ECR等离子体/离子束平台建设与硅基纳米材料的调控生长
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高密度等离子体在包括离子注入、等离子体刻蚀和沉积在内的等离子体工艺中有着重要的应用。微波电子回旋共振等离子体(ECR)是典型的高密度等离子体之一,迄今己发展多种形式的ECR等离子体源及基于ECR放电的离子源,它们具有结构简单、工作稳定、寿命长等优点。硅基一维纳米材料是纳米电子、光电子基础元件之一。一维硅基纳米结构的可控生长,包括结构和物理特性的控制,一直是纳米结构生长研究的重要方向。
     本论文开展高密度ECR等离子体实验平台的建设及在硅基纳米材料生长上的应用研究。论文建设了高密度ECR等离子体源/离子源实验平台,研究了等离子体/离子束的束流参数;开展了ECR/射频(RF)等离子体硅基纳米材料的制备及调控生长研究;初步进行了高密度ECR等离子体金属Co薄膜的沉积,为今后多元的复合磁性材料的物理性能研究提供了基础。
     建设了高密度ECR等离子体源/离子源实验平台,通过双探针诊断了不同放电参数(磁场位形,气压,功率等)下的Ar和H2等离子体参数。在典型条件下,Ar等离子体的电子密度基本保持在1012cm-3数量级水平,其中在气压为4Pa,微波功率为1800W时电子密度达到4.5×1012cm-3。而H2等离子体的电子密度要至少低于Ar等离子体一个数量级。通过改变等离子体束孔大小研究了等离子体放电模式的转变和等离子体参数的变化。对于Ar和H:两种等离子体,电子密度随束孔的减小都会下降,但是H:等离子体的模式跳变点发生变化,且仅出现一次模式跳变。在ECR高密度等离子体源的基础上设计加工了多孔和单孔离子源,对离子源的离子通量作了初步的估算。使用多孔引出电极时离子通量处于1020m-2S-1的数量级水平;使用单孔电极时离子通量要高出一个数量级,可以达到1021m-2S-1。
     以HMDSO和O2为反应气体,在射频偏压ECR等离子体装置上进行了氧化硅薄膜沉积研究。RF偏压对氧化硅薄膜沉积速率和薄膜中的化学键结构产生有意义的影响。小的直流自偏压会略微提高沉积速率;但随着直流自偏压的增强,离子轰击效应及刻蚀作用加强,薄膜的沉积速率下降。在13.56MHz和400kHz两个射频频率下所沉积的薄膜中O和Si的比例基本相同,均超过2:1;但400kHz射频偏压下薄膜中的碳成分比例比13.56MHz条件下要高得多,这些归结为高频的射频偏压应用不仅增强离子轰击效应,而且与体等离子体相互作用,使高活性的氧原子增多;而低频偏压的作用主要是增强离子轰击效应。
     以SiH4-He混合气为源气体,对比了ECR和RF等离子体合成硅基纳米线的差异。在低气压的ECR等离子体中,纳米线较短,呈针状,同时纳米线为多孔结构。在较高气压的电容耦合等离子体(CCP)中,纳米线长且均匀,生长密度也较高。两种等离子体中合成的纳米线均由大量微小的纳米晶体颗粒以及非晶成分构成。
     为了实现纳米线的可控生长,我们将CCP等离子体的功率电极用铜管替代,形成射流等离子体,引入气流的影响。在六甲基乙硅氧烷(HMDSO)/H2/Ar等离子体中,实现了有铜掺杂的SiOxCy纳米结构的有序生长。在低的HMDSO的浓度下得到纳米线的树状生长。垂直于衬底的气流促使了纳米线初始的直立生长,气相环境中铜的引入造成纳米线的二次催化生长出现球状结构。而高的HMDSO的浓度下,过多的有机成分阻碍纳米线结构的形成,但在极少数区域发现对纳米线可控生长有参考意义的纳米结构。当基底引入射频偏压后,更多的铜被加速向基底输运,抑制金催化的纳米线生长,而出现类水母的纳米结构。铜对纳米结构的二次催化为硅基纳米材料掺杂元素的引入提供了不同的思想。
     在高密度ECR等离子体实验平台上进行Co膜沉积的可行性探讨,为后续对Co膜进行掺杂,研究复合体系的磁特性奠定基础。射频偏压下400K的Co膜在磁特性检测中显示良好的磁性,接近于单晶薄膜。而直流偏压下的Co膜的晶粒取向比射频偏压更多,各向异性更明显。
High density plasmas have been significantly applied in plasma processes including ion implantation, plasma etching and deposition. Microwave electron cyclotron resonance (ECR) plasma is one of the typical high density plasmas. Until now, many ECR plasma sources and ion sources, which possess such advantages as simple construction, working stably and long life, have been developed. One-dimension (1D) silicon-based nanomaterial is one of the fundamental components of nanoelectronic and photoelectronic devices. Considerable attention is attracted on controllable growth of1D nanostructures, including structure and properties. The highly ordered NWs and controlled doping are especially expected.
     In this thesis, studies on construction of high density ECR plasma device and application in growth of silicon-based nanomaterials are accomplished. The high density ECR plasma source/ion source device is developed and the parameters of plasma beam and ion beam are investigated. Regulating research on fabrication of silicon-based nanomaterails using ECR/RF plasmas is carried out. At last, preliminary study on the deposition of Co film in high density ECR plasma is discussed, which provides significant support for the further work of compound magnetic materials.
     As the high density ECR plasma source/ion source device is built, the Ar and H2plasma parameters are diagnosed by a dual-probe system. In normal situations, the electron density of Ar plasma is kept at the magnitude of1012cm-3, in which it goes to4.5×1012cm-3with a pressure of4Pa and microwave power of1800W. Meanwhile, the density of H2plasma is inferior to Ar with a magnitude. The discharge mode and variation of plasma parameters are also studied by changing the beam hole downstream the resonance region. It is found that the density of both Ar and H2plasmas reduce with the decreasing beam hole, but the turning point of discharge mode of H2plasma changes and becomes only one turning point. On the base of the high density ECR plasma source, we design multi-holes and single-hole ion sources and preliminary measure the ion flux. The flux of multi-holes ion source is at the magnitude of1020m-2s-1, while the flux of single-hole source goes to1021m-2s-1.
     Silicon oxide films were deposited in RF-biased ECR plasma using a mixture of HMDSO and oxygen as source gases. It is found that both the deposition rate and chemical bonds of films are significantly affected by the RF bias. The deposition rate is slightly increased when a low dc self-bias is applied, and reduced with the self-bias increasing due to strengthened ion bombardment. The ratios of O and Si in the films deposited under the bias frequency of400kHz are above2:1, nearly the same as that under13.56MHz. But the content of carbon under400kHz bias is much higher than that under13.56MHz. The cause of those is that the application of the high frequency bias of13.56MHz not only strengthens ion bombardment on the material surface, but also induces the variations of the bulk plasmas including the increase of O atom density, while the main effect of the bias of400kHz is only to strengthen ion bombardment.
     The difference between the applications of ECR and RF plasmas in synthesis of silicon nanowires (NWs) is investigated, using5%SiH4-He as vapor source. The NWs grown in low pressure ECR plasma are short, needle-shaped and porous, while the NWs fabricated in CCP plasma are long, uniform and heavy. Both of two kinds of NW are composed by amounts of crystalline nanoparticles and amorphous component.
     Formation of Cu-doped SiOxCy nanostructures has been studied by using (HMDSO)/H2/Ar RF plasma, where a copper tube was utilized as power electrode to generate plasma jet. Tree-like nanostructures were obtained at low concentration of HMDSO. The vertical gas flow induced the initial vertical growth of NWs, and spherical structures on sidewalls of the bended NWs were observed, which were attributed to secondary catalyzing due to copper from the ambience. However, the fragments with big mass were too many to synthesize nanostructure at high concentration of HMDSO. More Cu particles were transported to the substrate while an RF bias was applied to the substrate, which restrained the NWs growth catalyzed by Au and resulted in the formation of acaleph-like nanostructures,
     Feasibility of the deposition of cobalt film using high density ECR plasma is discussed, which provides support for the further research on the doping of Co film and study of the magnetic properties of compound materials. The Co film deposited in RF-biased plasma with temperature of400K exhibits excellent magnetic properties which can be compared with single-crystalline film, while the film fabricated in DC-biased plasma shows various crystal orientation and evident anisotropy.
引文
Alton G D and Bilheux H,2004. Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation [J]. Rev. Sci. Instrum.,75(5):1431-1435.
    Bae J, Kulkarni N N and et al.2008. VLS growth of Si nanocones using Ga and Al catalysts [J]. J. Cryst. Growth,310:4407-4411.
    Bang S B, Chung T H and Kim Y.2003. Plasma enhanced chemical vapor deposition of silicon oxide films using TMOS/O2 gas and plasma diagnostics [J]. Thin Solid Films,444:125-131
    Basner R, Foest R and et al.1998. Absolute total and partial electron impact ionization cross sections of hexamethyldisiloxane [J]. Int. J. Mass Spectrom.,176:245-252.
    Bettge M, MacLaren S and et al.2009.Low-temperature vapour-liquid-solid (VLS) growth of vertically aligned silicon oxide nanowires using concurrent ion bombardment [J]. Nanotechnology,20115607.
    Boehmer H, Edrich D and et al.2004. Operation of a 0.2-1.1 keV ion source within a magnetized laboratory plasma [J]. Rev. Sci. Instrum.,75(4):1013-1019.
    Bulat E S, Ditmer G and et al.1992. Characterization of biased electron cyclotron resonance deposited oxides [J]. J.Vac. Sci. Technol. A,10(4):1402-1406
    Cai X M, Djurisic A B and Xie M H.2005. Growth of SiOx nanowire bunches cocatalyzed with Ga and Ni[J]. J.Appl. Phys.,98:074313.
    Chau T T, Mejia S R and Kao K C.1991. Thickness dependence of the dielectric behavior of SiO2 films fabricated by microwave electron cyclotron resonance plasmas [J]. J. Vac. Sci. Technol. B,9(1):50-57.
    陈牧笛.2010.等离子体化学气相沉积碳化硅纳米线的实验研究[D]:[硕士].合肥:中国科学技术大学,6-9.
    陈振国.2002.微波技术基础与应用[M].北京:北京邮电大学出版社,145-152.
    Cheng S W, Cheung H F.2003. Role of electric field on formation of silicon nanowires [J]. J. Appl. Phys.,94:1190-1194
    Chung H S, Jung Y W and et al.2008. A Generic Approach for Embedded Catalyst-Supported Vertically Aligned Nanowire Growth [J]. Nano Lett.,8:1328-1334.
    Colli A, Fasoli A and et al.2007. Thermal and chemical vapor deposition of Si nanowires:Shape control, dispersion, and electrical properties [J]. J. Appl. Phys.,102:034302.
    Denysenko I and Ostrikov K.2007. Ion-assisted precursor dissociation and surface diffusion: Enabling rapid, low-temperature growth of carbon nanofibers [J]. Appl. Phys. Lett., 90:251501
    Dhalluin F, Desre P J and et al.2007. Critical condition for growth of silicon nanowires [J]. J.Appl. Phys.,102:094906.
    Ding X Z, Wu X Y and et al.2000. Ferromagnetic Co/Ni/Fe and Co/Fe multilayer films prepared by a three-filtered-MEVVA-ion-source-deposition system [J]. Nucl. Instrum. Meth. B, 169:31-36.
    Dornel E, Ernst T and et al.2007. Hydrogen annealing of arrays of planar and vertically stacked Si nanowires [J]. Appl. Phys. Lett.,91:233502.
    Elechiguerra J L, Manriquez J A and Yacaman M J.2004. Growth of amorphous Si02nanowires on Si using a Pd/Au thin film as a catalyst [J]. Appl. Phys. A,79:461-467.
    Etemadi R, Godet C and Perrin J.1997. Phenomenology of a dual-mode microwave/RF discharge used for the deposition of silicon oxide thin layers [J]. Plasma Sources Sci. Technol., 6:323-333.
    Feng J J, Yan P X and et al.2008. Sn-filled Si nanotubes fabricated by the facile DC arc discharge method and their photoluminescence property [J]. J. Cryst. Growth,310:4412-4416.
    Fernandez-Lima F, Rodriguez J A and et al.2006. Ion beam analysis of PECVD silicon oxide thin films [J]. Nucl. Instr. and Meth. in Phys. Res. B,243:200-204.
    Fortuna S A and Li X L.2010. Metal-catalyzed semiconductor nanowires:a review on the control of growth directions [J]. Semicond. Sci. Technol.,25:024005
    Gammino S, Celona Land et al.2010. Review on high current 2.45 GHz electron cyclotron resonance sources [J]. Rev. Sci. Instrum.,81:02B313
    葛波维奇.1976. 等离子体离子源物理与技术[M],7-11
    Gibson G W Jr, Sawin H H andet al.1994. Comparison of advanced plasma sources for etching applications. III. Ion energy distribution functions for a helicon and a multipole electron cyclotron resonance source [J] J. Vac. Sci. Technol. B,12:2333-2341.
    Griffiths H, Xu C and et al.2007. Plasma assisted growth of nanotubes and nanowires [J]. Surf. Coat. Tech.,201:9215-9220.
    Han S M., Aydil E S.1996. Plasma and surface diagnostics during plasma-enhanced chemical vapor deposition of SiO2 from SiH4/O2/Ar discharges [J]. Thin Solid Films; 290-291: 427-434
    Hofmann S, Ducati C and et al.2003. Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition [J]. J. Appl. Phys.,94:6005-6012.
    Hong J, Granier A and Leteinturier C,2000. Measurements of rf bias effect in a dual electron cyclotron resonance-rf methane plasma using the Langmuir probe method [J]. J. Vac. Sci. Technol.A,18:497-502.
    Huang S Y, Ostrikov K and Xu S.2008. Plasma-enabled growth of ultralong straight, helical, and branched silica photonic nanowires [J]. J. Appl. Phys.,104:033301.
    Hwang N M.1999. Deposition and simultaneous etching of Si in the chemical vapor deposition (CVD) process:approach by the charged cluster model [J]. J. Cryst. Growth,205:59-63.
    Jagannathan H, Nishi Y and et al.2006. Effect of oxide overlayer formation on the growth of gold catalyzed epitaxial silicon nanowires [J]. Appl. Phys. Lett.,88:103113.
    Jee S W, Kim J D and et al.2010. Ni-catalyzed growth of silicon wire arrays for a Schottky diode [J]. Appl. Phys. Lett.,97:042103.
    Jeon M, Kamisako K. Catalyst formation at various temperatures by hydrogen radical treatment and synthesis of silicon nanowires [J]. Appl. Surf. Sci.,254:7703-7707.
    营井秀郎.2002.等离子体电子工程学[M].张海波,张丹译.北京:科学出版社,119-130.
    Jiang N, Agius B and et al.1994. Radio-frequency bias effects on SiO2 films deposited by distributed electron cyclotron resonance plasma enhanced chemical vapor deposition [J]. J. Appl. Phys.,76:1847-1855.
    Jimenez-Villacorta F, Espinosa A and et al.2011. Magnetic properties and short-range structure analysis of granular cobalt silicon nitride multilayers [J]. J. Appl. Phys.,110:113909.
    Johnson D C, Mosby J M and et al.2010. Synthesis of copper silicide nanocrystallites embedded in silicon nanowires for enhanced transport properties [J]. J. Mater. Chem.,20:1993-1998.
    Jung Y G, Jee S W and Lee J H.2007. Effect of oxide thickness on the low temperature (≤ 400 ℃) growth of cone-shaped silicon nanowires [J]. J. Appl. Phys.,102:046102.
    Kim B S, Koo T W and et al.2009. Catalyst-free Growth of Single-Crystal Silicon and Germanium Nanowires [J]. Nano Lett.,9(2):864-869.
    Kitagawa M, Hirao T and et al.1989. Structural properties of silicon oxide films prepared by the RF substrate biased ECR plasma CVD method [J]. Jpn. J. Appl. Phys.,28(6):1048-1050.
    Kolasinski K W.2006. Catalytic growth of nanowires:Vapor—liquid—solid, vapor—solid—solid, solution-liquid-solid and solid-liquid-solid growth [J]. Curr. Opin. Solid State Mater. Sci., 10:182-191
    Konno T J, Shoji K and et al.1999. Structure and magnetic properties of co-sputtered Co-C thin films [J]. J. Magn. Magn. Mater.,195:9-18.
    Kono M and Tanaka M Y.2000. Spiral Structures in Magnetized Rotating Plasmas [J]. Phys. Rev. Lett,,84(19):4369.
    Levchenko I, Ostrikov K and Xu S.2009. Thermodynamical and plasma-driven kinetic growth of high-aspect-ratio nanostructures:effect of hydrogen termination [J]. J. Phys. D:Appl. Phys., 42:125207.
    Lieberman M A, Lichtenberg A J.2007.等离子体放电原理与材料处理[M].蒲以康等译.北京:科学出版社,291-348.
    刘公强,乐志强,沈德芳.2001.磁光学[M].上海:上海科学技术出版社.
    Lin M, Loh K P and et al.2004. Nanocantilevers made of bent silicon carbide nanowire-in-silicon oxide nanocones [J]. Appl. Phys. Lett.,85:5388-5390.
    刘金声.1995.离子束技术应用.北京:国防工业出版社.
    Lugstein A, Steinmair M and et al.2007. Ga/Au alloy catalyst for single crystal silicon-nanowire epitaxy [J]. Appl. Phys. Lett.,90:023109.
    Melechko A V, Merkulov V I and et al.2005. Vertically aligned carbon nanofibers and related structures:Controlled synthesis and directed assembly [J]. J. Appl. Phys.,97:041301.
    Meyyappan M, Delzeit and et al.2003. Carbon nanotube growth by PECVD:a review [J], Plasma Sources Sci. Technol.12:205-216.
    Moore D, Morber J R and et al.2008. Growth of Ultralong ZnS/SiO2Core-Shell Nanowires by Volume and Surface Diffusion VLS Process [J]. J. Phys. Chem. C.112:2895-2903.
    Nagaoka, Okamoto K A and et al.2002. Spontaneous Formation of aPlasma Hole in a Rotating Magnetized Plasma:A Giant Burgers Vortex in a Compressible Fluid [J]. Phys. Rev. Lett., 89(7):075001.
    Neumann G and Scheer H C.1991 Characteristics of an ECR ion beam source for low-pressure etching [J]. Rev. Sci. Instrum.,63 (4):2403-2405.
    宁兆元,任兆杏.1992.电子回旋共振(ECR)等离子体的研究和应用[J].物理学进展,12:38-62.
    Ohtsu Y, Yoshinaga K and Fujita H.2003. Time-Averaged Energy Distribution Function of Ions Impacted on an RF-biased Substrate in Electron Cyclotron Resonance Microwave Plasma [J]. Jpn. J. Appl. Phys.,42:7552-7556.
    Ostrikov K, Long J D and et al.2006. Synthesis of functional nanoassemblies in reactive plasmas [J]. Vacuum,80:1126-1131.
    Ostrikov K.2005. Colloquium:Reactive plasmas as a versatile nanofabrication tool [J]. Rev. Mod. Phys.,77:489-511.
    Pan C F and Zhu J.2009. The syntheses, properties and applications of Si, ZnO, metal,and heterojunction nanowires [J]. J. Mater. Chem.19:869-884.
    Park S G and Rhee S W.2006. Plasma enhanced chemical vapor deposition of silicon oxide films with divinyldimethylsilane and tetravinylsilane [J]. J. Vac. Sci. Technol. A,24(2):291-295
    Patel N, Miotello A and Bello V.2011. Pulsed Laser Deposition of Co-nanoparticles embedded on B-thin film:A very efficient catalyst produced in a single-step process [J]. Appl. Catal. B: Environ.,103:31-38.
    Popov O A, Westner A O and Drybanski A Z.1992. Characteristics of an 8-cm-diam electron cyclotron resonance source for plasma processing [J]. Rev. Sci. Instrum.,63(10):4432-4438.
    Qi P F, Wong W S and et al.2008. Low-temperature synthesis of Si nanowires using multizone chemical vapor deposition methods [J]. Appl. Phys. Lett.,93:163101.
    Qin Y, Zhang X N and et al.2008. Unusual catalyst-free epitaxial growth of silicon nanowires by thermal evaporation [J]. Appl. Phys. Lett.,93:063104.
    Qiu T, Wu X L and et al.2006. Si nanowires sheathed with thin diamondlike carbon films [J]. J. Vac. Sci. Technol. B,24(4):1702-1704.
    Quitoriano N J, Wu W and Kamins T I.2009. Guiding vapor-liquid-solid nanowire growth using SiO2 [J]. Nanotechnology 20:145303.
    Sakai S, Yakushiji K and et al.2006. Tunnel magnetoresistance in Co nanoparticle/Co-C60 compound hybrid system [J]. Appl. Phys. Lett.,89:113118.
    Schaepkens M, Oehrlein G S and Cook J M.2000. Effects of radio frequency bias frequency and radio frequency bias pulsing on SiO2 feature etching in inductively coupled fluorocarbon plasmas [J]. J. Vac. Sci. Technol. B,18(2):856-863.
    Schmidt V, Wittemann J V and et al.2009. Silicon Nanowires: A Review on Aspects of their Growth and their Electrical Properties [J], Adv. Mater.,21:2681-2702,
    Sekhar P K, Sambandam S N and et al.2006. Selective growth of silica nanowires in silicon catalysed by Pt thin film [J]. Nanotechnology,17:4606-4613.
    Shimada M, Watannabe I and Torii Y.1990. Compact electron cyclotron resonance ion source with high density plasma [J]. J. Vac. Sci. Technol. A,9:707-710
    Siegal M P, Tallant D R and et al.2000. Nanostructural characterization of amorphous diamondlike carbon films [J]. Phys. Rev. B,61:10451-10462.
    Song Z Z, Peng S X and et al.2006. Minipermanent magnet high-current microwave ion source [J]. Rev. Sci. Instrum.,77:03A305.
    Sunkara M K, Sharma S and et al.2004. Bulk synthesis of a-SixNyH and a-SixOy straight and coiled nanowires [J]. J. Mater. Chem.,14:590-594.
    Suzuki K, Sugai H and et al.1997. Control of high-density plasma sources for CVD and etching [J]. Vacuum,48:659-664.
    Taguchi M and Hamaguchi S.2006. Molecular dynamics study on Ar ion bombardment effects in amorphous SiO2 deposition processes [J]. J. Appl. Phys.,100:123305.
    Tang Y H, Pei L Z and et al.2009. Preparation of silicon nanowires by hydrothermal deposition on silicon substrates [J]. J. Appl. Phys.,105:044301.
    Torii Y, Shimada M and Watannabe I.1992 Advanced high-current ECR ion sources for implanters [J]. Rev. Sci. Instrum.,63(4):2559-2561.
    Vargheese K D and Rao M G.2000. Electron cyclotron resonance plasma source for ion assisted deposition of thin films [J]. Rev. Sci. Instrum.,71(2):467-472
    Wacaser B A, Dick K A and et al.2009. Preferential Interface Nucleation: An Expansion of the VLS Growth Mechanism for Nanowires [J]. Adv. Mater.,21:153-165.
    Wagner R S and Ellis W C.1964. VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH. Appl. Phys. Lett.,4:89-90
    汪磊.2008.等离子体薄膜表面制造中的偏压效应研究[D][博士].合肥:中国科学技术大学,20-22.
    Wang N, Zhang Y F and et al.1998. SiO2-enhanced synthesis of Si nanowires by laser ablation [J]. Appl. Phys. Lett.,73:3902-3904
    王平,杨银堂等.2002.应用于超大规模集成电路工艺的高密度等离子体源研究进展[J].真空科学与技术,22:274-281.
    Wang S L.2007. Electroless deposition of Ni-Co-B alloy films and influence of heat treatment on the structure and the magnetic performances of the film [J]. Thin Solid Films, 515:8419-8423.
    Wang Y W, Schmidt V and et al.2006. Epitaxial growth of silicon nanowires using an aluminium catalyst [J]. Nat. Nanotechnol.,1:186-189.
    Wavhal D S, Zhang J M and et al.2006. Investigation of Gas Phase Species and Deposition of SiO2 Films from HMDSO/O2 Plasmas [J]. Plasma Process. Polym.,3:276-287.
    项志遴,俞昌旋.1982.高温等离子体诊断技术:上册[M].上海科学技术出版社.
    谢锦林.2008.磁化等离子体低频不稳定性研究及激光诱导荧光诊断[D]:[博士].合肥:中国科学技术大学,1-12.
    Xie M Wang J S and et al.2008. Growth of p-type Si nanotubes by catalytic plasma treatments [J]. Nanotechnology,19:365609.
    Yan C Y, Zhang T and Lee P S.2009. Flow assisted synthesis of highly ordered silica nanowire arrays [J]. Appl. Phys. A,94:763-766.
    严密,彭晓领.2006.磁学基础与磁性材料[M].杭州:浙江大学出版社,10-43.
    Yao Y and Fan S.2006. Si nanowires synthesized with Cu catalyst [J]. Mater. Lett.,61:177-181.
    Yu L W and Cabarrocas P R i.2009. Initial nucleation and growth of in-plane solid-liquid-solid silicon nanowires catalyzed by indium [J]. Phys. Rev. B,80:085313.
    Yu L W, Alet P J and et al.2008. Synthesis, morphology and compositional evolution of silicon nanowires directly grown on SnO2 substrates [J]. Nanotechnology,19:485605.
    Yun J, Jeong Y and Lee G H.2009. Direct synthesis of silicon oxide nanowires on organic polymer substrates [J]. Nanotechnology,20:365606
    Zajickova L, Bursikova V and et al.2007. Deposition of protective coatings in rf organosilicon discharges [J]. Plasma Sources Sci. Technol.,16:S123-S132.
    Zardo I, Yu L and et al.2009. Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires [J]. Nanotechnology,20:155602.
    Zeng B Q, Xiong G Y and et al.2006. Field emission of silicon nanowires [J]. Appl. Phys. Lett., 88:213108.
    Zhai T Y, Li L and et al.2011. One-dimensional inorganic nanostructures:synthesis, field-emission and photodetection [J]. Chem. Soc. Rev.,40:2986-3004.
    Zhang J L, Wang Y M and Shek C H.2011. Design of soft magnetic CoSiB metallic glass with low Co contents [J]. J. Appl. Phys.,110:083919.
    Zhang T, Gan K S Thomas and et al.2006. Characteristics of FeCo nano-particles synthesized using plasma focus [J]. J. Phys. D:Appl. Phys.,39:2212-2219.
    Zhang X T, Liu Z and et al.2007. Fabrication and Optical Properties of Erbium-Doped Silicon-Rich Silicon Oxide Nanofibers [J]. J. Phys. Chem. C,111:4083-4086.
    Zhang Y F, Tang Y H and et al.1999. One-dimensional growth mechanism of crystalline silicon nanowires [J]. J. Cryst. Growth,197:136-140.
    Zhang Y, Liu J Y and et al.2004. Characteristics of a plasma sheath in a radio frequency biased voltage [J]. Phys. Plasmas, 11(8):3840-3844.
    Zhao X Wand Yang F Y.2008. Synthesis of epitaxial silicon nanowires on Si(111) substrates using ultrahigh vacuum magnetron sputtering [J]. J. Vac. Sci. Technol. B 26(2):675-677.
    Zheng J,Song X B and et al.2007. Large-Scale Production of Amorphous Silicon Oxynitride Nanowires by Nickel-Catalyzed Transformation of Silicon Wafers in NH3 Plasma [J]. J. Phys. Chem. C,112:27-34.
    周希朗.2009.微波技术与天线[M].南京:东南大学出版社,70-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700