大功率毫米波回旋速调和行波放大器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
频率介于微波和红外之间的电磁波为毫米波,其兼有两者的优点。首先相比红外波,毫米波传输特性更好;相比微波,毫米波电子装备更加小型化,更易装配于导弹、卫星和飞机上。毫米波的这些特点使得它成为国际上研究的热点,受到极大的关注。尤其在军事上,现代战争是高技术条件下的战争,战争双方谁拥有最先进的高科技技术和武器装备,谁就能掌握战争的主动权,否则只能处于被动挨打的地位。高功率的毫米波与亚毫米波技术在当今高科技战争中有着不可或缺的作用。使用高功率的毫米波与亚毫米波技术可以干扰对方的雷达、通信设备以及微波武器装备,使其无法正常工作,同时可以对敌方的目标进行远程监控以及精确识别,实现远程预警以及引导武器系统攻击,并可保护我指挥、通信系统免受对方干扰,是现代战争中制胜的主要途径。本论文研究的高功率回旋放大器是毫米波装备系统的源,其目的在于解决长期制约大功率毫米波发展的瓶颈,推动毫米波系统在我国的发展。论文通过理论分析及设计优化开展研制工作,解决了回旋放大器各关键部件,并研制出了工作频率16GHz、30GHz和34GHz的回旋放大器实验样管。
     论文首先介绍了国内外毫米波回旋放大器研究的进展和应用情况,美国在3毫米回旋放大器研究方面取得了一系列的成就,并在车载相控阵雷达和Haystack雷达上得到成功应用。俄罗斯的研究工作主要集中在8毫米波段,并在远程相控阵雷达上得到了应用。国内在回旋放大器方面也开展了相应的研究工作,并取得了一系列的成就。
     小回旋电子枪系统是回旋速调管和回旋行波管的关键部件之一,论文先对双阳极和单阳极磁控注入电子枪进行了详细的理论分析,数值计算,优化设计,对影响电子注性能的各参数进行了优化设计,通过热分析和误差分析研究了所设计电子枪的稳定性,对影响电子注性能的枪区低频振荡问题进行了分析,通过改进结构和优化磁场得到了能很好抑制自激振荡的电子枪,并得到了实验验证,设计出了满足回旋速调管和回旋行波管的高质量电子枪,所设计的速调管电子枪速度比为1.32,纵向速度零散1.3%,行波管电子枪速度比为1.2,速度零散1.1%。
     论文所研究的ka波段TE01-TE02模式高功率回旋速调管,输入腔和两个群居腔工作于TE01模式,低阶模式易于抑制寄生模式的振荡,而输出腔工作于TE02模式,相比于TE01模式,TE02模式的输出腔功率容量大大提高,通过线性和非线性理论分析,并采用小信号理论研究了整管性能,包括增益、带宽和效率。并通过分析计算,粒子模拟,优化出了高性能的回旋速调管,在工作电流20安时,实验得到了350kW的脉冲功率,280GHz的带宽。
     在高质量小回旋磁控注入电子枪的基础上,研究了ku波段和ka波段高功率宽频带回旋行波放大器。首先从小信号理论出发,建立了针对回旋行波放大器的自洽PIC分析计算程序,优化高频系统设计,通过介质加载抑制自激振荡,设计出了ku和ka两个频段的回旋行波放大器,工作频率分别为16GHz,30GHz和34GHz。实验分别得到了180kW和165kW左右的脉冲输出功率。
     本论文着眼于回旋放大器件实用管型的研究,从理论分析,模拟计算,优化设计再到实验研究。形成了一套行之有效的回旋放大器研究方法。
Millimeter wave possesses both the advantages of microwave and infrared wave. On the one hand, millimeter wave has better transmission characteristics than infrared and visible light, and on the other hand the system working on the millimeter band is smaller in size for missile, satellite and airplane. Lots of research groups had intensively focused on its development. Especially in military high power millimeter technology plays an important role. High power microwave millimeter technology can be used to jam the radars, communications and weapon system so that they can't work normally, furthermore, protect our radar and command system and win the war. However, the development of high power millimeter radiation sources limits and blocks the advance of millimeter and relative technology. In this paper, a myriad of deep theoretical analysis, numerical simulations and prototypes experiments of16GHz,30GHz and34GHz are demonstrated.
     A review of the state-of-art about millimeter gyro-devices is concluded. Of all this applications, U.S.A had a series of achievements about W-band gyro-amplifiers and now had applied in the Haystack radar. However, IAP focused on the developments of Ka-band gyro-devides and they also had some applications for their radars. Recent years, relative research is also developed in our country.
     For the small orbit gyro-TWT and gyroklystron, the magnetron injection gun plays an important role. We give a detailed theoretical analysis, numerical simulations and optimizations. At the same time, the parameters which may have a serious influence on the stability of the helical electron beam are studied. Besides, the low frequency osicallation from MIG is analyzed and the means to improve the HEB quality are put forward. The experimential results agree well with our theory. Based on these, a MIG for gyroklystron with pitch factor1.32, longitudinal velocity spread1.3%and another one pitch factor1.2, longitudinal velocity spread1.1%for gyro-TWT are designed.
     The Ka-band TE01-TE02gyro-klystron contains four cavities. The input cavity and two bunching cavities work at the mode TE01and have good performance to suppress suprous oscillations. In order to increase power capacity, the output cavity works at TEo2.The gyroklystron performance is demonstrated by linear, inlinear theory, small signal theory and PIC simulation. The experiment explores peak output power350kW and bandwidth280MHz with beam current20A.
     We also do lots of research and experiments about high power, board bandwidth Ku and Ka-band gyro-TWT on the basis of high quality MIG. A self-consisent small signal theory PIC code is set up and lossy ceramics are loaded to suppress suprous oscillations. The prototypes work at16GHz,30GHz and34GHz and successfully achieve180kW and165kW peak output power respectively.
     The research and application of gyro-amplifiers in different working frequency are presented from theoretical analysis, numerical calculation, code simulation and cold/hot test. A mature and effective design method is set up.
引文
[1]刘濮鲲,徐寿喜.回旋速调管放大器及其发展评述.电子与信息学报,2003,2(5):683-694
    [2]廖复疆.真空电子技术.北京:国防工业出版社,1978,20-38
    [3]A. V. Gapanov. Applications of High Power Microwaves. Ma Artech House,1994,76-98
    [4]罗勇.回旋速调管放大器高频系统及注波互作用研究:[博士论文].成都:电子科技大学,2002,2-46
    [5]罗勇,李宏福,谢仲怜,等.回旋速调管群聚腔研究.电子学报,2003,31(6):864-866
    [6]V. L. Granatstein, B. Levush, B. G. Danly. A quarter century of gyrotron research and develop-ment. IEEE Trans. Plasma Sci.,1997,25(1):1322-1335
    [7]E. M. Choi. Experimental study of a high efficiency gyrotron oscillator:[Ph.D. dissertation], Cambridge:MIT,2007,120-133
    [8]J. P. Calame, D. K. Abe. Application of advanced materials technologies to vacuum electronic devices. IEEE Proceedings,1999,87(5):840-864
    [9]J. L. Hirshfield. Cyclotron harmonic maser. Int. J. Infrared Millimeter Waves,1981, (5)2: 695-704
    [10]N. I. Zaytsev, T. B. Pankratova, M. I. Petelin. Millimeter and submillimeter wave gyrotron. R. E. Phys.,1974,19(10):103-107
    [11]C.T.Iatrou. Linear analysis of the gyroklystron with gaussian field profile. Int.J.C, 1993,75(3):535-559
    [12]G. M, Calame J. P, Nguyen K. Experimental studies of a fourcavity 35GHz gyrokly stron amplifier. IEEE Trans. on P. Sci.,2000,28(3):672-680
    [13]C. C. Petty, R. J. Haye, T. C. Luce. Complete suppression of the m = 2/n = 1 neoclassical tearing mode using electron cyclotron current drive. N. Fus.,2004,44(2):243-251
    [14]K. R. Chu, H. Y. Chen, C. L. Hung, et al. Theory and experiment of ultrahigh gain gyrotron traveling wave amplifier. IEEE Trans. on Plasma. Sci.,1999,27(2):391-404
    [15]G. G. Denisov, V. L. Bratman, A. W. Cross, et al. Gyrotron traveling wave amplifier with a helical interaction waveguide. Phy. review letters,1998,81(5):5680-5683
    [16]Q. Twiss, J. A. Roberts, S. V. Kuzikov. Electromagnetic radiation from electrons rotating in an ionized medium under the action of a uniform magnetic field. J.Phys.1958,11(1):424-432
    [17]J. J. Choi. A high-gain 28GHz 200kW gyroklystron amplifier. Int. J. Infrared Millim. Waves, 1998,19(12):1681-1691
    [18]J. L. George, T. G. Mai, G. D. Bruce, et al. A high-power coherent 94 GHz radar. IEEE Trans. A. Ele. Sys.,2008,44(3):1102-1117
    [19]R. Q. Twiss, J. A. Roberts. Electromagnetic radiation from electrons rotating in an ionized medium under the action of a uniform magnetic field. J. Phys.,1958,11(1):424-432
    [20]R. H. Pantell. Backward wave oscillation in an unloaded waveguid. Proc. IRE,1959,2(1):836-837
    [21]J. Schneider. Stimulated emission of radiation by relativistic electrons in a magnetic field. Phys. Rev. Lett.,1959,2(12):504-508
    [22]M. E. Read, R. M. Gilgenbach, R. Lucey, et al. Spatial and temporal coherence of a 35-GHz gyromonotron using the TE01 circular mode. IEEE Trans. Microwave Theory Tech.,1980, MTT-28(16):875-878
    [23]刘盛纲.相对论电子学.北京:科学出版社,1987,1-366
    [24]B.R.米勒.强流带电粒子束物理学导论.北京:原子能出版社,1990,24-76
    [25]王华军,李宏福,周晓岚.回旋管双阳极磁控注入电子枪的设计.强激光与粒子束1999,11(3):337-341
    [26]王丽,李宏福,牛新建,等.磁场分布曲线对电子枪性能影响的分析.强激光与粒子束,2003,15(12):1233-1236
    [27]S. J Groap. Stimulated emission of radiation by relativistic electrons in magnetic field. Phys. Rev. Lett.,1959,2(1):504-508
    [28]J. M. Baird, W. Lawson. Magnetron injection gun design for gyrotron applications. Int. J. Electron,1986,61(2):953-967
    [29]J. Neilson, M. Caplan, N. Lopez. Simulation of space charge effects on velocity spread in gyro-devices. IEDM Tech. Dig.,1985,21(1):184-187
    [30]C. Liu, T. M. Antonsen, B. Levush. Simulation of velocity spread in magnetron injection guns. IEEE Trans. Plasma Sci.,1996,24(3):982-991
    [31]S. E. Tsimring. On the spread of velocity in helical electron beams. R. Phys.Q. Electron.,1972, 15(2):952-961
    [32]S. E. Tsimring, V. E. Zapevalov. Experimental study of intense helical electron beams with trapped electrons. Int. J. Electron,1996,81(2):199-205
    [33]B. V. Raisky, S. E. Tsimring. Numerical simulation of nonstationary processes in intense helical electron beams of gyrotrons. IEEE Trans. Plasma Sci.,1996,24(2):992-998
    [34]A. N. Kuftin. Numerical simulation and expetimental study of magnetron-injection guns for powerful short-wave gyrotrons. Int.J. Electronics,1992,72(5):1145-1151
    [35]C. Liu. Study of electron beam quality in gyrotron guns and design of a novel input circuit for a high-power gyroklystron amplifier. U. Maryland,1998,80(2):380-392
    [36]O. I. Louksha, B. Piosczyk, G. G. Sominski. On potentials of gyrotron efficiency enhancement measurements and simulations on a 4-mm gyrotron. IEEE Trans. Plasma. Sci.,2006,34(3): 502-511
    [37]D. V. Kasyanenko, O. I. Louksha, B. Piosczyk, et al. Low-frequency parasitic space-charge oscillations in the helical electron beam of a gyrotron. Radiophys. Q. Electron,2004,47(1): 414-420
    [38]M. Pedrozzi, S. Alberti, J. P. Hogge, et al. Electron beam instabilities in gyrotron beam tunnels. Phys. Plasmas,1998,5(6):2421-2430
    [39]A. F. Korolev, A. P. Sukhorukov, A. V. Sheludchenkov. Investigation of the instability of the intense helical electron beam formed in a gyroamplifier. J. C. Technol. Electron.,2000,45(2): 65-70
    [40]A. N. Kuftin. Numerical simulation and expetimental study of magnetron-injection guns for powerful shortwave gyrot-rons. Int.J.electronics,1992,72(5):1145-1151
    [41]S. E. Tsimring. Gyrotron electron beams:Velocity and energy spread and beam instabilities, Int. J. Infrared Millim. Waves,2001,22(1):1433-1468
    [42]R. Yan, T. M. Antonsen, G. S. Nusinovich. Analytical theory of low-frequency space charge oscillations in gyrotrons. Phys. Plasmas,2008,15(10):103-112
    [43]W. C. Guss, M. A. Basten, K. E. Kreischer, et al.Velocity ratio measurements of a gyrotron electron beam. J. Appl. Phys.,1994,76(2):3237-3243
    [44]S. E. Tsimring. Gyrotron electron beams:Velocity and energy spread and beam instabilities, Int. J. Infrared Millim. Waves,2001,22(1):1433-1468
    [45]C. D. Marchewka, E. M. Choi, M. A. Shapiro, et al.Observation of low-frequency parasitic oscillations in a 1.5 MW,110 GHz gyrotron.2006 International Vacuum Electron Conference, Vol.1:535-536
    [46]A. J. Cerfon, E. M. Choi, C. D. Marchewka, et al.Observation and Study of Low-Frequency Oscillations in a 1.5-MW 110-GHz Gyrotron. IEEE Trans. Plasma Sci.,2009,37(3):1219-1224
    [47]V. N. Manuilov. Numerical simulation of low-frequency oscillations of the space charge and potential in the electron-optical system of a gyrotron. R. Q. Electron,2006,49(2):786-792
    [48]O. I. Louksha, B. Piosczyk, G. G. Sominski. On potentials of gyrotron efficiency enhancement measurements and simulations on a 4-mm gyrotron. IEEE Trans. Plasma. Sci.,2006,34(3): 502-511
    [49]雷朝军.8mm二次谐波回旋速调管研究:[硕士学位论文].成都:电子科技大学,2008,1-54
    [50]J.L.Hirshfield, I.B.Bernstein, J.M.Wachtell. Cyclontron resonance interaction of microwaves with energetic electronics. IEEE J. Q. Electron,1965, 1(6):237-245
    [51]刘盛纲.微波电子学,北京:国防工业出版社,1984:522-640
    [52]K. R. Chu. Theory of electron cyclotron maser interaction in a cavity at harmonic. Phys. Fluids, 1978,21(12):2354-2364.
    [53]梁显峰.8mm二次谐波三腔回旋速调管放大器的研究:[博士论文],北京:中国科学院电子学研究所,2004,1-71.
    [54]R. S. Symons, H. R. Jory. Small-signal theory of gyrotrons and gyroklystrons. P. S. E. Pro. Fusion Res.,1977,2(7):1111-1115
    [55]C. T. Iatrou, P. G Mourifr. Linear analysis of the gyro-klystron with Gaussian field profile. Int. J. Electronics,1993,75(3):535
    [56]V A. Flyagin, A. V Gaponov, M. I. Petelin, et al, The Gyrotron. IEEE Trans. Microwave Theory and Technology,1977,25(6):514-520.
    [57]E. V Zasypin, M. A. Moiseev, I. GGaehev, et al. Study of High Power Ka Band Second Hannonic Gyroklystron Amplifier. IEEE Trans, on plasma science,1996,24(3):666-670
    [58]E. V Zasypin, M. A. Moiseev, E. V. sokolov, et al. Effect of penmultimate cavity and tuning on three cavity gyroklystron amplifier performance. Int. J. Electronics,1995,78(2):423-433
    [59]I. I. Antakov, M. A. Moiseev, E. V Sokolov, et al. Theoretical and experimental investigation of X band two cavity gyro-klystron. Int. J. Infrared Millim. Waves,1994,15(5):873-887
    [60]G. S. Nusinovich, B. Levush, B. G. Danly. Gain and bandwidth in stagger-tuned gyrokly- stron and gyrotwystrons. IEEE Trans. plasma science,1999,27(2):422-428
    [61]E. V. Sokolov, E. V. Zasypkin. Two-cavity gyroklystron with self-excited input cavity. IEEE Trans, plasma science,1995,79(4):495-503
    [62]G. S. Nusinovich, M. T. Walter, M. Kremer, et al. A submillimeter-wave gyroklystron theory and design. IEEE Trans. On plasma science,2000,28(3):936-944
    [63]T. M. Tran, K. E. Kreischer, R. J. Temkin. Self-consistent theory of a harmonic gyroklystron with a minimum Q cavity. Phys.Fluids,1986,29(11):3858-3863
    [64]T. M. Tran, B. G. Danly, K. E. Kreischer. Optimization of gyroklystron efficiency. Phys.Fluids, 1986,29(4):1274-1281
    [65]B. G. Danly, R. J. Temkin. Generalized nonliner harmonic gyrotron theory. Phys.Fluids,1986, 29(2):561-567
    [66]W. M. Manheimer. Theory of the multi-cavity phase locked gyrotron oscillator. IEEE Trans. plasma science,1987,63(1):29-47
    [67]G. S. Nusinovich, B. G. Danly and B. Levush. Gain and bandwidth in stagger-tuned gyrokly-strons, IEEE Trans. plasma science,1997,4(2):469-478
    [68]G. S. Nusinovich. Introduction to the Physics of Gyrotrons. The Johns Hopkins University,2004, 10(2):55-62
    [69]J. P. Calame, D. K. Abe. Application of advanced materials technologies to vacuum electronic devices. IEEE Proceedings,1999,87(5):840-864
    [70]M. N. Jeff, E. L. Peter. Determination of the Resonant Frequencies in a Complex Cavity Using the Scattering Matrix formulation. IEEE Trans. Microwave Theory and Techniques,1989,37(8): 1165-1169
    [71]王建勋.Ka波段回旋放大器及W波段带状束电子光学系统研究:[博十学位论文].成都:电子科技大学,2010,1-86
    [72]K. R. Chu, H. Y. Chen, C. L. Hung, et al. Ultra high gain gyrotron traveling wave amplifier. Phys. Rev. Lett.,1998,81(1):4760-4763
    [73]J. P. Calame, M. Garven, B. G. Danly,et al. Gyrotron Traveling Wave Tube Circuits Based on Lossy Ceramics. IEEE Trans. Inform. Theory,2002,49(8):1469-1477
    [74]H. H. Song, D. B. McDermott, Y. Hirata, et al. Theory and experiment of a 94 GHz gyrotron traveling-wave amplifier. Physics of plasmas,2004, 11(5):29-35
    [75]D. B. McDermott, H. Song, Y. Hirata, A. T. Lin.94GHz heavily loadedTE gyro-TWT.2nd Int. 2001 Vacuum Electronics Conf. Noordwijk, The Netherlands, Vol.4:143-144
    [76]H. Guo, S. H. Chen, V. L. Granatstein. Operation of a highly overmoded, harmonic-multiplying wide band gyrotron amplifier, Phys. Rev. Lett.,1997,79(1):515-518.
    [77]G. S. Nusinovich, J. Rodgers, W. Chen. Granatstein, Phase stability in gyro traveling wave tubes, IEEE Trans. Electron Devices,2001,48(6):1460-1468.
    [78]V. L. Bratman, A. W. Cross, G. G. Denisov, et al. High-gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide, Phys. Rev. Lett.,2000,84(2):2746-2749.
    [79]鄢然.磁控注入式电子枪低频振荡现象分析及Ka波段回旋行波放大器研究:[博士学位论文].成都:电子科技大学,2010,1-99
    [80]K. R. Chu, L. R. Barnett, W. K. Lau. Stabilizing of absolute instabilities in gyrotron traveling wave amplifier. Phys. Rev. Lett.,1995,74(1):1103-1106
    [81]L. R. Barnett, K. R. Chu, J. M. Baird. Gain, saturation, and bandwidth measurements of the NRL gyrotron traveling wave amplifier. IEDM Tech. Dig.,1979,1(1):164-167
    [82]Q. S. Wang, D. B. McDermott, N. C. Luhmann. Demonstration of marginal stability theory by a 200-kW second-harmonic gyro-TWT amplifier. Phys. Rev. Lett.,1995,75(1):4322-4325
    [83]A. K. Ganguly, S. Ahn. Self-consistent large signal theory of the gyrotron traveling wave amplifier. Int. J. Electron.,1982,53(1):641-658
    [84]L. Chen, H. Guo, H. Y. Chen, et al. An extended interaction oscillator based on a complex resonator structure. IEEE Trans. Plasma. Sci.,1996,28(1):626-632
    [85]N. S. Ginzburg, S. P. Kuznetsov, T. N. Fedoseeva. Theory of transients in relativistic backward-wave tubes. Radio, phys.,1979,21(1):728-739
    [86]王丽.回旋管电子光学系统的研究:[博士学位论文].成都:电子科技大学,2005,5-86
    [87]蒲友雷.8mm回旋速调管放大器双阳极磁控注入电子枪的研究:[硕十学位论文].成都:电子科技大学,2006,3-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700