composite membrane for PEMFC applications [J]. J. Power Sources, 2007, 163(2): 807-813
    [169] Zhu X.B., Zhang H.M., Zhang Y., et al. An ultrathin self-humidifying membrane for PEM fuel cell application: Fabrication, characterization, and experimental analysis [J]. J. Phys. Chem. B 2006, 110(29): 14240-14248
    [170] Kim Y.M., Choi S.H., Lee H.C., et al. Organic-inorganic composite membranes as addition of SiO2 for high temperature-operation in polymer electrolyte membrane fuel cells (PEMFCs) [J]. Electrochim. Acta 2004, 49(26): 4787-4796
    [171] Chalkova E., Pague M.B., Fedkin M.V., et al. Nafion/TiO2 Proton Conductive Composite Membranes for PEMFCs Operating at Elevated Temperature and Reduced Relative Humidity [J]. J. Electrochem. Soc., 2005, 152(6): A1035-A1040
    [172] Wang L., Xing D.M., Liu Y.H., et al. Pt/SiO2 catalyst as an addition to Nafion/PTFE self-humidifying composite membrane [J]. J. Power Sources 2006, 161(1): 61-67
    [173] Zhang Y., Zhang H.M., Bi C., et al. An inorganic/organic self-humidifying composite membranes for proton exchange membrane fuel cell application [J]. Electrochim. Acta, 2008, 53(12): 4096-4103
    [174] Chen S.Y., Han C.C., Tsai C.H., et al. Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO2 on performance of PEMFC with Nafion/TiO2 composite membrane at elevated temperature and low relative humidity [J]. J. Power Sources, 2007, 171: 363-372
    [175] Tang H., Wan Z., Pan M., et al. Self-assembled Nafion-silica nanoparticles for elevated-high temperature polymer electrolyte membrane fuel cells [J]. Electrochem. Commun., 2007, 9(8): 2003-2008
    [176] Zhang W.J., Li M.K.S., Yue P.L., et al. Exfoliated Pt-clay/Nafion nanocomposite membrane for self-humidifying polymer electrolyte fuel cells [J]. Langmuir, 2008, 24(6): 2663-2670
    [177] Zhai Y.F., Zhang H.M., Hu J.W., et al. Preparation and characterization of sulfated zirconia (SO42-/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity [J]. J. Membr. Sci., 2006, 280(1-2): 148-155
    [178] Wang L., Yi B.L., Zhang H.M., et al. Cs2.5H0.5PWO40/SiO2 as addition self-humidifying composite membrane for proton exchange membrane fuel cells [J]. Electrochim. Acta, 2007, 52(17): 5479-5483
    [179] Zeng R., Wang Y., Wang S.L., et al. Homogeneous synthesis of PFSI/silica composite membranes for PEMFC operating at low humidity [J]. Electrochim. Acta, 2007, 52(12): 3895-3900
    [180] Jung U.H., Park K.T., Park E.H., et al. Improvement of low-humidity performance of PEMFC by addition of hydrophilic SiO2 particles to catalyst layer [J]. J. Power Sources, 2006, 159(1): 529-532
    [181] Ho Jung U., Uk Jeong S., Tae Park K., et al. Improvement of water management in air-breathing and air-blowing PEMFC at low temperature using hydrophilic silica nano-particles [J]. Int. J. Hydrogen Energy, 2007, 32(17): 4459-4465
    [182] Miao Z.L., Yu H.M., Song W., et al. Effect of hydrophilic SiO2 additive in cathode catalyst layers on proton exchange membrane fuel cells [J]. Electrochem. Commun., 2009, 11(4): 787-790
    [183] Chao W.K., Lee C.M., Tsai D.C., et al. Improvement of the proton exchange membrane fuel cell (PEMFC) performance at low-humidity conditions by adding hygroscopic gamma-Al2O3 particles into the catalyst layer [J]. J. Power Sources, 2008, 185(1): 136-142
    [184] Liao S.J., Holmes K.A., Tsaprailis H., et al. High performance PtRulr catalysts supported on carbon nanotubes for the anodic oxidation of methanol [J]. J. Am. Chem. Soc., 2006, 128(11): 3504-3505
    [185] Swette L.L., LaConti A.B., McCatty S.A. Proton-exchange membrane regenerative fuel cells [J]. J. Power Sources, 1994, 47(3): 343-351
    [186] Barbir F., Molter T., Dalton L. Efficiency and weight trade-off analysis of regenerative fuel cells as energy storage for aerospace applications [J]. Int. J. Hydrogen Energy, 2005, 30(4): 351-357
    [187] Chen G., Delafuente D.A., Sarangapani S., et al. Combinatorial discovery ofbifunctional oxygen reduction -- water oxidation electrocatalysts for regenerative fuel cells [J]. Catal. Today, 2001, 67(4): 341-355
    [188] Liu H., Yi B., Hou M., et al. Composite Electrode for Unitized Regenerative Proton Exchange Membrane Fuel Cell with Improved Cycle Life [J]. Electrochem. Solid-State Lett., 2004, 7(3): A56-A59
    [189] Yeo R.S., Orehotsky J., Visscher W., et al. Ruthenium-Based Mixed Oxides as Electrocatalysts for Oxygen Evolution in Acid Electrolytes [J]. J. Electrochem. Soc., 1981, 128(9): 1900-1904
    [190] Trasatti S. Electrochemical Hydrogen Technologies [M]. Amsterdam: Elsevier, 1996: 104-108
    [191] Darowicki K., Orlikowski J. Impedance Investigations of the Mechanism of Oxygen Evolution on Composite Electrodes [J]. J. Electrochem. Soc., 1999, 146(2): 663-668
    [192] Da Silva L.A., Alves V.A., Trasatti S., et al. Surface and electrocatalytic properties of ternary oxides Ir0.3Ti(0.7- x)PtxO2. Oxygen evolution from acidic solution [J]. J. Electroanal. Chem., 1997, 427(1-2): 97-104
    [193] Rasten E., Hagen G., Tunold R. Electrocatalysis in water electrolysis with solid polymer electrolyte [J]. Electrochim. Acta, 2003, 48(25-26): 3945-3952
    [194] Dhar H.P. A unitized approach to regenerative solid polymer electrolyte fuel cells [J]. J. Appl. Electrochem., 1993, 23(1): 32-37
    [195] Adams R., Shriner R.L. Platinum oxide as a catalyst in the reduction of organic compounds: Preparation and properties of the oxide of platinum obtained by the fusion of chloroplatinic acid with sodium nitrate [J]. J. Am. Chem. Soc., 1923, 45(9): 2171-2179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700