He~(2+)离子与Ar原子碰撞转移电离通道反应动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用中科院近代物理研究所原子分子动力学组建立的反应显微成像谱仪(COLTRIMS),系统地研究了17.5keV/u到75keV/u He2+-Ar原子碰撞电荷转移机制,以及转移电离过程电子出射机制。我们获得了单、双电子俘获过程中反冲离子纵向和横向动量分布,T1I1过程出射电子的单重、双重微分截面(SDCS、DDCS),电子在散射平面内外的分布以及靶激发相关的反冲离子纵向动量分布。此外,还获得了T2I1过程电子出射的双重微分截面,T1I2过程两电子出射的角分布。
     研究表明在该体系中电子俘获过程是近似共振的,单电子俘获到He+的第一激发态是主要的过程,而对于双电子俘获过程,电子俘获到He原子单激发态是主要的过程。T1I1通道的研究结果表明,电子出射机制有炮弹双俘获然后自电离(DECA)和靶子内壳层电子被俘获然后俄歇,cusp电子出射以及直接转移电离过程(DTI)。其中,DTI过程对电子出射贡献是主要的,没有明显的鞍点(Saddle point)电离的贡献。电子能谱上的低能共振结构来源于靶内壳层3s电子被俘获后,处于多激发态的靶离子俄歇电离。在电子出射的前向能谱上,即出射角度为0°时的双重微分截面,存在明显的cusp电子峰,即电子被俘获到炮弹离子的连续态(Electron capture to the continuum)。对于中能He2+-Ar碰撞T1I1过程来说,电子-电子之间的关联作用可以忽略,因此,T1I1通道cusp电子出射过程中电子俘获和离化是相互独立的而且是顺次发生的,存在先电离后俘获或者先俘获后电离两种情况。结果表明先电离后俘获过程在T1I1转移电离通道中对cusp电子的贡献占主导,被俘获到炮弹离子束缚态的电子主要处于炮弹离子的第一激发态,也有相当的事件表明被俘获到炮弹束缚态的电子处于炮弹离子的基态,同时伴随着靶子的激发过程。
     在T2I1转移电离过程中,末态散射离子是中性,此时cusp电子的产生机制存在争议。目前最为可能的机制是形成He-然后共振自电离。实验中,我们并没有发现存在明显的cusp电子出射,即对以前报道的该体系存在的He共振自电离产生cusp电子的机制提出质疑。在T1I2过程中,整体上两个电子纵向动量分布相似。对于出射能量相对较小的电子,我们发现存在强烈的电子-电子库仑排斥作用,电子出射呈现明显的“背对背”出射,这表明在碰撞末态低能电子之间存在强烈的电子-电子关联。
Using well developed cold target recoil ion momentum spectroscopy (COLTRIMS), state selective electron capture and electron emission mechanisms in the transfer ionization of He2+collision with argon have been investigated. The longitudinal recoil ion momentum distribution, electron distribution in and out of the scattering plane, and differential cross section of electron ejected in T1I1, T2I1and T1I2have been obtained.
     Our results show that quasi-resonant capture mechanism leads to the preference of the first excited state of He+for the single capture process, and the singly excited state of He for the double capture process, respectively. In T1I1process, it is demonstrated that the fruitful mechanisms contributing to the electron emission including direct transfer ionization (DTI), double-electron capture followed by auto-ionization (DECA), single-electron capture with Auger (SECA) of target, and cusp electron emission. The low energy resonant structures show that Ar+in SECA decays mainly through the3s3p53d by emitting Auger electrons, and doubly excited He mainly decays through the2l2l states. In the transfer ionization process studied here, the DTI process dominates the low energy electron emission, and there is no prominant saddle-point electron emission. Further, we have investigated the potential physical mechanism behind cusp electron emission by the presented TCS of cusp electrons (toal cross sections) for collision energies from17.5keV/u to75keV/u. We find a maximum of TCS at the projectile energy of30keV/u, which coincide with the prediction of velocity matching between the projectile ion and the electron initially bound to the target. One of the important issues for T1I1is the role of electron-electron correlation, our experimental and theoretical results indicate that electron-electron correlation is ignorable, the independent and sequential two steps of first single ionization followed by single electron capture dominates the cusp electron emission. However, single capture followed by single ionization also makes a non-negligible contribution, simultanoesuly target are excited.
     In T2I1processes, our results show that there is no cusp peak in the forward spectrum of DDCS. For the T1I2processes, two electrons eject with approximately same longitudinal momentum due to the couloumb attraction. For small energy electrons, the strongly final repulsion leads to a "back to back" scenario, which indicates final electron-electron correaltion.
引文
[1]J.R. Oppenheimer. On the Quantum Theory of the Capture of Electrons, Physical Review,1928,31,349.
    [2]D.R.Bates and A. Dalgarno, Proc.Phys.Soc.Lond.A65,919 (1952).
    [3]R.A.Mapleton, Electron Capture from He (1s2) by protons, Phys.Rev.1961,122,528; Electron capture from atom hydrogen by protons,1962,126,1477; electron capture from He (1s2) by protons.Ⅱ,1963,130,1839.
    [4]R.A.Mapleton, calculations on electron capture from D, He, N, O and Ar by protons, J.Phys.B 1968,1,529.
    [5]R.A.Mapleton,R.W.Doherty,and P.E.Meehan, electron capture from He (1s2) by protons.III, Phys.Rev.A,1974,9,1013; Green, E.J.Shipsey, and J.C.Browne. modified method of perturbed stationary states.IV. electron capture cross sections for the reaction C6++H(1s)—C5+(n,1)+H+,Phys.Rev.A,1982,25,1364-1373;M.Kimura, theoretical investigation of charge transfer in collisions of C6+andN7+ions with H and H2 targets at low to intermediate energy. Phys.Rev.A,1984,33,4440-4443; B.H.Brasden,C.J.Noble, charge transfer in Li3++H collisions,J.Phys.B:At,Mol, Phys,15,451-455(1982)
    [6]W.Fritsch, C.D.Lin, atomic orbital expansion studies of electron transfer in bare nucleus Z (Z=2,4-8) hydrogen atom collisions, Phys.Rev. A,1984,29,3039-3051.
    [7]M.Barat, P.Roncin, multiple electron capture by highly charged ions at keV energies, J.Phys.B:At.Mol.Opt.Phys.1992,25,2205-2243.
    [8]Belkic, R. Gayet, and A. Salin. Electron capture in high energy ion atom collisions. Phys.Rep,1979,56,279-369.
    [9]Hong-Keun Kim, L. Ph. H. Schmidt, and R. D6rner,electron transfer in fast ion helium collisions, Phys.Rev.A.2012,85,022707.
    [10]Myroslav Zapukhlyak, Tom Kirchner.Projectile angular-differential cross sections for electron transfer processes in ion helium collisions:Evidence for the applicability of the independent electron model.Phys.Rev.A,2009,80,062705.
    [11]J.H.Macek, J.B.Stemberg, and D.R.Schultz et al. origin,evolution,and imaging of vortices in atom processes, Phys.Rev.Lett,2009,102,143201.
    [12]M.Schulz, R.Moshammer,and J.Ullrich et al. two particle versus three particle interactions in single ionization of helium by ion impact. J.Phys.B:2004, 37,4055-4067.
    [13]M.Shulz, R.Moshammer, and J.Ullrich et al.Three dimensional imaging of atomic four body processes. Nature,2003,442,48-50.
    [14]M.F.Ciappina and W.R.Cravero. CDW and CDW-EIS calculations for FDCSs in highly charged ion impact ionization of helium, Brazilian Journal of Physics,2006, 36,2B.
    [15]R.Dey and A.C. Roy.Multiply differential cross sections for single ionization of He by C6+ impact, Phys.Lett.A332 60 2004
    [16]M.McGovern,J.R.Mohallem, and H.R.J.Walters. Phys.Rev.A81,042704 (2010)
    [17]D.Madison, M.Schulz, and J.Ullrich etal Comparison of theoretical and absolute experimental fully differential cross sections for ion atom impact ionization. J.Phys.B:At,Mol,Opt.Phys.35 3297-3314 (2002)
    [18]D.H.Madison et al, probing scattering wave functions close to the nucleus, Phys.Rev.Lett 2003,91,253201.
    [19]M.Foster et al, unexpected higher order effects in charged particle impact ionization at high energies,Phys. Rev.Lett,2006,97,093202.
    [20]X.Wang,K Schneider,and M.Schulz et al, projectile'coherence effects in single ionization of helium,J. Phys. B:At. Mol. Opt. Phys.2012,45,211001.
    [21]K.N.Egodapitiya et al, Manipulating atomic fragmentation processes by controlling the projectile coherence. Phys.Rev.Lett,2011,106,153202.
    [22]F. Martin and A. Salin,electron correlation in multiple excitation of atoms by high energy ions, Phys. Rev. Lett.1996.76,1437.
    [23]Ludde H J and Dreizler R M, comment on inclusive cross sections, J. Phys. B:At. Mol. Phys.1985,18,107
    [24]Gayet R and Salin A, simultaneous capture and ionization by fast ion impact on helium,J. Phys. B:At. Mol. Phys.1985,20, L571
    [25]Kirchner T, Horbatsch M, and Dreizler R M, three dependent screening effects in ion atom collisions with many active electrons, Phys. Rev.A,2000,62,042704.
    [26]CrothersDSFandMcCarroll R, ionization of atoms by ion impact, J. Phys. B:At. Mol. Phys.1987,16,3229.
    [27]Dunseath K M and CrothersDSF, transfer and ionization processes during the collisions of fast H+,He2+nuclei with helium, J. Phys. B:At. Mol. Opt. Phys. 1991,24,5003.
    [28]Bernardi G, Focke P, and Fregenal D, electron emission for transfer ionization in 70 keV H+on He, J. Phys. B:At. Mol. Opt. Phys.1999,32,L451.
    [29]Shah M B and Gilbody H B,single and double ionization of helium by H+,He2+and Li3+,J. Phys. B:At. Mol. Phys.1985,18,899.
    [30]Dunseath K M and CrothersDSF,transfer and ionization processes during the collision of fast H+,He2+nuclei with helium,J. Phys. B:At. Mol. Opt. Phys. 1991,245003
    [31]J.H.McGuire, Electron Correlation Dynamics in Atomic Collisions (Cambridge University Press,1997)
    [32]T.Y.Shi, C.D.Lin,double photoionization and transfer ionization of He:shkeoff theory revisited,Phys.Rev.Lett,2002,89,163202; asymptotic double photoexcitaion cross sections of the helium atom,Phys.Rev.A,1970 2,1726.
    [33]Erik Horsdal et al, critical angle in electron capture,Phys.Rev.Lett,1986,57,12.
    [34]J. Palinkas et al, observation of electron-electron scattering in electron capture by fast protons from He, Phys.Rev.Lett,1989.63,22.
    [35]J.Briggs and K.Taulbjerg, J.Phys.B 12,2565(1979)
    [36]V.Mergel et al, strong correlation in the He ground state momentum wave function observed in fully differential momentum distribution for the p+He transfer ionization process, Phys.Rev.Lett,2001,86,11.
    [37]J. Berakdar (private communication)
    [38]Godunov A L et al, charge transfer by a double-scattering mechanism involving target electrons, J.Phys.b,2004,37,1201-208.
    [39]A.B.Voitkiv et al, mechanism for electron transfer in fast ion atomic collisions, Phys.Rev.Lett,2008,101,223201.
    [40]M.Schulz et al, strongly enhanced backward emission of electrons in transfer and ionization, Phys.Rev.Lett,2012,108,043202.
    [41]L.Ph.H.Schmidt et al, imaging of continuum states of the He22+quasimolecule, Phys.Rev.A,2007,76,012703.
    [42]Fano U, correlations of two excited electrons, Rep. Prog. Phys.1983,4697
    [43]Sakho I, Ndao A S, Biaye M and Wague A 2008 Eur. Phys. J. D 4737; I Sakho et al., Phys.Scr.82,035301(2010)
    [44]L.Nagy, D. Bodea. Nucl. Instrum. Methods B124.401-404. (1997).
    [45]N.Stolterfoht etal., evidence for correlated double electron capture in low energy collisions of O6+with He,Phys.Rev.Lett,1986,57,74.
    [46]R. Mann and H. Schulte, Z. Phys. D 4,343 (1987); R. Mann, high resolution K and L auger electron spectra induced by single and double electron capture from H2,He and Xe atom to C4+and C5+ions at 10-100keV energies, Phys. Rev. A,1987,35, 4988.
    [47]L.Vegh, B. Sulik. Time ordering contributions to the product amplitude of the independent electron model in double excitation, Phys.Rev.A,1995.51,3017.
    [48]A. Barany et al., absolute cross sections for multi-electron processes in low energy Arq+-Ar collisions:omparison with theory,Nucl. Instrum. Methods B 9,397 (1985).
    [49]A. Niehaus, a classical model for multi-electron capture in slow collisions of highly charged ion with atoms, J. Phys. B 19,2925 (1986).
    [50]X Flechard, C Harel, and D Hennecart,single and double electron capture in low energy Ne10+-He collisions, J.Phys. B:At.Mol. Phys 34,2759-2779(2001).
    [51]Harel, C, Jouin, H,double capture in to autoionnizing states in Iq+-He collisions at low impact energy, J.Phys. B:At.Mol. Phys 25,221(1992)
    [52]M. Barat, M. N. Gaboriaud, L. Guillemot, P. Roncin, and H.Laurent, J. Phys. B 20, 5571 (1987); H. Laurent, M. Barat, M.N. Gaboriaud, L. Guillemot, and P. Roncin, ibid.20,6581(1987); P. Roncin, M. Barat, and H. Laurent, Europhys. Lett.2,371 (1986).
    [53]G. Bertschinger et al, X ray spectroscopy at the TEXTOR-94 tokamk, Phys. Scr. T83,132(1999)
    [54]J. B. Greenwood, I. D. Williams, S. J. Smith, and A. Chutjian, Measurement of charge exchange and X ray emission corss section for solar wind comet interactions, Astrophys. J. Lett.533, L175 (2000)
    [55]V. A. Krasnopolsky and M. J. Mumma, detection of atomic deuterium in the upper atomosphere of Mars, Science,5369,1576 (1998).
    [56]C. M. Lisse, D. J. Christian, and S. J. Wolk, Charge exchange induced X ray emission from comet, Science 292,1343 (2001).
    [57]S.Bliman, R.Bruch, and J.Nordgren. case stuy of the Ar9+-He collision system at low velocity,Phys.Rev.A,2002,66,052707.
    [58]T. Hayakawa, H.Tanuma, and N.Kobayashi. Phys.Scripta.T92,322-324 (2001)
    [59]A. Kivimaki et al, subnatural linewidths in Kr M5N2,3N2,3 and Xe N5O2,3O2,3 resonat auger spectra,Phys. Rev. Lett.1993,71,4307.
    [60]T. Aberg and B. Crasemann, in Resonant Anomalous X-Ray Scattering, edited by G. Materlik, C. J. Sparks, andK. Fisher (Elsevier, New York,1994).
    [61]S. Osborne et al, J. Chem. Phys.102,7317 (1995).
    [62]M. N. Piancastelli et al, variation of cross section enhancement in decay spectra of CO under resonant Raman conditions, Phys. Rev. Lett.1996,77,4302.
    [63]N.Stolterfoht, C C Havener, and F.W.Mayer et al, evidence for correlated double electron capture in low energy collisions of O6+with He,Phys.Rev.Lett.1986,57,74.
    [64]R. Mann and H. Schulte.Z.Phys.D4,343(1987).
    [65]S.Martin,J.Bernard, and J.Desesquelles, stabilized double electron capture in Ne10+-He collisions:velocity dependence of redberg electron n,1,distribution, Phys.Rev.A 1995,52,1218.
    [66]D.Dijkkampm, A.Brazuk,and H.Winter. J.Phys.B17,4371(1984)
    [67]G.B.Crooks and M.E.Rudd, experimental evidence of themechanimsof charge transfer in to the continuum states,Phys.Rev.Lett,1970,25,23.
    [68]M.B.Shah,C.McGrath, and H.B.Gilbody et al, shift in electron capture to the continuum at low collisions energies:enhanced role of target postcollision interactions, Phys.Rev.A,2003,67,010704(R).
    [69]G.Bernardi, S.Suarez, and P.Focke et al, two center effects in electron emission in 3He2+-He and H+-He collisions at intermediate energies, Phys.Rev.A,1989,40,6863.
    [70]D.H.Lee,P.Richard, and H.Hidmi, binary encounter electrons observed at 0 in collisions of 1-2 MeV/amu H+,C6+,N7+,O8+and F9+ions with H2 and He target, Phys.Rev.A,1990,41,4816.
    [71]L.Sarkdi,U.Brinkmann,and L.Gulyas et al, evidence for electron capture to the continuum by protons scattered at non-0 angles from Ar atoms, Phys. Rev.A, 1998,58,296.
    [72]L.Sarkadi, and Andrea Orban, triple coincidence experiment to explore the two electron continuum states of the projectile resulting from mutual ionization in 100 keV He0+He collisions, Phys.Rev.Lett,2008,100,133201.
    [73]P Moretto-Capelle, D Bordenave-Montesquleu and M Benhenni et al J. Phys. B:At. Mol. Opt. Phys.31 L423 (1998)
    [74]R.D.DuBois and Steven T. Manson, coincidence study of doubly differential cross sections:projectile ionization in He+-He collisions, Phys.Rev.Lett,1986,57,1130.
    [75]R.D.DuBois and S.T.Manson, multiple ionization channels in proton atom collisions,Phys.Rev.A,1987,35,2007.
    [76]N.Stolterfoht, R.Dubbois, R.D.Rivarola. electron emission in the heavy ion atom collisions.1997
    [77]K.Okuno, H.Tawara, and S.Tsurubuchi et al, energy spectroscopic studies of electron capture processes by low energy,highly stripped C,N,O ions from He, Phys.Rev.A,1983,28,127.
    [78]C.Schmeissner, C.L.Cocke,and R.Mann,energy gain spectroscopy studies of electron capture form helium by slow multiply charged neon ions, Phys.Rev.A,1984,30,1661.
    [79]Huber, Kahlert et al,J. Phys. B:At. Mol. Phys.164655(1983)
    [80]R. Moshammer, P. D. Fainstein, M. Schulz et al, initial state dependent of low energy electron emission in fast ion atom collisions, Phys. Rev. Lett,1999,83,23.
    [81]M. A. Abdallah, C. L. Cocke, W. Wolff et al, momentum images of continuum electrons from He+and He2+on He:ubiquity of π Structure in the Continuum, Phys. Rev. Lett,1998,81,3627.
    [82]J.Ullrich et al., determination of very small projectile scattering angles by measured recoil ion transverse velocities,Nucl. Instr. Meth. A 28,216(1988); and J. Phys. B 20,L809(1987).
    [83]R.Doerner, J.Ullrich, H.Schmidt-Bocking and R. E. Olson, three body interactions in proton helium angular scattering, Phys. Rev. Lett,1989,63,147.
    [84]C.L.Cocke and R.E.Olson, recoil ions, recoil ions,Physics Reports,1991,205,153.
    [85]S. Wolf and H. Helm, ion recoil energy measurement in photoionization of laser cooled rubidium, Phys. Rev. A,1997,56, R4385.
    [86]S. Wolf and H. Helm, ion recoil momentum spectroscopy in a laser cooled atomic sample, Phys. Rev. A,2000,62,043408.
    [87]L. H. Coutinho, R. L. Cavasso, and A. N. de Brito, relativistic and interchannel coupling effects in photoionization angular distribution by synchrotron spectroscopy of laser cooled atoms, Phys. Rev. Lett,2004,93,183001.
    [88]J.W. Turkstra, H.W.Wilschut, and R. Morgenstern, laser cooled targets and recoil ion momentum spectroscopy for fundamental physics studies, Hyperfine Interactions 127,533 (2000).
    [89]N. D. Scielzo, S. J. Freedman, and P. A. Vetter, measurement of the β-v correlation using Magneto-optically trapped 21Na, Phys. Rev. Lett,2004,93,102501.
    [90]A. Gorelov, D. Melconian, and M. Trinczek, scalar interaction limits from the β-v correlation of the trapped radioactive, Phys. Rev. Lett,2005,94,142501.
    [91]K. P. Jungmann,fundamental symmetries and interactions, Nucl. Phys. A,2005,751, 87.
    [92]M. van der Poel, C. V. Nielsen, and N. Andersen, fraunhofer diffraction of atomic matter waves:electron transfer studies with a laser cooled target, Phys. Rev. Lett, 2001,87,123201.
    [93]X. Flechard, H. Nguyen, and B. D. DePaola, kinematically complete charge exchange experiment in the Cs+-Rb collision system using a MOT target, Phys. Rev. Lett,2001,87,123203.
    [94]J. W. Turkstra, R. Hoekstra, and R. E. Olson, recoil momentum spectroscopy of highly charged ion collisions on magneto optically trapped Na, Phys. Rev. Lett,2001, 87,123202.
    [95]X. Fl'echard, H. Nguyen, and B. D. DePaola, state selective charge transfer cross sections for Na+with excited Rubidium:a unique diagnostic of the population dynamics of a magneto optical trap, Phys. Rev. Lett,2003,91,243005.
    [96]M. H. Shah, H. A. Camp, and B. D. DePaola,relative charge transfer cross sections from Rb(4d),Phys. Rev. A 72,024701 (2005).
    [97]H. Schmidt-bocking, et al., experimental investigation of the asymptotic momentum wave function of the He ground state, in AIP conference proceedings,2002,604, 120.
    [98]X Ma, H.P.Liu, and W.L.Zhan et al, a progress report of 320 kV multi-discipline research platform for highly charged ions, Journal of Physics:Conference Series 163, 012104(2009)
    [99]D. R. Miller. Atomic and Molecular Beam Methods, New York:Oxford University Press,1988
    [100]W.C. Wiley, I. H. Mclaren, time of flight mass spectrometer with improved resolution, Rev.SCI.Instr,1955,26,1150-1157.
    [101]马新文,高电荷态离子与原子碰撞中的多电子转移过程的研究,中科院近代物理研究所,甘肃兰州,1998.
    [102]W. Fritsch and C.D. Lin, the semiclassical close coupling description of atomic collisions:recent developments and results, Phys. Rep.1991,202,1.
    [103]B. H. Bransden and M.R.C. McDowell, Charge Exchange andthe Theory of ion atom-Collisions (Clarendon, Oxford,1992)
    [104]N.Bohr, J.Lindhard et al, Mat.Phys.Medd 28,1 (1954)
    [105]H.Ryufuku et al.,oscillatory behavior of charge transfer cross sections as a function of the charge of projectiles in low energy collisions,Phys.Rev.A21,745-750 (1980)
    [106]A.Barany et al.,absolute cross sections for multi-electron processes in lowenergy Arq+-Ar collisions:comparison with theory,Nucl. Instr. Meth.B,1985,9,397-399.
    [107]A.Niehaus et al., a classical model for multiple electron capture in slow collisions of highly charged ions with atom, J.Phys.B,1986,19,2925.
    [108]Dz. Belkic, Quantum Theory of High-Energy Ion-Atom Collisions(Taylor & Francis, London,2008).
    [109]Dz. Belkic, I.Mancev, and J. Hanssen, foru body methods for high energy ion-atom collisions, Rev. Mod. Phys.2008.80,249.
    [110]Dz. Belkic, review of theories on double electron capture in fast ion-atom collisions, J. Math. Chem.47,1420 (2010).
    [111]J. McGuire,Electron Correlation Dynamics in Atomic Collisions,(Cambridge University Press, Cambridge,1997).
    [112]K. M. Dunseath and D. S. F. Crothers, transfer and ionization processes during the collision of fast H+He2+nuclei with helium, J. Phys. B:At. Mol. Opt.Phys,1991, 24,5003.
    [113]M. B. Shah and H. B. Gilbody, single and double ionization of helium by H+,He2+ and Li3+ ions, J. Phys. B:At. Mol. Phys.1985,18,899.
    [114]M. E. Galassi, P. N. Abufager, A. E. Martinez, R. D. Rivarola,and P. D. Fainstein, the continuum distorted wave eikonal initial state model for transfer ionization in H+,He2++He collisions, J. Phys. B:At. Mol. Opt. Phys.2002,35,1727.
    [115]A. L. Godunov, J. H. McGuire, V. S. Schipakov, H. R. J. Walters,and C. T. Whelan, cross sections for transfer ionization in fast ion helium collisions, J. Phys. B:At. Mol. Opt. Phys.2006,39,987.
    [116]Dz. Belkic, I. Mancev, and V. Mergel, four body model for transfer ionization in fast ion atom collisions, Phys. Rev. A,1977,55,378.
    [117]B. W. Ding, D. Y. Yu, and X. M. Chen, cross sections for transfer ionization in ion-helium collisions, Nucl. Instr. Meth. Phys.Res. B266,886 (2008).
    [118]I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products,6th ed. (Academic Press, New York,2000).
    [119]Dzevad Belkic-acute,Ivan Mancev, and Volker Mergel, four body model for transfer ionization in fast ion-atom collisions, Phys.Rev.A.1997,55,378.
    [120]T.V. Goffe, M.B.Shah, and H. B. Gilbody, one electron capture and loss by fast multiply charged boron and carbon ions in H and H2,J. Phys. B,1979,12,3763.
    [121]J. R. Macdonald and F. W. Martin, experimental electron transfer cross sections for collisions of Oxygen ions in Argon, Nitrogen, and Helium at energies of 7-40 MeV, Phys.Rev.A,1971,4,1965.
    [122]T.R.Dillingham, J.R.Macdonald, and P.Richard, ionization of one electron ions and capture by bare and one electron ions of C, N, O and F on He, Phys.Rev.A, 1981,24,1237.
    [123]H.Damsgaard, H. K. Haugen, P. Hvelplund, and H. Knudsen, coincidence measurement of electron capture and target ionization in multiply charged Auq+(He,Ne) collisions, Phys. Rev. A,1983,27,112.
    [124]Dz. Belkic, R. Gayet, and A. Salin, electron capture in high energy ion atom collisions,Phys. Rep.1979,56,279.
    [125]W.E.Meyerhof, J. Alonso, P. Thieberger, and H. E. Wegner, atomic collisions with relativeistic heavy ions. Ⅲ. Electron capture, Phys. Rev. A 32,3291 (1985)
    [126]V.Mergel et al,state selective scattering angle dependent capture cross sections measured by cold target recoil ion momentum spectroscopy, Phys.Rev.Lett,1995,74,2200; Nucl.Instr.Meth.B98,593(1995).
    [127]R. Dorner et al,State-selective differential cross sections for double-electron capture in 0.25-0.75-MeVHe2+-Hecollisions, Phys.Rev.A,1998,12;Nucl.Instr. eth.B99,111(1995)
    [128]I. Mancev et al, electron capture from helium atoms by fast protons, J. Phys. B:At. Mol. Opt. Phys.2003,36,2733-2746.
    [129]M. S. Schoffler et al, state selective differential cross sections for ginel and ouble electron capture in He1+2+-He and p-He collisions,Phys.Rev.A,2009,79,064701.
    [130]A.Cassimi et al, state selective electron capture in low velocity multiply charged ion,helium collisions, Phys.Rev.Lett,1996,76,3679.
    [131]V.Mergel et al, intra atomic electron-electron scattering in p-He collisions investigated by the cold target recoil ion momentum spectroscopy, Phys.Rev.Lett,1997,79,387.
    [132]X.Flechard et al, single and double electron capture in low energy Ne10+-He collisions, J.Phys.b,2001,34,2759-2779.
    [133]A.Hassan et al, kinematically complete experiment on transfer excitation in intermediate energy p+He collisions, Phys. Rev.A,2006,74,032703.
    [134]D.Fisher,M.Gudmundsson et al, importance of Thomas single electron transfer in fast p-He collisions,Phys.Rev.A,2010,81,012714.
    [135]H.-K. Kim et al, electron transfer in fast-helium collisions, Phys. Rev.A,2012,85,022707.
    [136]S K Shirvastava,binary encounter calculations for electron capture from nobel gases by He2+, J.Phys.b,1983,16,215.
    [137]雷子明等人,双电荷态He2+与Ne,Ar原子碰撞中的激发态,Acta,Physica Sinica,1989.37,8.
    [138]H. S. W. Massey, collisions between atoms and molecules at ordinary temperatures, Rep. Prog. Phys,1948,12,248.
    [139]S.Figueira et al, single and double electron capture by slow He2+from atoms and molecules, J.Phys:Conf.Ser.2007,58,181.
    [140]H.Ehrhardt et al, Differential cross sections of direct single electron impact ionization, Z.Phys.D,1986,1,3.
    [141]M.Shulz et al, studies of the few body problem in atomic break up processe,Int.J.Mod.Phys.A,2006,21,3649.
    [142]L.Ph.H.Shmidt et al, Imaging of continuum states of the He22+quasimolecule, Phys.Rev.A,2007,76,012703.
    [143]J.H.Macek et al, Origin, Evolution, and Imaging of Vortices in Atomic Processes, Phys.Rev.Lett,2009,102,143201.
    [144]W.T.Htwe et al, Differential Double Excitation Cross Sections in Proton-Helium Collisions Studied by Energy-Loss Spectroscopy, Phys.Rev.Lett,1994,73,1348.
    [145]M.Schulz et al, Differential double capture cross sections in p+He collisions,Phys.Rev.A,2007,75,022717.
    [146]V.Mergel et al.,Intra-atomic Electron-Electron Scattering in p-He Collisions (Thomas Process) Investigated by Cold Target Recoil Ion Momentum Spectroscopy,Phys.Rev.Lett,1997,79,387.
    [147]H.T.Schmidt et al., Recoil-ion momentum distributions for transfer ionization in fast proton-He collisions, Phys.Rev.A,2005,72,012713.
    [148]E.Horsdal et al., Critical Angle in Electron Capture,Phys.Rev.Lett,1986,57,1414.
    [149]J. Palinkas et al., Observation of electron-electron scattering in electron capture by fast protons from He, Phys. Rev.Lett.1989,63.2464.
    [150]V.Mergel et al., Strong Correlations in the He Ground State Momentum Wave Function Observed in the Fully Differential Momentum Distributions for the p+He Transfer Ionization Process,Phys.Rev.Lett.2001,86.2257.
    [151]W.Wu et al., Electron-electron interaction in the ionization of O7+ by He,Phys.Rev.A,1997,55,2771.
    [152]T.Kambara et al., Three-dimensional recoil-ion momentum analyses in 8.7 MeV O7+-He collisions,J.Phys.B,1995,28,4593.
    [153]M. Schulz et al., Strongly Enhanced Backward Emission of Electrons in Transfer and Ionization, Phys. Rev. Lett.2012,108,043202.
    [154]R. D. DuBois, Ionization and charge transfer in He2+-rare-gas collisions. Ⅱ Phys.Rev.A,1987,36,2585.
    [155]M. S. Schoffler, A. L. Godunov, and H. Schmidt-Bocking, Revealing the effect of angular correlation in the ground-state He wavefunction:a coincidence study of the transfer ionization process J. Phys. B,2005,38, L123.
    [156]A. L. Godunov, C. T. Whelan, and H. Schmidt-Bocking, Transfer ionization process p+He→H0+He2++e-with the ejected electron detected in the plane perpendicular to the incident beam direction,Phys. Rev. A,2005,71,052712.
    [157]H.-K.Kim, M.S.Schoffler, and R. Dorner, Electron transfer in fast proton-helium collisions Phys. Rev. A,2012,85,022707.
    [158]M. Zapukhlyak and T. Kirchner, Projectile angular-differential cross sections for electron transfer processes in ion-helium collisions:Evidence for the applicability of the independent electron model, Phys.Rev.A 2009,80,062705.
    [159]D. H. Madison and S. T. Manson, Doubly differential cross sections for proton-impact ionization of argon, Phys. Rev. A,1979,20,825;M. E. Rudd, Y. K. Kim, D. H. Madison, and J. W. Gallagher, Electron production in proton collisions: Total cross sections,Rev. Mod. Phys.1985,57,965; M. E. Rudd, Y. K. Kim, D. H.Madison, and T. J. Gay, Electron production in proton collisions with atoms and molecules:energy distributions, ibid.1992,64,441.
    [160]G. B. Crooks and M. E. Rudd, Experimental Evidence for the Mechanism of Charge Transfer into Continuum States, Phys. Rev. Lett.1970,25,1599.
    [161]M. E. Rudd and J. Macek, Case Stud. At. Phys.3,125 (1972)
    [162]M.W.Lucas andK.G.Harrison, Beam foil Auger spectroscopy, J. Phys. B:At. Mol. Phys.5,L20(1972)
    [163]W. Oswald, R. Schramm, and H. D. Betz, Higher-order effects of electron capture and loss to the continuum in ion-atom collisions, Phys. Rev. Lett.1989.62,1114.
    [164]R. G. Pregliasco, C. R. Garibotti, and R. O. Barrachina, Measurement and analysis of the ECC cusp structure,J. Phys.B:1994,27,1151.
    [165]D. H. Lee, P. Richard, and H. Hidmi, Binary-encounter electrons observed at 0° in collisions of 1-2-MeV/amu H+, C6+, N7+, O8+, and F9+ions with H2 and He targets,Phys. Rev. A,1990,41,4816.
    [166]Y. D. Wang, V. D. Rodriguez, and R. Dorner, Analysis of final-state momentum distributions of ionization products in ion-atom collisions, Phys. Rev. A,1996,53, 3278.
    [167]R.E.OlsonandA.Salop, Electron loss by atomic and molecular hydrogen in collisions with 3He++ and 4He+, Phys.Rev.A1977,16,531.
    [168]E. Y. Sidky and Hans-Jorgen T. Simonsen, Velocity-matching model for electron capture in keV atomic collisions, Phys. Rev.A,1996,54,1417.
    [169]M. E. Rudd, Observation of Auto ionization Levels in He by Positive Ion Bombardment,Phys. Rev. Letters,1964,13,503; 1954,15,580.
    [170]E. Lindroth, Calculation of doubly excited states of helium with a finite discrete spectrum, Phys. Rev. A,1994,49,4473.
    [171]Y. K. Ho, Doubly excited states of helium atoms between the N=2 and N=3 He+ thresholds,J. Phys. B,1979,12,387; Y. K. Ho and J. Callaway, Autoionizing 1Po states of He between the N=2 and 3 thresholds of He+, J. Phys. B,1985,18,3481; Y. K. Ho, Autoionizing 1Po states of He between the N=2 and 3 thresholds of He+,Phys. Rev. A,1991,44,4154; Y. K. Ho and A. K. Bhatia, Complex-coordinate calculation of 1,3D resonances in two-electron systems,Phys. Rev. A,1991,44,2895; Y. K. Ho and A. K. Bhatia, Doubly excited 1,3Pe states in heliumlike systems, Phys. Rev. A,1993,47,2628; Y. K. Ho, Doubly excited 3Po resonance states of He below the N=2 and N=3 He+thresholds, Phys. Rev. A,1993,48,3598; Y. K. Ho and A. K. Bhatia, Doubly-excited states in helium-like systems, J. Phys. B,1997,30,3597.
    [172]L. Lipsky, R. Anania, and M. J. Conneely, Energy levels and classifications of doubly-excited states in two-electron systems with nuclear charge, Z= 1,2,3,4,5, below the N= 2 and N= 3 thresholds, At. Data Nucl. DataTables,1977,20,127.
    [173]K. Iemura et al.,Electron spectroscopy of double excited states in He produced by slow collisions of He2+ions with Ba atoms, Phys.Rev.A, (2001),64,062709.
    [174]L.Ph.H.Schmidt, Imaging of continuum states of the He22+quasimolecule, Phys.Rev.A,(2005),76,012703.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700