箔聚焦径向强流相对论电子束的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用导电箔引导强流相对论电子束的传输无需外加引导磁场,无功耗、结构简单,造价低廉、且可以最大限度的减小高功率微波器件的体积和重量,此方法已经成功的运用于引导轴向强流相对论电子束。本文将这一方法应用到径向高功率器件中用于引导径向强流相对论电子束的传输,主要微绕着径向漂移空间可以通过多大流强、如何选择合适的参数来实现箔引导径向强流相对论电子束进行了相关的理论研究和探讨。
     首先根据强流相对论电子束在漂移空间中的传输特点,做出一些适当的简化和假设,给出了合理的研究物理模型;利用迭代方法数值求解模型中漂移空间内束电子所满足的自洽方程,得到了三维有限尺寸漂移空间中束自洽电势分布;证明了迭代的收敛性和结果的正确性。
     在此基础上给出了一种计算漂移空间空间电荷限制流的方法,计算了径向漂移空间的空间电荷限制流;绘制了相关径向漂移空间中束流流强和束电子最小动能的分布图;给出了结合束电子初始能量和忽略电子传输过程中速度变化时空间的最大势能来判断径向漂移空间空间电荷限制流范围的依据。并且对于任意正交坐标系、任意漂移空间,只要知道束流的形状(任何的形状都适用)且束流满足相应的计算电场的假设,都可用所给算法求解其束流的自洽电势、电场,以及推广求空间电荷限制。
     基于对漂移空间中径向相对论电子束的电场和磁场分布的计算,推导了箔引导径向相对论电子束所需的平衡条件,讨论了其平衡的稳定性所需的条件;计算了束边缘电子的轨迹及相关的运动参数,结合平衡条件和边缘电子的轨迹及运动参数给出了径向器件中设置引导箔的理论依据。
     当束流流强较小时,束电子速度的变化可以忽略时,速度变化对电子密度分布的变化也可以忽略,本文推导了在此情况下忽略电子速度变化时径向漂移空间束自洽电场的解析分布;给出了相应的平衡条件、计算了其束边缘电子的轨迹;并给出了可忽电子速度变化的径向束流流强分布范围。利用此解析公式不仅可以清楚的反应相关物理规律,且可以大大节约计算时间和计算机资源。
The measure transporting intense relativistic beam by transverse conducting foils has many advantages, for example, it do not need leading magnetic filed ,it works well without consuming any power ,its configuration is simple and price is cheap .Most of all it can cut down the volume and weight of the HPM generation mechanisms maximally . And this measure has been used for focusing axial intense relativistic beam successfully . In this paper , this measure will be used for focusing radial intense relativistic beam in radial HPM generation mechanisms , and the academic study and discuss will be made about how many intension the radial excursion space can transport and how to choose appropriate parameter for focusing radial intense relativistic beam .
     Firstly , according to the characteristic of the intense relativistic beam in excursion space, some proper predigestion and hypotheses will be made, and the appropriate physics model will be given ; then depending on the equation which the electrons of the beam satisfy in the excursion space of the model, a iterative arithmetic for calculating the electric potential of the beam in the excursion space is given, then its constringency and its validity are proved.
     Based on this arithmetic , a method for calculating the space-charge limiting current is found . Then the space-charge limiting current in the radial excursion space is calculated , the figure about the beam intension as a function of the minimal kinetic energy of the beam electron is plotted , and the principle for judging the range about the space-charge limiting current in the radial excursion space is gotten . In addition , for any excursion space in any orthogonal curvilinear coordinate , the electric potential , electric field of the beam and the space-charge limiting current can be calculated by using this arithmetic if the transverse of the beam is known and the beam satisfies the predigestion and hypotheses of the model.
     Based on the calculating of the electric filed and magnetic filed about the beam across through the excursion space , the balance equation for foil-focused radial relativistic electron beam is gotten , the stability of the equilibrium is discussed , and the method for calculating the track of those electrons in the beam's brim as well as the parameters interrelated are given ,then the principle for chosen the distance between focusing foils is given by combining the balance equation and the request of the track.
     When the intension of beam is sparse the change of the beam electron's velocity as well as the infection for the electron's density aroused by the change of the beam electron's can be ignored . In this condition , the analytic formula of the electric field is gotten ,then the he balance equation , the track of those electrons in the beam's brim and their parameters interrelated are presented .Lastly , the rang in where the change of the beam electron's velocity can be ignored is given. Using the analytic formula of the electric field can reflect the physical orderliness interrelated clearly as well as save calculating time and computer resource greatly.
引文
[1]Robert J.Barker、Edl Schamiloglu.High-Power Microwave Sources and Technologies.《高功率微波源与技术》翻译组.清华大学出版社:2005:1-255.
    [2]Bugaev S P.Relativistic Multiwave Cenvenkov Generator.IEEE Transactions on Plasma Science.1990,18:525-536
    [3]谢鸿全.等离子体填充相对论行波管的基础理论研究.博士学位论文.电子科技大学.2002
    [4]谢文楷.强流相对论电子学的若干新进展.电子学报.1995,23(6):102-104
    [5]吴坚强.高功率微波的发展和应用.电子科大学报.1996,25(7):129-139.
    [6]James Benford,John Swegle.高功率微波.贺云汉等译.工程物理研究院科技信息中心.1994.
    [7]李少甫,丁武.一种新的高功率微波折叠式谐振腔径向速调管振荡器.强激光与粒子束.2003,15(9):909-913.
    [8]李少甫,丁武,杨中海.新型高功率虚阴极径向反射速调管振荡器.强激光与粒子束.2005,17(11):1725-1729.
    [9]臧杰峰,刘庆想,朱静,林远超.径向三腔渡越时间振荡器数值模拟与理论分析.强激光与粒子束.2008,20(3):473-478.
    [10]Bogdankevich L S.Rukhadze A A.Stability of relativistic electron beams currents.Sov Phys Vspekhi,1971,14.
    [11]Genoni T C,Proctor W A.Upper bound for the space charge limiting current of annular electron beams.Plasma Physics.1983,23(1).
    [12]R.B.米勒著.强流带电粒子束物理学导论.刘锡三,张兰芝,吴衍斌,鲁敬平,周丕璋译.原子能出版社,1990:91-105.
    [13]谢文楷,削顺禄,钱光弟.同轴Vircator的理论与数值模拟.电子科大学报.1999,28(2):166-167.
    [14]谢文楷,朱雄伟.波导和谐振腔中空间电荷极限电流的研究.电子科大学报.1991,20(3):274-281.
    [15]邵浩,刘国治,杨占峰.同轴型强流电子束二极管的一种近似解.强激光与粒子束.2005,17(8).
    [16]邵浩,刘国治.向外发射同轴型虚阴极振荡器研究.物理学报.2001,50(12).
    [17]宋盛义,仇旭,王文斗,林其文,孙承纬.空间电荷限制流与传导电流的定理关系.强激光与粒子束.2005,17(3).
    [18]Collin R E.Fidld Theory of Guided Wave.New York:McGrall-Hill.1996.
    [19]唐天同,刘纯亮.电子束与粒子束物理.西安交通大学出版社,2001:42-93.
    [20]代宪菊.大功率行波管周期永磁聚束系统研究.硕士学位论文.电子科技大学.2004:1-6.
    [21]冯光耀等.辐照食品直线加速器电子枪设计.核技术.2006,29(9):650-654.
    [22]冯光耀,裴元吉,孙红兵.消毒灭菌用电子直线加速器物理设计.高能物理与核物理.2006,3(增刊1):120-122
    [23]Zhou Zu-sheng,Tian Shuang-min,Dong dong.Design of foucusing magnet for high power klystron.High power laser and particle beams.2006,18(8).
    [24]Amboss K,Davis J,Hively K ect.A 50kW Peak Power,4kW Average Power Moderate Confined Flow,PPM Focused,X-Band TWT.Electron Devices Meeting,1989.Technical Digest,International,1989.
    [25]Dionisio R,AndrioloG.High Power X-Band TWT for Airborne Radar Applications.VacuumElectronics Conference,2002.IVEC 2002.Third IEEE international 2002.
    [26]D.Sprehn et al.PPM Focused X_Band Klystron Development at SLAC.SLAC-PUB-7231.in Proc.of the 3~(rd)Iint.Wksp.on Pulsed RF Soureces for Linear Colliders.Havama.Japan.1996.
    [27]丁耀根.多注速调管电子光学系统的研究.电子科学学刊.2000,22(3).
    [28]蔡竺吟,吕国强,杨蕾,贺耀吕.行波管周期拥磁聚焦系统的设计.真空电子技术.2006,2:25-27.
    [29]夏慧琴,刘纯亮.束流传输原理.西安交通大学出版社.1991.
    [30]高宏.等离子体填充大功率微波器件及其相关问题的理论研究.博士后研究工作报告.电子科技大学.1999:1-15.
    [31]C.A.Kapetanakos,P.A.Sprangle,R.A.Mahaffey,and J.Golden.High-power microwave from a non-isochronous reflecting electron system (NIRES).Phys.Rev.Lett.1977,39.
    [32]D.H.Whittum,A.M.Sessler,and J.M.Dawson.Ion-channel Laser,Phys.Rev.Lett.1990:64.
    [33]D.M.Goebel,J.M.Butler,R.W.Schumacher,J.Santon.High-power microwave source based on an unmagnetized backward-wave oscillator. IEEE Trans.Plasma Sci.1994:22
    [34]Walter R.Day,New Developments in Electrostatically Focused Klystrans.Microwave Journal.1970,13(4):59-63.
    [35]A.Bert.The Design of An Electrostatically Focused Beam for Klystron Applicaton.MOGA.1970,11.
    [36]尹忠杰.速调管静电聚焦系统的试验设计.电子管技术.1981,2:15-20.
    [37]J.W.Saunders.Electostatic or Electromagnetic Focussing.Microwave Journal.1978,16.
    [38]Adler R J.Image-field focusing of intense ultra-relativistic electron beam in vaccum.Part.Accelerators.1982,12:39-44.
    [39]Humphries Jr S.Equilibria for foil-focused relativistic electron beams.Particle Accelerators.1983,13:249-253.
    [40]Humphries Jr S.Image charge focusing of relativistic electron beam.Appl Phys.1988,63(2):583-585.
    [41]J.D.Lawson.The Physics of charged particle beams.Clarendon Press.1977.
    [42]J.A.Antoniadesl,R.A.Meger,T.A.Pepser,M.C.Myers,S.Humphries,Jr,C.A.Ekdahl.High-Current Beam Transport Experiments Using Foil Focussing.Science Applications International Corp.,McLean,VA 221 02.
    [43]丁武,徐福凯.箔-聚焦的强流电子束的平衡与稳定特性.强激光与粒子束.2004,16(1):133-136.
    [44]徐福锴,丁武.一种带孔箔聚焦可重复运行的分离腔振荡器.强激光与粒子束.2003,15(11):1100-1102.
    [45]王平山,黄华,陈天才,夏连胜,陶祖聪.导电箔对于相对论环形束的约束作用分析及其对束流群聚过程影响的初步试验结果.物理学报.1996,45(6):1039-1045.
    [46]王平山,余少英,雷方艳等.导电栅网对相对论速调管中电子束的约束作用.物理学报.1998,47(3):485-493.
    [47]Raymond W.Lemke,M.Collins Clark and Barry M.Marder.The oretical and experimental investigation of a method for increasing the output power of a microwave tube based on the split-cavity oscillator.J.Appl.Phys.1994,75(10):5431-5432.
    [48]Barry M.Marder,M.Collins Clark,Larry D.Bacon,James M.Hoffman,Raymond W.Lemke,and P.Dale Coleman.The Split-cavity Oscillator:A High-Power E-Beam Modulator and Microwave Source.IEEE Transactions on Plasma Science.1992,20(3):312-317.
    [49]李建清,莫元龙,张勇,周晓岚.有限尺寸宏粒子空间电荷场研究.强激光与粒子束.2002,14(1).
    [50]王秉中.计算电磁学.科学出版社.2002:19-33.
    [51]刘乃泉,林郁正,刘国治,黄文会.加速器理论.2.清华大学出版社.2004.
    [52]郭敦仁.数学物理方法.高等教育出版社.1991:445-472.
    [53]吴崇试.数学物理方法.北京大学出版社.1999:551-575.
    [54]老大中.变分法基础.国防工业出版社.2004:290-295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700