大回旋电子束形成技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潘尼管是一种新型的利用大回旋电子注与电磁波进行注波互作用的快波器件。与普通回旋管基于相对论效应的电子角向群聚的换能机制不同,潘尼管则是利用电子回旋中心的位置偏移实现电子与高频场之间的能量转移。整个能换过程中所有的电子都向高频场交出能量,不存在“不利”电子,因而电子注在能换作用完成后能量较为单一,易于利用降压收集极技术收集。正是这种特殊的注波互作用机制,使其在高次谐波工作时不仅能使工作磁场成倍降低,而且仍能保持较高的效率,受到了各国科研人员的关注,有利于发展永磁包装的中等功率高效毫米波、亚毫米波源。研究发现,电子注质量的好坏对潘尼管的性能影响很大,因而探索新型的、与潘尼管相匹配的电子光学系统是人们亟待解决的重要课题之一。
     本文从电子运动方程、正则角动量守恒和能量守恒出发,推导出电子在理想会切和非理想会切磁场情况下的径向、角向及轴向运动方程,并求出其解析解,指出大回旋电子束形成的关键是必须有作用于电子注的倒向磁场。提出了大回旋电子枪的引导中心漂移补偿法,而后在这种方法的指导下,对不同类型大回旋电子枪进行了具体的分析和设计计算。主要工作及成果如下:
     1.在深入研究大回旋电子注形成基本理论的基础上,舍弃理想化假定,导出了适用于任意缓变倒向场的直接联系阴极区与互作用区束参量的关系式。深入分析了影响速度零散的因素与抑制措施,以及引导中心的偏移规律和进行补偿的可能性,进而提出了任意缓变倒向场大回旋电子枪设计理论一引导中心漂移补偿法。这种方法抛弃了尽可能逼近理想倒向磁场的传统思路,利用实际可获得的不同倒向场,通过首先控制起始点的位置速度零散,进而用调节电场分布来控制电子通过倒向区的状态,对非理想倒向场可能引起的引导中心漂移进行补偿,最后在互作用区得到偏心很小,速度零散也很小的大回旋电子注。
     2.利用上述理论,设计了一支低速度零散、偏心较小的大回旋电子枪。该电子枪利用实际磁系统可获得的倒向场,并计及了结构设计的要求,极大降低了制管工艺和结构的复杂性。阴极发射带可以置于倒向点前的轴向磁场幅值渐减区域,通过控制各条轨迹起始点的正则角动量差异,并利用多种不利因素的相互抵消作用来减小偏心与速度零散。同时,给出了两种重要的调节方法,即细调电子枪在磁场中的轴向位置和阴极中心的凸起高度,为获得高质量大回旋电子注提供了一条新的实用途径。
     3.为了减小大发射面下的位置零散,在上述理论指导下,提出了利用磁控注入枪来产生大回旋电子注的新方案,并设计了电子枪。该枪的阴极发射带平行于系统轴线和磁力线,避免了在阴极处的初始角动量零散,在大电流情况下工作时仍可获得低速度零散的高质量电子注;新增的电极可以用来微调电子束的质量,以满足不同大回旋器件的要求。这种宽阴极发射带、大电流工作的磁控注入式大回旋电子枪,在第一和第二阳极电压分别为0.6kV和50kV时,所得电子注横向速度零散仅为0.65%,引导中心偏移为6.1%,横纵速度比为1.67。这为大回旋器件的研究者提供了一条新的实用大回旋电子枪设计方案。
     4.编制了潘尼管的自洽非线性计算程序,提高了计算速度,对用我们设计的电子枪驱动潘尼管进行了综合研究,设计了一支三次谐波潘尼管倒向场大回旋电子枪。计及电子注的偏心7.18%与速度零散4.78%,该潘尼管可获得33.5kW的输出功率,效率达到54.3%。
     5.设计了一个永磁包装三次谐波潘尼管系统。在43.5kV、1.45A下,所设计的电子枪能产生速度比2.03、速度零散4.48%、偏心6.79%的大回旋电子注。在该大回旋电子枪的驱动下,潘尼管器件功率可达35.4kW,效率可达56.0%。永磁系统的设计中,采用钕铁硼作为永磁材料。该磁系统体积小、结构紧凑,总重量在100kg左右。能够满足机载、车载等可移动装置的需求,为实际研制永磁包装潘尼管打下了基础,有重要实用前景。
Peniotron is a cyclotron fast wave tube. Different from the electron cyclotron maser interaction used in conventional gyrotrons, the peniotron using phase separation effect to realize the net energy exchange between the electrons and the high frequency field. There are no "adverse" electrons in the entire energy exchange process and the residual energy of all the electrons are relatively the same, it's easy to collect using the depressed collector technology, In addition, the strong magnetic field usually provided by superconducting magnet could be lowered greatly by selecting the high order gyro-harmonic mode, while relative high energy conversion efficiency still can be obtained. It's a more conductive way for developing median power high efficiency millimeter wave and sub-millimeter wave source with permanent magnet system. As a result, many researchers pay great attention to the peniotron due to its high efficiency. It's discovered that the beam quality has a great influence on the device performance, so it's an important issue to explore new electron optical system to meet the peniotron's requirements.
     Based on the equation of electron motion, the conservation of canonical angular momentum and the total energy, we derived the electron's radial, angular and axial motion equation in the ideal cusp and non-ideal cusp respectively, and obtained the analytical solution. It pointed out that the key in the formation of large-orbit electron beam was the reversal magnetic field. Then, we analyzed the different kinds of large-orbit electron gun in detail, and designed the electron optical system of the third-harmonic peniotron. The main works and results are listed bellow.
     Firstly, on the basis of analyzing the general regularities of electron motion in the general reversal field, we derived the relationship between parameters at the cathode and parameters at the interaction area irrespective of the intermediate process, which simplifies the analysis of different program. Then we analyzed the various causes of the velocity spread and the rules of the guiding center deviation, and the corresponding velocity spread suppression method and the guiding center compensation method of the large-orbit electron beam were brought forward. The cores of the guiding center compensation method including the several parts:using the magnetic field configuration that can be realized practically; controlling the initial magnetic flux spread; and adjusting the electrons' phase at the Cusp area.
     Secondly, a novel approach to get large-orbit electron beam is demonstrated using gradually-changing reversal magnetic field. On the basis of gradually-changing reversal magnetic field theory, we designed a large-orbit electron beam with low velocity spread and low guiding center deviation. Different from the traditional three-step method, our design doesn't pursuit the formation of thin tubular electron beam and the utilization of mutation reversal magnetic field, which reduces the difficulties of structure complexity and tube-making process, In addition, the cathode emission band can be placed in the axial magnetic field before the magnetic reversal point where its magnitude decreasing gradually, by controlling the angular momentum differences between every trajectory starting points and using the offset effect of various unfavorable factors to reduce eccentricity and velocity spread. We provide two technical ways to obtain high quality large-orbit electron beam:fine-tuning the axial position of the electron gun in the magnetic field and adjusting the height of the central proection.
     Thirdly, the generation of axis-encircling large-orbit electron beam using magnetron type injection gun is studied theoretically and numerically. In the simulation, the magnetic field is no longer an ideal one; instead, it's a gradually reversal magnetic field that can be realized by actually coils and magnetic shield, which increases the possibility of application, In addition, the cathode emission band is parallel no longer to the system's axis but also to the magnetic field lines, in this way it eliminates the initial angular momentum spread at the cathode and helps to reduce the velocity spread greatly. By adjusting the voltages of the two anodes, the beam quality can be modulated easily to meet the specific requirements of different gyro-devices. Through numerical simulation by EGUN, a large-orbit electron beam with axial velocity spread of1.82%, guiding center deviation of6.1%, and velocity ratio of1.67is obtained. The scheme provides a new electron gun candidate for the large-orbit devices.
     Fourthly, we write the self-consistent nonlinear program for peniotron, by which the compute speed is increased greatly. The four-slotted third-harmonic peniotron is deeply studied by the small signal theory and an example peniotron is designed. Based on the requirements of the third-harmonic peniotron, we designed a large-orbit electron gun. In the gun, an electron beam with axial velocity spread of4.78%, guiding center deviation of7.18%and velocity ratio of2.2is generated, which satisfies the special requirements of beam-wave interaction in third-harmonic peniotron. Driven by this gun, the peniotron is predicted to yield an output power of31.9kW at30GHz, with the microwave conversion efficiency up to49.4%, which shows the perfect matching between the high frequency system and its electron-optical system. Finally, it is found that the device performance is very sensitive to the relative axial position between the magnetic system and the electrode system. If the magnetic system shifts to the right for0.8mm, the device efficiency would decrease from49.4%to31.7%. This phenomenon provides meaningful information in the device hot-test.
     Lastly, based on the reliability of current magnetic and process condition, the permanent magnet system and the large-orbit electron gun are designed. The NdFeB32is used for the permanent magnet material. The size of the total magnet is small and compact enough, and the total weight is about100kg. The amplitude of the main field is0.396T, and the length of the uniform region is as long as50mm. After optimization, an axis-encircling electron beam with axial velocity spread4.48%, guiding centre deviation ratio6.97%and high velocity ratio2.03is obtained, which satisfies the3rd-harmonic peniotron. Driven by the electron gun, an output power of35.4kW is obtained and the device efficiency is up to56.0%, this is an attractive result in laboratory platform.
引文
[1]R. Twiss. Radiation transfer and the possibility of negative absorption in radio astronomy[J]. Australian Journal of Physics. 1958. 11(1):567-579
    [2]J. Hirshfield. J. Watchtel. Electron cyclotron maser[J], Physical Review Loiters. 1964. 12 (19):533-536
    [3]V. Flyagin. A. GaPonov. !. Petelin. et al. The Gyrotron[J]. IEEE Transactions on Microwave. Theory and Techniques. 1977. 25(6):514-521
    [4]J. Hirshfield. V. Granatstein. The electron cyclotron maser and historical survey [J]. IEEE Transactions on Microwave Theory and Techniques. 1977. 25(6):522-527
    [5]K. Chu. Theory of electron cyclotron maser interaction in a cavity at the harmonic Frequencies[J]. Physics of Fluids. 1978. 21(12):2354-2364
    [6]A. Gaponov. M. Petelin. V. YulPatov. The induced radiation of excited classical oscillators and its use in high-frequency electronics[J]. Radio physics and Quantum Electronics. 1996. 10(9):794-813
    [7]王文祥.微波工程技术[M].北京:国防工业出版社,2005,385-403
    [8]刘盛纲.电子回旋脉塞和回旋管的进展[M].成都:四川教育出版社,1988.1-16
    [9]J. Benford. J. Swegle- E. Sehamiloglu. High power micro\vaves[J]. Inst of Physics Pub Inc. 2007
    [10]刘頔威.太赫兹回旋谐波器件的研究[D].成都:电子科技大学,2009,8-15
    [11]李志良,冯进军.王峨峰.刘本田.太赫兹回旋管的现状及其发展[D].中国电子科学研究院学报.2009,4(3):238-243
    [12]马春燕.三次谐波太赫兹回旋管的研究[D].成都:电子科技大学,2011,1-5
    [13]K. Felch. B. Danly. H. Jory, et al. Characteristics and applications of fast-wave gyrode\ices[J]. Proceedings of the IEEE. 1999. 87(5):752-781
    [14]N. Kumar. U.Singh. A. Kumar. H. Khatun. Design of 35GHz gyrotron for material processing applications [J]. Progress in Electromagnetics Research B. 2011. 27:273-288
    [15]R. Jain. M. V. Karlikeyan. Design of a 60GHZ. 100kW CW gyrotron for plasma diagnostics: GDS-V.01 simulations[J]. Progress in Electromagnetics Research B. 2010. 22:379-399
    [16]Manfred Thumm. M\V gyrotron development for fusion plasma applications[J]. Plasma Phys. Control. Fusion. 2003,45:A143-A161
    [17]Manfred Thumm. State-of-the-Art of High Power Gyro-Devices and Free Electron Masers[M]. FUSION Association EURATOM-KIT. 16-30
    [18]S. Gold. G. Nusinovieh. Review of high-power microwave source research[J]. Review of Scientific Instruments. 1997.68(11 ):3945-3974
    [19]J. Seftor, V. Granatstein. K. Chu. et al. The electron cyclotron maser as a high-power traveling wave amplifier of millimeter waves[J]. IEEE Journal of Quantum Electronics, 1979. 15(9)
    [20]K. Sakamoto!. A. Kasugail. Y. Ikedal. et al. Development of 170 and HOGHz gyrotrons for fusion devices[J]. Nucl. Fusion, 2003. 43 : 729-737
    [21]W. M. Manheimer. G. Mesyats. M. L. Petelin. Applications of high power microwave sources to enhanced radar systems[J]. Applications of high power microwaves. 1994:169-208
    [22]J. Neilson. M. Read and L. Ives. Design of a permanent magnet gyrotron for active denial systems[C]. 34th International Conference on JRMMW-THz 2009. 1-2
    [23]I. Blog. Applications of high power microwave catalysis in chemistry. Research on Chemical Intermediates[J]. 1990. 13(3):221-236
    [24]T. Kikunaga. H. Asano. Y. Yasojima et al. A 28GHz gyrotron with a permanent magnet system[J], Int. J. Electronics. 1995. 79(5):655-663
    [25]Hongfu Li, Zhong-Lian Xie. Wenxiang Wang, et al. A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system[J]. IEEE Transactions on Plasma Science. 2003. 31(2): 264-271
    [26]Singh. G. and B. N. Basu. Modal analysis of azimuthally periodic vane-loaded cylindrical waveguide interaction structure for gyro-TWT[J]. PIER. 2007. 44: 175-189
    [27]M. Glyavin. T. Idehara. S. Sabchevski. et al. Numerical simulation of weakly relativistic large orbit gyrotron[C]. MSMW2001 Symposium Proceedings. 2001. 513-515
    [28]M. Glyavin. S. Sabchevski. T. Idehara. et al. Numerical analysis of weakly relativistic large orbit gyrotron with permanent magnet system[J]. International Journal of Infrared and Millimeter Waves. 2000. 21 (8): 1211-1221
    [29]V. Zapevalov. T. Idehara. S. Sabchevski et al. Design of a large orbit gyrotron with a permanent magnet system[J]. International Journal of Infrared and Millimeter Waves. 2003. 24(3): 253-260
    [30]T. Idehara. I. Ogawa. Y. Iwata et al. Development of a large orbit gyrotron with a permanent magnet system[C]. MSMW04 Symposium Proceedings. 2004.270-273
    [31]Idehara, T., I. Ogawa. S. Mitsudo. et al. Development of a high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet[J].Vacuum. 2005. 77(4): 539 - 546
    [32]Idehara. T.. I. Ogawa. S. Mitsudo. et al. A high harmonie gyrotron with an axis-encircling electron beam and a permanent magnet[J]. IEEE Transactions on Plasma Science. 2004. 32(3): 903-909
    [33]V. L. Bratman, Y. K. Kalynov. and A. E. Fedotov. Theory of gyro-devices with thin electron beams[J]. Technical Physics. 1998.43(10): 1219-1225
    [34]Chongqing Jiao and Jirun Luo. Linear and nonlinear theories of a large-orbit gyrotron traveling wave amplifier[J]. Physics of Plasmas. 2010. 17: 054503-1-4
    [35]Chongqing Jiao and Jirun Luo. Linear and nonlinear analysis of a gyrotron traveling wave amplifier with misaligned electron beam[J]. Physics of Plasmas. 2006. 13: 113101-1-7
    [36]W. Lawson. W. Destler. C. Striffier. High power microwave generation from a large orbit gyrotron[J]. IEEE Transactions on Nuclear Science. 1985. 13(6):444-453
    [37]Kumar. N.. U. Singh. A. Kumar, et al. Design of 35 GHz Gyrotron for Material Processing Applications[J]. Progress In Electromagnetics Research B. 2011. 27:273-288
    [38]Ashutosh. B.. R. Chandra, and P. K. Jain. Multimode Behavior of a 42GHz. 200kW GyrotronfJ]. Progress In Electromagnetics Research B. 2012. 42: 75-91
    [39]C. R. Donaldson. Wenlong He. A. W. Cross, et al. Design and Numerical Optimization of a Cusp-Gun-Based Electron Beam for Millimeter-Wave Gyro-Devices[J]. IEEE Transactions on Plasma Science. 2009. 37(11):2153-2157
    [40]S. B. Harriet. D.B. McDennott. and N. C. Luhmann. Cusp gun TE21 second-harmonic gyro-TWTamp!ifier[C]. IEEE.W 1.6. 207-208
    [41]G. Dohler. D. Gallagher, and R. Moats. The peniotron: A fast wave device for efficient high-power mm-wave generation[J]. IEEE Technical Digest 1EDM. 1971: 400-403
    [42]S. P. Kuznetsov. D. I. Trubetskov. and A. P. Chetverikov. Nonlinear analytical theory of the peniotron[J]. Sov.Tech. Phys. Lett. 1980. 6(10):498-499
    [43]G. Dohler. Peniotron interactions in gyrotrons: H. Quantitative analysis[J]. International Journal of Electronics. 1984. 56(5):617-627
    [44]Peniotron interactions in gyrotrons H. Quantitative analysis[J]. International Journal of Electronics. 1984. 56(5): 629-640
    [45]G. Dohler. B. G. Wilson. A Small signal theory of the peniotron[J].IEDM. 1980: 810-813
    [46]G. Dohler. D. Gallagher. R. Moats. F. Scafuri. Peniotron oscillator operating perfonnance[J]. IEEE Technical Digest IEDM, 1981:328-331
    [47]G. Dobhler, D. Gallagher, R. Moats, et al. Recent peniotron results at 45GHz[J]. IEEE Technical Digest IEDM. 1987:311-314
    [48]G. Dobhler. D. Gallagher D, J. Richards, et al. Harmonic High Power 95 GHz Peniotron[J]. IEEE Technical Digest IEDM, 1993: 363-366
    [49]Dobhler G. Gallagher D. J. Richards and F. ScatTuri. Peniotron oscillator operating performance[J]. IEEE Technical Digest IEDM. 1981:32&-331
    [50]G. Dohler. Peniotron Interaction in Gyrotrons. International Journal of EIectronics[J]. 1984: 629-640
    [51]黄日隆.潘尼管—一种新的高效率器件的技术发展[J].真空电子技术.1999:(4):21-29
    [52]黄日隆.潘尼管和回旋管的比较[J].真空电子技术,2003.(1):35-38
    [53]黄日隆.回旋潘尼管的工作原理[J].真空电子技术,2002.(6): 19-24
    [54]G. Dohler. D. Gallagher. J. Richards and F. Scafuri. Harmonic high power 95GHz peniotron[J]. IEEE IEDM. 1993.363-366
    [55]A. T. Lin. C. K. Chong. D. B. McDermott. et al. Slotted third-harmonic peniotron forward-wave oscillator[J]. SP1E Intense Microwave Pulses. 1994. 2154:327-332
    [56]D. B. McDermott. Y, Hirata, L. J. Dressman. et al. Efficient Ka-band second-harmonic slotted peniotron[J]. IEEE Transaction on Plasma Science. 2000. 28(3): 953-957
    [57]L. J. Dressman. D. B. McDermott. N. C. Luthman. et al. UCD Ka-band harmanic peniotron status[J]. IEEE International Vacuum Electronics Conference. 2006: 275-276
    [58]M. Razeghi. N. Sato. T. Suzuki, et al. Modified peniotron using a TE11 rectangular waveguide eavity[J]. International Journal of Electronics. 1985:533-542
    [59]S. Ono. K. Tsutaki. T. Kageyama. Proposal of a high efficiency tube for high power millimeter or submillimeter wave generation: The Gyropeniotron[J]. International Journal of Electronics. 1984:507-519
    [60]K. Yokoo. T. Suzuki. M.Razeghi. et al. Experimental study of the modified peniotron using TEH rectangular waveguide cavity[J]. International Journal of Electronics. 1988:645-651
    [61]K. Yokoo. M. Razeghi. N. Sato, et al. Experiments on the high efficiency operation of the modified peniotron oscil!ator[J]. International Journal of Electronics. 1989:485-490
    |62J H. Shimawaki. K.Sagae. N. Sato, et al. 2nd cyclotron harmonic peniotron experiments[J]. IEEE Technical Digiest IEDM. 1991:787-790
    [63]K. Yokoo. N. Sato. S. Ono. Auto-resonant peniotron oscillator for generation of millimeter and submillimeter waves[J]. International Journal of Electronics. 1990: 461-470
    [64]S. Musyoki. K. Yokoo. N. Sato, et al. Auto-resonant peniotron oscillator using a magnetron type cavity[J]. International Journal of Electronics. 1991:715-722
    [65]K. Yokoo. H. Shimawaki. T.Ishihara. et al. Design and experiments of higher c\clotron harmonic peniotron oscillators[C]. Conf Digest of 17th Int Conf on IR and VIM Waves. Pasadena. 1992:498-499
    [66]S. Musyoki. K. Sagae. N. Sato, et al. Experiments on highly efficient operation of the auto-resonant peniotron oscillator[J]. International Journal of Electronics. 1992:1067-1077
    [67]H.Shimawaki. K. Sagae. N. Sato, et al. Experiments on 2nd cyclotron harmonic peniotron[J]. International Journal of Electronics. 1994:143-151
    [68]T. Ishihara. H. Tadano. H. Shimawaki. et al. Space harmonic peniotron in a magnetron waveguide resonator[J]. IEEE Transactions on Electron Devices. 1996:827-833
    [69]T. Ishihara. K. Sagae. N. Sato, et al. Highly efficient operation of space harmonic peniotron at cyclotron high harmonics[J]. IEEE Transactions on Electron Devices. 1999. 46(4):798-802
    [70]赵晓云.基于回旋谐振机制的特殊电真空器件研究[D].成都:电子科技大学.2010,74-106
    [71]赵晓云,李家胤.武新慧.8mm二次谐波潘尼管的理论设计与粒子模拟研究[J].真空科学与技术学报.2011,31(2):194-200
    [72]赵晓云,李家胤,胡标,武新慧.李天明.高次谐波开槽潘尼管中的电子轨道研究[J].真空科学与技术学报.2011,31(3):297-304
    [73]G. Schmidt. Nonadiabatic particle motion in axial-symmetric fields[J]. The Physies of Fluids. 1962. 5(8):994-1002
    [74]J. Sinnis. G. Schmidt. Experimental trajectory analysis of charged particles in a cusped geometry[J]. The Physics of Eluids. 1963. 6(6):841-845
    [75]M. J. Rhee and \V. W. Destler. Relativistic electron dynamics in a cusped magnetic field[J]. The Physies of Fluids. 1974. 17(8):1574-1581
    |76] P. Sprangle. Excitation of electromagnetic waves from a rotating annular relativistie e-beam[J]. Journal of Applied Prnsics. 1976. 47(7):2395-2400
    [77]N. R. Vanderplats. H. E. Brown, and S. Ahn. MagneticalK shielded election guns with a center magnetic post [J]. IEEE Technical Digest IEDM. 1981:336-338
    (78] G. P. Scheitrum and R. B. True. A triple pole piece magnetic field reversal element for generation of high rotational energ_\ beams[J]. IEEE Technical Digest IEDM. 1981:332-335
    [79]W.W. Destler. R. L.Weiler. and C. D. Striffler. High-power microwave generation from a rotating e layer in a magnetron-type waveguide[J]. Appl. Phys. Lett.,1981, 38(7):570-572
    [80]W. Lawson, W. W. Destler, and C. D. Striffler. High-power microwave generation from a large orbit gyrotron in vane and hole-in-slot conducting wall geometries[J]. IEEE Trans. Plasma Sci., 1985, 13:444-453
    [81]W. Lawson. C. D. Striffler. A general linear growth rate formula for large orbit, annular electron beams[J]. Physics of Fluids. 1985. 28(9):2868-2877
    [82]W. Lawson. Design of low velocity-spread cusp guns tor axis encircling beams[J]. Applied Physics Letter. 1987. 50(21): 1477-1479
    [83]D. B. McDermott. D. S. Furuno. N. C. Luhmann. Jr. N. Stankiewjcz. Production of relativistie rotating electron beams by gyro-resonant RF acceleration in a TE111 cavity[J]. Journal of Applied Physics. 1985. 58(12):4501-4508
    [84]E. Chojnacki. W. W. Destler. W. Lawson. W. Namkung. Studies of microwave radiation from a low-energy rotating electron beam in a multi-resonator magnetron cavityfJ]. Journal of Applied Physics. 1987.61(4): 1268-1275
    [85]W. Namkung. J. Y. Choe. H. S. Uhm. and V. Ayres. Operation of cusptron at fundamental and harmonic cyclotron frequencies[J]. IEEE Transaction on Plasma Science. 1988. vol: 149-154
    [86]G. P. Scheitrum. R. S. Syrhons. and R. B. True. Low velocity spread axis encircling electron beam forming system[J]. 1EF.E Technical Digest IEDM. 1989:743-746
    [87]A. Singh. W.W. Destler. D. Goutos. et al. Study of an energy recovery system for a large-orbit gyrotron[J]. IEEE Technical Digest IEDM. 1988:155-158
    [88]D. A. Gallagher. M. Barsanti. S. Frederick. High Power Cusp Gun for Harmonic Gyro Device Applications[J]. IEEE Transactions on Plasma Science. 2000. 28(3): 695-699
    [89]Ruifeng Pu. Gregory S. Nusinovich. et al. Effect of the thickness of electron beams on the gyrotron efficiency[J]. Physics of Plasmas. 2010. 17: 083105-1-6
    [90]D. Gallagher. P. Frawley. K. Kreische. High power cusp gun[J]. IEEE Transactions on Plasma Science. 2000:271-272
    [91]S. Sabchevski. T. Ishihara. I. Ogawa. et al. Compiler simulaion of axis-encircling beams generated by an electron gun with a permanent magnet system[J]. International Journal of Infrared and Millimeter Waves. 2000.21 (8): 1191 -1209
    [92]王华军.回旋管电子枪CAD[D].成都:电子科技大学.2000.59-123
    [93]吴浠桥.回旋速调管中电子枪的设计[D].成都:电子科技大学.2006.1-23
    (94] W. He, C. G. Whiyte. E. G. Rafferty. et al. Axis-encircling electron beam generation using a smooth magnetic cusp for gyrodcvices[J]. Applied Physics Letters. 2008. 93:121501-1-3
    [95]C. R. Donaldson. W. He. A.W. Cross, et al. A cusp election gun for millimeter wave gyrodevices[J]. Applied Physics Letters. 2010. 96:141501-1-3
    [96]C. R. Donaldson. W. He. A. W. Cross, et al. Design and Numerical Optimization of a Cusp-Gun-Based Electron Beam for Millimeter-Wave Gyro-Devices[J]. IEEE Transactions on Plasma Science. 2009. 37( 11):2153-2157
    [97]Jianxun Wang. Yong Luo. N. C. Luhmann.The simulation of a high-power low-velocity-spread space-charge-limited (SCL) cusp gun[J].IEEE Transactions on Plasma Science. 2010. 38(12):3356-3362
    [98]赵青,李宏福.任同.会切场中大回旋电子束产生的研究[J].核聚变与等离子体物理,2005,25(3):223-227
    |99] S.G. Jeon. C. W. Baik. D. H. Kim. and G. S. Park. Study on velocity spread for axis-encircling electron beams generated by single magnetic cusp[J]. Applied Physics Letters. 2002. 80(20):3703-3705
    [100]S.G. Jcon. C. W. Baik. D. H. Kim. el al. Analysis of axis-encircling electron beam using a single-cusp magnetic ficld[J]. Japanese Journal of Applied Physics. 2002. 41(8):5404-5407
    [101]S.G. Jeon. C. W. Baik. D.H. Kim. and G. S. Park. Experimental verification of low-veloeity spread axis-encircling electron beam[J]. Applied Phvsics Letters. 2004. 84(11): 1994-1996
    [102]廖平,杨中海,雷文强.肖礼.微波管电子枪二维粒子模拟研究[J].强激光与粒子束,2004.16(3):353-357
    [103]赵国骏.于毓麟.阮宝崧.电子光学[M].北京:国防工业出版社,1980,243-337
    [104]P. Couture and B. L. Stansfield. Confinement in a double-cusp electromagnetic trap[J]. Plasma Phvsics. 1983. 25(9):1001-1008
    [105]K. T. Nguyen. D. N. Smithe. and L. D. Ludeking. The double-Cusp gy ro-gun[J]. IEEE Technical Digest ildm. 1992:219-222
    [106]邹峰.毫米波回旋管双CUSP电子枪的设计[D].北京“中国科学院研究生院.2007.16-34
    [107]武新慧,李家胤,赵晓云,李大明,胡标.一种新型缓变倒向场大回旋电子枪[J].物理学报.2011,60(8):080701-1-9
    [108]W. B.Herrmannsfeldt. Egun an electron optics and gun design program[M]. Stanford Linear Accelerator Center. Stanford CA. 1979.
    [109]李家胤.回旋管电子光学系统的数值计算[D].成都:电子科技大学.1981,1-83
    [110]倪志钧,伍蔚琛,李家胤,陈嘉钰.一种层流磁控注入枪的研究[J].成都电讯工程学院学报,1984.2:67-77
    [111]李家胤.回旋管磁场计算方法的研究[J].成都电讯工程学院学报,1984. 33-48
    [112]李家胤,郎敦玉,周晓岚.大功率回旋管电子光学系统数值计算中几个问题的研究[J].成都电讯工程学院学报,1985.109-117
    [113]David Meeker. Finite Element method Magnetics[M]. March 17.2003
    [114]王华军,李宏福,周晓岚.单阳极磁控注入电子枪的设计[J].强激光与粒子束,2000.12(3):331-334
    [115]赵青,李宏福,任同,罗勇.磁控注入电子枪的研究[J].原子核评论,2003.20(4):264-267
    [116]M. Caplan. and C. Thorington. Improved computer modeling of magnetron injection guns for gyrotrons[J]. International Journal of Electronics. 1981. 51(4): 415-426
    [117]W. Lawson. C. D. Striffier. A general linear growth rate formula for large orbit, annular electron beams[J]. Physics of Fluids. 1985. 28(9):2868-2877
    [118]J. M. Baird. and W. Lawson. Magnetron injection gun(MIG) design for gyrotron applications[J]. International Journal of Electronics. 1986.61(6): 953-967
    [119]W. Lawson. Magnetron injection gun scaling[J]. IEEE Transactions on Plasma Science. 1988. 16(2):290-295
    [120]李家胤,王华军,周晓岚,等.三次谐波回旋管电子枪的设计[J].电子科技大学学报,1996,25(7):72-75
    [121]K. T. Nguyen. B. G. Daly. B.Levush. et al. Electron Gun and Collector Design for 94-GHz Gyro-Amplifiers[J]. IEEE Transactions on Plasma Science. 1998. 26(3): 799-813
    [122]S. C. Zhang. J. R. Luo. Numerical Simulation Results for Improving the Magnetron Injection Gun in 8mm Wavelength Gyrotron[C]. International University Conference on Electronics and Radiophysics of UHF. 1999 : 158-161
    [123]Qing Zhao. AiXiang Dong. HongFu Li. et al. Numerical Simulation Study of Double-Beam Magnetron-Injection Guns for High-Power Gyrotrons[J]. IEEE Transactions on Plasma Science. 2007. 35(2):402-406
    [124]林远峰.磁控注入式电子枪的研究[D].成都:电子科技大学,2006.16-34
    [125]殷瑞剑,刘濮鲲.3mm回旋行波放大器单阳极磁控注入式电子枪的设计[J].电子与信息学报,2008,30(6):1507-1510
    [126]U. Singh. N. Kumar. S. Tandon. H. Khaiun. Numerical simulation of magnetron injection gun for 1MW 120GHz gyrotron[J]. Progress in Electromagneties Research Letters. 2010. 16:21-34
    [127]U. Singh. N. Kumar. A. Sinha. Gyrotron and its electron beam source: a review[J]. Journal of Fusion Energy. 2011. 30:257-276
    [128]S. Ono. K. Yamanouchi. Y. Shibata et al. Cyclotron fast-wave tube using spatial harmonic interaction-the traveling wave peniontronfC]. Proc of 4th International Congress on Microwave Tube. 1962:355-363
    [129]K. Yamanouchi. S. Ono. and Y. Shibata. Cyclotron fast wave tube: The double ridged travelling wave peniotron[C]. In Proc. 5th Int. Cong. Microw. Tubes (Paris). 1964: 91-102
    [130]刘盛纲.微波电子学导论[M].北京:国防工业出版社.1983.1-389
    [131]K. R. Chu and D. Dialetis. Kinetic theory of harmonic gyrotron oscillation with slotted resonant structure[J]. Infrared and Millimeter Waves. 1985. 13:45-75
    [132]P. Vitello. C\clotron maser and peniotron-like interactions in a whispering galler\ mode gyrotron[J]. IEEE Transactions on Microwave Theory Technologv 1984.32:917-921
    [133]D. B. McDermott. N. C.Luhmann. H. R. Jory, et al. Small-signal theory of a large-orbit electron-cyclotron harmonic maser[J]. Phys, Fluids. 1983. 26(7): 1936-1441
    [ 134]G.F. Brand. The gyrotron electron transfer equation[J]. International Journal of Infrared and Millimeter Waves. 1983. 4(2): 247-255
    [135]P. Vitello and K. KO. Mode competition in the g\ro-peniotron oscillator[J]. IEEE Transactions on Plasma Science. 1985. 13:454-463
    [136]G. F. Brand. Slow equations of motion for gyrotron and peniotron inleractions[J]. Phys. fluids B. 1992. 4(9):2983-2991
    [137]G. F. Brand. Comment on Z. G. Chen and Doring analysis ol nonlinear beam-wave interaction of gyro-peniotron at harmonics[J]. International Journal of Infrared and Millimeter Waves. 1993. 14(4): 777-781
    [138]H. Khatun. R. R. Rao. A. K. Sinha and S. N. Joshi. Computation of Start Oscillation Current in a Gyrotron[C].IEEE Proceedings of International Conference on Microwave. 2008. 196-199
    [139]G. F. Brand. Energy transfer equation for high-harmonic clclotron maser and peniotron interactions[J]. International Journal of Infrared and Millimeter Waves. 1984. 5(6): 853-858
    [140]U. A. Shrivastava and R. W. Grow. Gyrotron and peniotron modes in rotating-beam devices[J], International Journal of Electronics. 1984. 57(6):1077-1095
    [141]P.S. Rha. L. R. Barnett.J. M. Baird. et al. Self-consistent large signal theory and simulation of high harmonic gyrotron and peniotron oscillators operating in a magnetron type cavity[J]. IEEE Technical Digest IEDM. 1985:525-528
    [142]A. K. Ganguly. S. Ahn. and S. Y. Park. Three dimensional theory of the gyropeniotron amplifier[J]. International Journal of Electronics.1988.65(3):597-618
    [143]A. K. Ganguly. S. Ahn. E. G. Zaidman. et al. Design parameters of a high efficiency 1.7-GHz gyro-peniotron amplifier[J].IEEE Transactions on Electron Devices. 1991. Oct. 38: 2229-2233
    [144]Z. G. Chen. Effect of electron velocity spread on gyro-peniotron efficiency[J]. International Journal of Infrared and Millimeter Waves. 1993.14(1): 23-33
    [145]李声沛.刘桂芬.回旋管永磁聚焦系统设计[J].电子科学学刊.1984(6):490-494.
    [146]吴迅雷.微波管中永磁结构的研究[D].中国科学院研究生院(电子学研究所).2002.1-76
    [147]胡文艳.回旋器件永磁包装基本理论与设计方法研究[D].成都:电子科技大学.2012,7-54
    [148]宋后定.常用永磁材料的特性参数[J].磁性材料及器件.2007.59-61
    [149]刘亚丕.高性能永磁材料性(?)量若干问题探讨[J].磁性材料及器件.2006.(1):29-35
    [150]潘树明.中国及世界钕铁烧结磁体工艺技术的发展与前景[J].磁应用技术.2001.(3):51-61
    [151]电子管设计手册编辑委员会.微波电子管磁路设计手册[M].北京:国防工业出版社.1984.1-227
    [151]王以真.实用磁路设计[M].北京:国防工业出版社,2008,1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700