双频容性耦合等离子体的全悬浮双探针及质谱诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双频容性耦合等离子体源(DF-CCP)是最近几年发展起来的一种新型的等离子体源,它通过采用一个高频源和一个低频源来共同激发等离子体,可以实现等离子体密度和离子能量的单独控制,能够获得很好的刻蚀速率和均匀性。DF-CCP可以产生大面积较均匀的高密度等离子体,其实验装置结构简单,操作容易,符合半导体工业生产的需求,因此这种等离子体源得到了广泛的应用。在介质刻蚀方面,它目前正逐步取代其它效率较低的等离子体源。然而在实际应用中,这种双频容性耦合等离子体的均匀性、双频电源的解耦和用于刻蚀的离子的能量分布受到了各种放电参数的影响,使得其应用受到了一定的局限,因此,有必要对该等离子体的物理特性进行深入系统的研究。
     由于这种双频放电中存在着很强的高次谐波干扰,直接对其电学参数进行实验诊断是比较困难的。具体来说,实验诊断面临的问题是怎样实现在不影响等离子体放电的情况下对其进行原位诊断,获得等离子体密度、电子温度、电子能量分布函数和离子能量分布等有价值的数据信息。基于此目的,本论文采用自主研制的全悬浮双探针诊断系统,实现了对DF-CCP等离子体密度和电子温度的空间测量;系统研究了双频电源在不同放电参数下的耦合效应。最后,利用具有能量分辨能力的四极杆质谱测量系统对Ar/O2混合气体放电展开了研究,获得了不同放电条件下的离子能量分布和平均能量。论文的前三章分别是绪论、实验诊断方法和实验装置的介绍;后三章是本论文的主要研究结果,第四章研究的是双频容性耦合等离子体的空间均匀性,并且给出了部分实验结果和二维流体模拟的比较,第五章研究了双频电源的耦合效应,第六章研究了Ar/O2混合气体放电的离子能量和平均能量分布。
     第一章绪论介绍了低温等离子体在微电子工业中的应用,分析比较了几种常见的等离子体源,阐述了本论文所采用的双频容性耦合等离子体源的特性,对DF-CCP的理论和实验研究进展做了详细的综述,指出了研究中存在的问题,给出了本文的研究内容和安排。第二章,较详细地介绍了等离子体实验诊断经常采用的几种诊断方法的原理,包括单探针和双探针法、质谱法以及发射和吸收光谱法。第三章,介绍了我们的实验装置,包括DF-CCP放电装置、全悬浮双探针诊断系统及四极杆质谱诊断系统。
     第四章,利用自主研制的全悬浮双探针,在不同放电参数下对等离子体密度及电子温度的径向及轴向分布进行了系统的研究。研究结果表明:气压、低频功率、放电间距和低频频率对等离子体密度的径向均匀性影响较大,而高频电源的功率对其影响不大;选择合适的放电参数,可以获得径向均匀性较好的等离子体。电子温度与等离子体密度的变化趋势大体相反。等离子体密度的轴向分布显示,随着气压的升高,从驱动电极到地电极呈现出由对称抛物线分布向非对称抛物线分布的变化,最大值逐渐偏向驱动电极处。气压升高,电离源逐渐偏向驱动电极处,而且放电电极的不对称造成电极附近的鞘层厚度不对称,从而导致等离子体密度轴向分布的不对称。高频功率的增加能够提高等离子体密度,而低频功率增加可以使等离子体密度降低。电子温度受轴向位置的影响较小,变化平稳。对这种放电等离子体进行了二维流体模拟,结果表明实验结果和流体模拟结果变化趋势基本一致,两者符合得较好。
     第五章,利用全悬浮双探针诊断系统研究了DF-CCP高低频电源的耦合效应。通过对腔室中心点的等离子体密度和电子温度的测量,分析了放电间距、气压和高低频频率组合等对耦合效应的影响。研究结果表明,高低频电源具有较强的耦合效应,实现完全解耦是比较困难的。增加低频功率,在较低的高频功率下,等离子体放电类似于单频放电,低频功率的加入对等离子体放电起促进作用,密度逐渐增加;而当高频功率较大时,鞘层扩展,主等离子体区域减小,等离子体密度逐渐降低,电子温度逐渐升高。在较小的放电间距下,等离子体密度随低频功率的增大而降低,电极间距较大时,二次电子发射起了很重要的作用,增加低频功率,等离子体密度增大。气压较低时,增加低频功率,等离子体密度变化不大,较容易实现解耦;而随着气压的升高,电子碰撞加剧,欧姆加热效率升高,随着低频功率增加,等离子体密度也呈现出增大的趋势,相同高低频功率下的等离子体密度随着气压的升高而降低。低频频率较小时,等离子体密度变化幅度小,较容易实现解耦。
     第六章,利用四极杆质谱仪研究了Ar/O2混合气体放电的离子能量分布和平均能量的影响因素,质谱仪收集的离子穿过鞘层由下电极直接进入质谱小孔,属于原位诊断。研究了低频功率、放电气压、低频频率和氧气的含量对Ar+离子和O2+离子的影响。研究结果表明,增加低频功率,鞘层电势增加,离子穿过鞘层获得更高的能量,Ar+离子和O2+离子的能量逐渐增大,高能峰向高能区移动,能量宽度加大。Ar+离子由于共振电荷交换反应损失掉较多的能量,不同的低频功率下,其平均能量均低于O2+离子。气压升高时,Ar+离子在穿越鞘层过程中的碰撞次数较多,其双峰结构越来越不明显,高能峰逐渐消失,低能区离子越来越多,而O2+离子的碰撞截面较小,其碰撞效应不明显,能量分布受气压的影响不大。增加低频频率,离子能量逐渐由中频机制向高频机制变化,Ar+离子和O2+离子的能量分布的宽度都减小,双峰结构逐渐变得不明显。增大氧气含量,电离率增大,Ar+离子和O2+离子的高低能峰均向高能区移动,最大能量值逐渐右移。同等条件下的Ar+离子的平均能量均低于O2+离子。
Dual-frequency capacitively coupled plasma (DF-CCP) source is becoming a new type plasma source in recent years. The plasma is drived by the higher frequency (HF) and the lower frequency (LF) power supply, so the separate control of plasma density and ion energy can be realized in a DF-CCP. The higher etching rate and uniformity can be obtained. DF-CCP can produce uniform plasma in large area. The device operates easily, has a simple structure and lower cost, thus it meets the requirements of the semiconductor industrial production. This plasma source has been widely used, is gradually replacing other less efficient plasma source in dielectric etching. In practice, its uniformity, frequency decoupling and the ion energy distribution for etching are modulated by various discharge parameters. The limitation of DF-CCP has been made, therefore, it is necessary to do an in-depth investigation.
     It is difficult to do the direct experimental measurement in DF-CCP because of the strong harmonic interference. Specifically, the problem of experimental diagnosis is how to achieve original diagnosis and can not disturb the plasma discharge, obtain the plasma density, electron temperature, electron energy distribution function and ion energy distribution and other valuable data. For this purpose, a newly developed complete floating double probe diagnostic system is used to measure the space plasma density and electron temperature. The coupling effect of dual frequency sources at different discharge parameters is researched. Finally, we research the Ar/O2 mixed gas discharge through the quadrupole mass spectrometry system. The ion energy distribution and average energy are obtained under different discharge conditions. The first three chapters are the introduction, experimental diagnostic methods and experimental setup description. The last three chapters are the main findings. Chapter 4 is the investigation of the spatial uniformity of dual-frequency capacitively coupled plasma, and some of the experimental results are compared with two-dimensional fluid simulation results. Chapter 5 is the investigation of coupling effect in the dual frequency sources, In Chapter 6, we investigate the ion energy distribution and average energy of the Ar/O2 mixed gas discharge.
     In the first chapter of the introduction, we introduce the low temperature plasma application in microelectronics industry, analyze and compare several common plasma sources, describe the DF-CCP source in detail, review the theoretical and experimental research progess in detail, point out the problems in investigation. Finally, we introduce the investigation contents and arrangement in this thesis. In Chapter 2, we introduce the principle of the common experimental diagnostic methods in detail, including the single probe and double probe method, mass spectrometry, optical emission spectrometry (OES) and absorption spectrometry (AS). Chapter 3 describes our experimental setup, including the DF-CCP discharge device, the newly developed complete floating double probe diagnostic system and quadrupole mass spectrometry diagnostic system.
     In Chapter 4, the plasma density and electron temperature of the radial and axial distributions at different discharge parameters are investigated using the newly developed complete floating double probe diagnostic system. The results show that pressure, low-frequency power and electrode spacing can influence the radial uniformity obviously, high-frequency power has little effect. If select the appropriate discharge parameters, we can get a good radial uniformity. Electron temperature and plasma density generally have the opposite trend. The axial distribution from the drive electrode to ground electrode displays that the plasma density shows from symmetric to asymmetric parabolic distribution when pressure increases, the maximum biases to the drived electrode. As the pressure increases, ionization source tends to the drived electrode gradually and asymmetric discharge electrodes cause sheath thickness near the electrode becoming asymmetry, resulting in asymmetric axial distribution of plasma density. Increasing high-frequency power can improve the axial plasma density, and low frequency power increase can cause the axial plasma density decreases. Electron temperature has less affected in the axial position, changes smoothly. Two-dimensional fluid simulation is done to this plasma discharge. The results show that experiment and fluid simulation results are consistent.
     In Chapter 5, we investigate the coupling effect of dual frequency sources using the newly developed complete floating double probe diagnostic system. We analyze the mechanism of the coupling effect by measuring the plasma density and electron temperature in the center of the discharge space. The electrode spacing, pressure and high and low frequency combination have contribution to the coupling effect. The results show that, high and low frequency sources have a strong coupling effect; it is difficult to achieve complete decoupling. Increase the low frequency power, when high frequency power is lower, the plasma diacharge is similar to single-frequency discharge, plasma density will gradually increase; as high frequency power become higher, sheath expansion, the main plasma region decreases, plasma density gradually reduces, but the electron temperature gradually increases. In the small space discharge, the plasma density decreases with the low-frequency power increases. When electrode spacing is large, low-frequency power increase, the secondary electron emission plays an important role, which leads to plasma density increase. When pressure is lower, the plasma density changes little with the low-frequency power increase, it is easier to achieve decoupling, as pressure is high, electron impact becomes intense, ohmic heating efficiency increases, the plasma density also increases, but decreases with increasing pressure under the same high-frequency power. When high and low frequency combination is large, plasma density has a little change, it is easier to achieve decoupling.
     In Chapter 6, the ion energy distribution and average energy of Ar/O2 mixed gas discharge are investigated using quadrupole mass spectrometer. The diagnostics is in situ because ions enter the mass spectrometer hole directly through the sheath under the low electrode. The low-frequency power, pressure, low-frequency frequency and oxygen content can influence Ar+ and O2+ ions. The results show that when low-frequency power increases, potential increases in the sheath, the ions obtain higher energy through the sheath, the energy of Ar+ and O2+ ions increases, high energy peak moves to high energy area, the energy width increases. More energy of Ar+ ions is lost because of resonant charge exchange reaction, the average energy of Ar+ ions is lower than O2+ ions in different low-frequency power. When pressure rises, collisions of Ar+ ions are more in the process of crossing the sheath, the bimodal structure becomes vaguely, and disappears gradually, but low energy ions are more and more. The influence of pressure to O2+ ions is not obvious because of the smaller ion collision cross section. When low-frequency frequency increases, the ion energy changes from middle-frequency to high-frequency mechanism, the energy width of Ar+ and O2+ ions decrease, bimodal structure becomes vaguely. The oxygen content increases, ionization rate increases, high energy peaks of Ar+ and O2+ ions move to high energy area, the maximum energy value gradually shifts to high energy area. The average energy of Ar+ ions is lower than the O2+ ions under the same condition.
引文
[1]CHEN F F,林光海(译).等离子体物理学导论.[M].北京:人民教育出版社,1980.
    [2]Lieberman M A and Lichtenberg A J. Principles of Plasma Discharges and Materials Processing [M]. New York:Wiley,2005中文版为:蒲以康译.等离子体放电原理与材料处理.[M].北京:科学出版社,2007.
    [3]Orlando A,Daniel L F(著),郑少白,胡建芳,郭淑静,等(译).等离子体诊断第一卷:放电参量和化学.[M].北京:电子工业出版社,1994.
    [4]赵华侨.等离子体化学与工艺.[M].合肥:中国科技大学出版社,1993.
    [5]甄汗生.等离子体加工技术.[M].北京:清华大学出版社,1990.
    [6]许根慧,姜恩永,盛京,等.等离子体技术与应用.[M].北京:化学工业出版社,2006.
    [7]李定,等离子体物理学.[M].北京:高等教育出版社,2006.
    [8]Chang J P, Mahorowala A P and Sawin H H, Plasma-surface kinetics and feature profile evolution in chlorine etching of polysilicon [J]. J. Vac. Sci. Technol. A,1997,16:217-224.
    [9]Inayoshi M, lto M, Hori M, et al. Surface reaction of CF2 radicals for fluorocarbon film formation in SiO2/Si selective etching process [J]. J. Vac. Sci. Technol. A,1998,16:233-238.
    [10]Kuah S H and Wood P C. Inductively coupled plasma etching of poly-SiC in SF6 chemistries. [J]. J. Vac. Sci. Technol. A,2005,23:947-952.
    [11]江上舟.中国集成电路产业形式分析与展望.[J].半导体行业,2010,04:9-10.
    [12]Lieberman M A. Analytical solution for capacitive RF sheath. [J]. IEEE Trans. Plasma Sci.,1988, 16(6):638-644.
    [13]Lieberman M A. Dynamics of a collisional capacitive RF sheath. [J]. IEEE Trans. Plasma Sci.,1989, 17(2):338-341.
    [14]Godyak V A, Piejak R B and Sternberg N. A comparison of RF electrode sheath models. [J]. IEEE Trans. Plasma Sci.,1993,21(4):378-382.
    [15]Gierling J and Riemann K U. Comparison of a consistent theory of radio frequency sheaths with step models. [J]. J. Appl. Phys.,1998,83(7):3521-3528.
    [16]Edelberg E A and Aydil E S. Modeling of the sheath and the energy distribution of ions bombarding rf-biased substrates in high density plasma reactors and comparison to experimental measurements. [J]. J. Appl. Phys.,1999,86(9):4799-4812.
    [17]Qiu H T, Wang Y N and Ma T C. Collisional effects on the radio-frequency sheath dynamics. [J]. J. Appl. Phys.,2001,90(12):5884-5888.
    [18]Dai Z L, Wang Y N and Ma T C, Spatiotemporal characteristics of the collisionless rf sheath and the ion energy distributions arriving at rf-biased electrodes. [J]. Phys. Rev. E.,2002,65:036403.
    [19]Dai Z L and Wang Y N, Multiple ion dynamics model for the collisionless rf sheaths and the ion energy distributions at rf-biased electrodes in fluorocarbon plasmas. [J]. Phys. Rev. E.,2002,66: 026413.
    [20]Dai Z L and Wang Y N, Simulations of ion transport in a collisional radio-frequency plasma sheath. [J]. Phys. Rev. E.,2004,69:036403.
    [21]Chapman B N. Glow Discharge Processes [M]. New York:John Wiley & Sons Inc.,1980.
    [22]Choi S J, Ventzek P L G, Hoekstra R J, et al. Spatial distributions of dust particles in plasmas generated by capacitively coupled radiofrequency discharges. [J]. Plasma Sources Sci. Technol.,1994, 3(3):418-425.
    [23]Asmussen J J, Grotjohn T A, Pengun M, et al. The design and application of electron cyclotron resonance discharges. [J]. IEEE Trans. Plasma Sci.,1997,25,1196-1221.
    [24]Fujiwara N, Ogino S, Maruyama T, et al. Charge accumulation effects on profile distortion in ECR plasma etching. [J]. Plasma Sources Sci. Technol.,1996,5:126-131.
    [25]Doh H H, Kim J H, Lee S H, et al. Effect of hydrogen addition to fluorocarbon gases (CF4, C4F8) in selective SiO2/Si etching by electron cyclotron resonance plasma. [J]. J. Vac. Sci. TechnOl. A,1996, 14:1088-1091.
    [26]Miao T T, Zhao H W, Liu Z W, et al. The study of helicon plasma source. [J]. Rev. Sci. Instrum.,2010, 81:02B105.
    [27]Boswell R W, Chen F F, Helicons-the early years. [J]. IEEE Trans. Plasma Sci.,1997,25:1229-1244.
    [28]Chen F F, Boswell R W, Hel icons-the past decade. [J]. IEEE Trans. Plasma Sci.,1997,25: 1245-1257.
    [29]Yamaya Y, Yamaki Y, Nakanishi H, et al. Use of a helicon-wave excited plasma for aluminum-doped Zno thin film sputtering, [J]. Appl. Phys. lett,1998,72:235-237.
    [30]Kim T H, Kang C J, Ahn T H, et al, Characteristics of self bias voltage and poly-Si etching in pulsed helicon wave plasma. [J]. Thin Solid Fiims,1999,345:124-129.
    [31]Keller J H, Forster J C, Barnes S M. Novel radio-frequency induction plasma processing techniques [J]. J. Vac. Sci. Technol. A,1993,11(5):2487-2491.
    [32]Jung K B, Lambers E S, Childress J R, et al. Cl2-based inductively coupled plasma etching of Ni Fe and related materials. [J]. J. Electrochem. Soc.,1998,145(11):4025-4028.
    [33]Ventzek P L G, Hoekstra R J, Kushner M J. Two-dimensional modeling of high plasma density inductively coupled sources for materials processing. [J]. J. Vac. Sci. Technol. B,1994,12(1): 461-477.
    [34]Stewart R, Vitello P, B G D. Two-dimensional fluid model of high density inductively coupled plasma sources. [J]. J. Vac. Sci. Technol. B,1994,12(1):478-485.
    [35]Cunge G, Crowley B, Vender D, et al. Anomalous skin effect and collisionless power dissipation in inductively coupled discharges. [J]. J. Appl. Phys.,2001.89(7):3580-3589.
    [36]Ming M, Dai Z L, and Wang Y N. Two-Dimensional Self-Consistent Kinetic Model for Solenoidal Inductively Coupled Plasma [J]. Plasma Sci. Technol.,2007.9(1):30-34.
    [37]Subramonium P and Kushner M J. Pulsed plasmas as a method to improve uniformity during materials processing. [J]. J. Appl. Phys.,2004.96(1):82-93.
    [38]Yang J G, Yoon N S, Kim B C, et al. Power absorption characteristics of an inductively coupled plasmadischarge. [J]. IEEE Trans. Plasma Sci.,1999.27(3):676-681.
    [39]Corr C S, Despiau-Pujo E, Chabert P, et al. Comparison between fluid simulations and experiments in inductively coupled argon/chlorine plasmas [J]. J. Phys. D:Appl. Phys.,2008.41(18):185202.
    [40]Takekida H and Nanbu K. Self-consistent particle modeling of inductively coupled CF4 discharges and radical flow. [J]. IEEE Trans. Plasma Sci.,2006.34(3):973-983.
    [41]Lee J K, Babaeva N Y, Kim H C, et al. Simulation of capacitively coupled single- and dual-frequency RF discharges. [J]. IEEE Trans. Plasma Sci.,2004,32(1):47-53.
    [42]Turner M M, Chabert P. Collisionless heating in capacitive discharges enhanced by dual-frequency Excitation. [J]. Phys. Rev. Lett.2006,96:205001 (1-4).
    [43]Turner M M, Chabert P. Electron heating mode transitions in dual frequency capacitive discharges. [J]. Appl. Phys. Lett.,2006,89:231502.
    [44]Turner M M. Kinetic properties of particle-in-cell simulations compromised by Monte Carlo collisions. [J]. Phys.Plasmas,2006,13:033506.
    [45]Gans T, Schulze J, Turner M M, et al. Frequency coupling in dual frequency capacitively coupled radio-frequency plasmas. [J]. Appl. Phys. Lett.,2006,89:261502.
    [46]Boyle P C, Ellingboe A R and Turner M M. Electrostatic modelling of dual frequency rf plasma discharges. [J]. Plasma Sources Sci. Technol.,2004,13(3):493-503.
    [47]Boyle P C, Ellingboe A R and Turner M M. Independent control of ion current and ion impact energy onto electrodes in dual frequency plasma devuces [J]. J. Phys. D:Appl. Phys.,2004,37(5):697-701.
    [48]Robiche J, Boyle P C, Turner M M, et al. Analytical model of a dual frequency capacitive sheath. [J]. J. Phys. D,2003,36:1810-1816.
    [49]Kim H C, Lee J K, and Shon J W. Analytic model for a dual frequency capacitive discharge [J]. Phys. Plasmas,2003,10(11):4545-4551.
    [50]Jiang W, Mao M and Wang Y N, A time-dependent analytical sheath model for dual frequency capacitively coupled plasma [J]. Phys. Plasmas,2006,13:113502.
    [51]Donko Z, Schulze J, Heil B G, et al. PIC simulations of the separate control of ion flux and energy in CCRF discharges via the electrical asymmetry effect. [J]. J. Phys. D:Appl. Phys.,2009,42:025205.
    [52]Guan Z Q, Daia Z L, and Wang Y N. Simulations of dual rf-biased sheaths and ion energy distributions arriving at a dual rf-biased electrode. [J]. Phys. Plasmas,2005,12:123502.
    [53]Kim H C, Manousiouthakis V I. Dually driven radio frequency plasma simulation with a three moment model. [J]. J. Vac. Sci. Technol. A,1998,16:2162-2172.
    [54]Salabas A and Brinkmann R P. Numerical investigation of dual frequency capacitively coupled hydrogen plasmas. [J]. Plasma Sources Sci. Technol.,2005,14:S53-S59.
    [55]Rauf S. Dual radio frequency sources in a magnetized capacitively coupled plasma discharge. [J]. IEEE Trans. Plasma Sci.,2003,31:471-478.
    [56]Liu X M, Song Y H, Xu X, et al. Simulation of dust particles in dual-frequency capacitively coupled silane discharges. [J]. Phys. Rev. E,2010,81:016405.
    [57]Xu X, Zhao S X, Zhang Y R, et al. Phase-shift effect in capacitively coupled plasmas with two radio frequency or very high frequency sources. [J]. J. Appl. Phys.,2010,108:043308.
    [58]Sato N and Tagashira H. A hybrid Monte Carlo/fluid model of RF plasmas in a SiH4/H2 mixture. [J]. IEEE Trans. Plasma Sci.,1991,19:102-112.
    [59]Kushner M J. Hybrid modelling of low temperature plasmas for fundamental investigations and equipment design. [J]. J. Phys. D:Appl. Phys.,2009,42:194013.
    [60]Rauf S and Kushner M J. Argon metastable densities in radio frequency Ar, Ar/O2 and Ar/CF4 electrical discharges. [J]. J. Appl. Phys.,1997,82:2805-2813.
    [61]Wang S, Xu X and Wang Y N. Numerical investigation of ion energy distribution and ion angle distribution in a dual-frequency capacitively coupled plasma with a hybrid model. [J]. Phys. Plasmas, 2007,14:113501.
    [62]X S Li, Z H Bi, D L Chang, et al. Modulating effects of the low-frequency source on ion energy distributions in a dual frequency capacitively coupled plasma. [J]. Appl. Phys. Lett.,2008,93:031504.
    [63]Bi Z H, Dai Z L, Xu X, et al. Numerical results for the Ar and CF4 mixture gas in a dual frequency capacitively coupled plasma using a hybrid model. [J]. Phys. Plasmas.,2009,16:043510.
    [64]Li Z C, Chang D L, Li X S, et al. Experimental investigation of ion energy distributions in a dual frequency capacitively coupled Ar/CF4 plasma. [J]. Phys. Plasmas.,2010,17:033501.
    [65]Jiang X Z, Liu Y X, Yang S, et al. Spatially resolved measurements of ion density and electron temperature in a dual-frequency capacitively coupled plasma by complete floating double probe technique. [J]. J. Vac. Sci. Technol. A,2011,29:011006.
    [66]Babaeva N Y, Lee J K, Shon J W, et al. Oxygen ion energy distribution:Role of ionization, resonant and nonresonant charge-exchange collisions. [J]. J. Vac. Sci. Technol. A,2005,23:699-704.
    [67]Babaeva N Y, Lee J K and Shon J W. Capacitively coupled plasma source operating in Xe/Ar mixtures. [J]. J. Phys. D:Appl. Phys.,2005,38:287-299.
    [68]Kim H C, Lee J K and Shon J W. Discharge asymmetry induced by the pulsed radio-frequency current. [J]. Appl. Phys. Lett.,2004,84:864-866.
    [69]Kim H C and Lee J K. Dual radio-frequency discharges:Effective frequency concept and effective frequency transition. [J]. J. Vac. Sci. Technol. A.,2005,23:651-657.
    [70]Kim H C, Iza F, Yang S S, et al. Particle and fluid simulations of low-temperature plasma discharges: benchmarks and kinetic effects. [J]. J. Phys. D:Appl. Phys.,2005,38:R283-R301.
    [71]Kim H C, Manuilenko O and Lee J K. Particle-In-Cell Monte-Carlo Simulation of Capacitive RF Discharges:Comparison with Experimental Data. [J]. Jpn. J. Appl. Phys.,2005,44:1957-1958.
    [72]Kim H C, Park G Y and Lee J K. Nonlocal electron electrodynamics in high-frequency capacitive discharges. [J]. Phys. Plasmas,2006,13:023501.
    [73]Lee J K, Manuilenko O V, Babaeva N Y, et al. Ion energy distribution control in single and dual frequency capacitive plasma sources. [J]. Plasma Sources Sci. Technol.,2005,14:89-99.
    [74]Lee S H and Lee J K. Particle-in-cell Monte Carlo and fluid simulations of argon-oxygen plasma: Comparisons with experiments and validations. [J]. Phys. Plasmas,2006,13:057102.
    [75]Kawamura E, Lieberman M A and Lichtenberg A J. Stochastic heating in single and dual frequency capacitive discharges. [J]. Phys. Plasmas,2006,13:053506.
    [76]Matyash K, Schneider R, Taccogna F, et al. Particle in Cell Simulation of Low Temperature Laboratory Plasmas. [J]. Contrib. Plasma Phys.,2007,47:595-634.
    [77]Tskhakaya D, Matyash K, Schneider R, et al. The Particle-In-Cell Method. [J]. Contrib. Plasma Phys., 2007,47:563-594.
    [78]Wakayama G and Nanbu K. Study on the dual frequency capacitively coupled plasmas by the particle-in-cell/Monte Carlo method. [J]. IEEE Trans. Plasma Sci.,2003,31:638-644.
    [79]Wang H Y, Jiang W and Wang Y N. Implicit and electrostatic particle-in-cell/Monte Carlo model in two-dimensional and axisymmetric geometry:I. Analysis of numerical techniques. [J]. Plasma Sources Sci. Technol.,2010,19:045023.
    [80]Karkari S K and Ellingboe A R. Effect of radio-frequency power levels on electron density in a confined two-frequency capacitively-coupled plasma processing tool. [J]. Appl. Phys. Lett.,2006,88: 101501.
    [81]Karkari S K, Ellingboe A R and Gaman C. Direct measurement of spatial electron density oscillations in a dual frequency capacitive plasma. [J]. Appl. Phys. Lett.,2008,93:071501.
    [82]Booth J P, Curley G, Maric D, et al. Dual-frequency capacitive radiofrequency discharges:effect of low-frequency power on electron density and ion flux. [J]. Plasma Sources Sci. Technol.,2010,19: 015005.
    [83]Semmler E, Awakowicz P and Keudell A V. Heating of a dual frequency capacitively coupled plasma via the plasma series resonance. [J]. Plasma Sources Sci. Technol.,2007,16:839-848.
    [84]Ahn S K and Chang H Y. Role of low-frequency power in dual-frequency capacitive discharges. [J]. Appl. Phys. Lett.,2009,95:111502.
    [85]Yuan Q H, Xin Y, Yin G Q, et al. Effect of low-frequency power on dual-frequency capacitively coupled plasmas, [J]. J. Phys. D:Appl. Phys.,2008,41:205209.
    [86]Kawamura E, Vahedi V, Lieberman M A, et al. Ion energy distributions in rf sheaths; review, analysis and simulation. [J]. Plasma Sources Sci. Technol.,1999,8:R45-R64.
    [87]Chen W C, Zhu X M, Zhang S, and Pu Y K. Reconstruction of ion energy distribution function in a capacitive rf discharge. [J]. Appl. Phys. Lett.,2009,94:211503.
    [88]Rakhimova T V, Braginsky O V, Ivanov V V, Kovalev A S, et al. Experimental and theoretical study of ion energy distribution function in single and dual frequency RF discharges. [J]. IEEE Trans. Plasma Sci.,2007,35:1229-1240.
    [89]Yuan Q H, Ye C, Xin Y, et al. Control of the discharge chemistry of CHF3 in dual-frequency capacitively coupled plasmas. [J]. Appl. Phys. Lett.,2008,93:071503.
    [90]Kitajima T, Takeo Y and Makable T. Two-dimensional CT images of two-frequency capacitively coupled plasma. [J]. J. Vac. Sci. Technol. A,1999,17:2510-2516.
    [91]Kitajima T, Takeo Y, Petrovic Z L, et al. Functional separation of biasing and sustaining voltages in two-frequency capacitively coupled plasma. [J]. Appl. Phys. Lett.,2000,77:489-491.
    [92]Schulze J, Donko Z, Luggenholscher D,et al. Different modes of electron heating in dual-frequency capacitively coupled radio frequency discharges. [J]. Plasma Sources Sci. Technol.2009,18:034011.
    [93]Donko Z, Schulze J, Hartmann P, et al. The effect of secondary electrons on the separate control of ion energy and flux in dual-frequency capacitively coupled radio frequency discharges. [J]. Appl. Phys. Lett.,2010,97:081501.
    [94]Schulze J, Donko Z, Heil B G, et al. Electric field reversals in the sheath region of capacitively coupled radio frequency discharges at different pressures. [J]. J. Phys. D:Appl. Phys.,2008,41: 105214.
    [95]Schulze J, Gans T, O'Connell D, et al. Space and phase resolved plasma parameters in an industrial dual-frequency capacitively coupled radio-frequency discharge. [J]. J. Phys. D:Appl. Phys.,2007,40: 7008-7018.
    [96]Zhao G L, Xu Y, Shang J P, et al. Experimental study of spatial non-uniformities in a dual frequency capacitively coupled plasma, [J]. Mod. Phys. Lett. B,2009,23:3409-3417.
    [97]Chen Z Y, Donnelly V M and Economou D J. Measurement of electron temperatures and electron energy distribution functions in dual frequency capacitively coupled CF4/O2 plasmas using trace rare gases optical emission spectroscopy. [J]. J. Vac. Sci. Technol. A,2009,27:1159-1165.
    [98]Xu Y J, Ye C, Huang X J, et al. CHF3 Dual-Frequency Capacitively Coupled Plasma by Optical Emission Spectroscopy. [J]. Chinese.Phys.Lett.,2008,25(8) 2942-2945.
    [99]Huang X J, Xin Y, Yang L, et al. Spectroscopic study on rotational and vibrational temperature of N2 and N2+ in dual-frequency capacitively coupled plasma. [J]. Phys. Plasmas,2008,15:113504.
    [100]Mott-Smith H M and Langmuir. The theory of collectors in gaseous discharge. [J]. Phys. Rev.,1926, 28:727-763.
    [101]Druyvesteyn M J and Penning F M. The mechanism of electrical discharges in gases of low pressure. [J]. Rev. Mod. Phys.,1940,12:87-174.
    [102]Johnson E Q and Malter L. A floating double probe method for measurements in gas discharges. [J]. Phys. Rev.,1950,80:58-68.
    [103]Magnus F, Gudmundsson J T. Digital smoothing of the Langmuir probe Ⅰ-Ⅴ characteristic. [J]. Rev. Sci. Instrum.,2008,79(7):073503.
    [104]Ling Y M, Probe diagnosis of electron temperature and electron energy distribution in low-pressure dielectric barrier discharge. [J]. Phys. Plasmas,2005,12:113504.
    [105]Stenzel R L. Typical Double Probe Trace and its Evaluation. Plasma Physics Laboratory. University of California.1997. http://www.physics.ucla.edu/plasma-exp/180E-W97/DprobeAnalysis.html
    [106]徐贞林,汪瞧.质谱仪器.[M].北京:机械工业出版,1995.
    [107]方向,覃莉莉,白岗.四极杆质量分析器的研究现状及进展.[J].质谱学报,2005,26(4):234-242.
    [108]叶超,宁兆元,江美福,等.低气压低温等离子体诊断原理与技术.[M].北京:科学出版社,2010.
    [109]陆文琪,王友年,邓新绿,等.射频等离子体探针装置:中国,200810013244.8[P].2008.09.12.
    [1]0]陆文琪,邓新绿,刘佳宏,等.一种基于虚拟仪器的朗缪尔探针等离子体诊断方法:中国,200610134481.0[P].2006.12.01.
    [111]Bera K, Rauf S, Ramaswamy K,et al. Effects of interelectrode gap on high frequency and very high frequency capacitively coupled plasmas. [J]. J. Vac. Sci. Technol. A,2009,27:706-711.
    [112]Haas F A. A simple model of an asymmetric capacitive plasma with dual frequency. [J]. J. Phys. D: Appl. Phys.,2004,37:3117-3120.
    [113]Yang Y and Kushner M J. Graded conductivity electrodes as a means to improve plasma uniformity in dual frequency capacitively coupled plasma sources. [J]. J. Phys. D:Appl. Phys.,2010,43: 152001.
    [114]Volynets V N, Ushakov A G, Sung D, et al. Experimental study of spatial nonuniformities in 100 MHz capacitively coupled plasma using optical probe. [J]. J. Vac. Sci. Technol. A,2008,26(3): 406-415.
    [115]Lieberman M A, Booth J P, Chabert P, et al. Standing wave and skin effects in large-area, high-frequency capacitive discharges. [J]. Plasma Sources Sci. Technol.,2002,11(3):283-293.
    [116]Chabert P, Raimbault J L, Rax J M, et al. Self-consistent nonlinear transmission line model of standing wave effects in a capacitive discharge. [J]. Phys. Plasmas,2004,11(5):1775-1785.
    [117]Chabert P, Raimbault J L, Rax J M, et al. Suppression of the standing wave effect in high frequency capacitive discharges using a shaped electrode and a dielectric lens:Self-consistent approach. [J]. Phys. Plasmas,2004,11(8):4081-4087.
    [118]Chabert P. Electromagnetic effects in high-frequency capacitive discharges used for plasma processing. [J]. J. Phys. D:Appl. Phys.,2007,40(3):R63-R73.
    [119]Chabert P, Raimbault J L, Levif P, et al. Inductive heating and E to H transitions in high frequency capacitive discharges. [J]. Plasma Sources Sci. Technol.,2006,15(2):S130-S136.
    [120]袁强华.双频容性耦合等离子体特性的实验研究.[D].苏州:苏州大学物理科学与技术学院,2009.
    [121]Overzet L J and Hopkins M B. Spatial variations in the charge density of argon discharges in the Gaseous Electronics Conference reference reactor. [J]. Appl. Phys. Lett.,1993,63(18):2484-2486.
    [122]Kitajima T, Izawa M, Nakano N, et al. The time-resolved two-dimensional profile of a radiofrequency capacitively coupled plasma. [J]. J. Phys. D:Appl. Phys.,1997,30:1783-1789.
    [123]Boeuf and J P, Pitchford L C. Two-dimensional model of a capacitively coupled rf discharge and comparisons with experiments in the Gaseous Electronics Conference reference reactor. [J]. Phys. Rev. E,1995,51(2):1376-1390.
    [124]Kim H C, Lee J K. Dual-frequency capacitive discharges:Effect of low-frequency current on electron distribution function. [J]. Phys. Plasmas,2005,12(5):053501.
    [125]McMillin B K and Zachariah M R. Two-dimensional argon metastable density measurements in a radio frequency plasma reactor by planar laser-induced fluorescence imaging. [J]. J. Appl. Phys.,1995, 77(11):5538-5544.
    [126]Wang S, Xu X, Song Y H, et al. Frequency Matching Effects on Characteristics of Bulk Plasmas and Sheaths for Dual-frequency Capacitively Coupled Argon Discharges:One-Dimensional Fluid Simulation. [J]. Plasma Sci. Technol.,2008,10(1):57-60.
    [127]Bi Z H, Xu X, Liu Y X, et al. Comparison of 2D Hybrid Simulational and Experimental Results for Dual-Frequency Capacitively Coupled Argon Plasmas. [J]. Plasma Sci. Technol.,2011,13(2): 181-187.
    [128]Godyak V A, Piejak R B and Alexandrovich B M. Measurements of electron energy distribution in low-pressure RF discharges. [J]. Plasma Source Sci. Technol.,1992,1:36-58.
    [129]Vahedi V, Birdsall C K, Lieberman M A, et al. Verification of frequency scaling laws for capacitive radiofrequency discharges using 2-dimensional simulations. [J]. Physics of Fluids B:Plasma Physics, 1993,5(7):2719-2729.
    [130]Hebner G A, Barnat E V, Miller P A, et al. Frequency dependent plasma characteristics in a capacitively coupled 300mm wafer plasma processing chamber. [J]. Plasma Sources Sci. Technol., 2006,15(4):879-888.
    [131]Bohm C and Perrin J. Retarding-field analyzer for measurements of ion energy distributions and secondary electron emission coefficients in low-pressure radio frequency discharges. [J]. Rev. Sci. Instrum.,1993,64(1):31-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700