牵引变电所二次设备隐藏故障在线诊断及预警
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速铁路的快速发展,人们对牵引供电系统的安全稳定运行提出了更高要求,而牵引供电系统互感器与保护等二次设备的可靠运行则是其重要保证。分析历年来牵引供电系统的故障记录,继电保护装置不正确动作的比例居高不下,其中存在隐藏故障未及时排除是导致系统故障范围扩大的重要原因。目前,已有学者针对电力系统隐藏故障进行研究,但主要集中在对其发生概率的评估,未涉及对系统二次设备隐藏故障的诊断及状态监视等方面的研究。基于此,考虑牵引供电系统负荷变化频繁的特点,研究牵引变电所二次设备隐藏故障的在线诊断及预警具有重要意义。
     区别于传统故障易被发现,隐藏故障具有隐蔽、需要条件触发等特点,危害性极大。本文首先对牵引变电所二次设备隐藏故障进行分类,阐明隐藏故障与传统故障的区别,考虑利用量测值相关性原理对二次设备隐藏故障进行监测。
     互感器的作用是为系统检测和保护提供正确的量测值,其可靠性要求很高。当互感器开始出现隐藏故障,波形会发生畸变造成测量值不准,影响保护装置灵敏度,严重时将会影响保护选择性,导致继电保护装置的拒动或误动。本文以电流互感器(Current Transformer, CT)为例,根据基尔霍夫电流定律(KCL)联系牵引供电系统拓扑中各支路CT之间的电流约束关系建立关联矩阵,得到各CT电流解析值;再利用解析值与实测值相似系数受隐藏故障的影响规律建立投票规则,实现CT隐藏故障在线诊断。该方法基于PSCAD/EMTDC进行了仿真验证,不受系统负荷电流波动大的影响。
     针对不同类型故障后的电流电压特征,继电保护装置将采取不同的保护算法,对采样的测量值进行分析,并与保护整定值进行比较后选择是否动作。若测量回路中计算测量元件(如时间元件、阻抗元件等)出现隐藏故障,会直接影响保护可靠动作。本文以馈线距离保护为例,分析了复线AT和单线AT供电下,不同机车运行工况时,不同地点距离保护测量阻抗的关联关系,得到隐藏故障诊断判据,并在PSCAD/EMTDC中仿真验证了该方法的有效性。
     对二次设备进行在线诊断的目的是能够提前发现隐藏故障并预警,本文在最后分析了当前二次设备状态监测技术的不足,构建了牵引变电所二次设备故障预警系统框架,并重点对多信息源数据采集与处理、设备状态评估、故障预警以及维护决策支持进行了说明,为隐藏故障后续研究提供了良好的理论基础。
With the rapid development of high-speed railway, a higher demand on the safe and stable operation of the traction power supply system has been put forward. Reliable operation of such secondary equipments as transformer and protection in plays an important role in traction power supply system. Analysis the traction power supply system fault records over the years, the incorrect action proportion of the protection devices stays a high level, which hidden failure not immediately removed is an important reason to cause a system failure extending. Currently, the study of power system hidden faults has been valued by some scholars, which mainly concentrated on the assessment of their probability of occurrence. The study of diagnosis and status monitoring for secondary equipments hidden fault is not involved. Based on this, considering the traction power supply system load changes frequently, researching in online diagnosis and early warning for hidden faults of traction substation secondary equipments is of importance and meaningful significance.
     Different from the traditional fault, hidden fault has significant harm with the feature of hidden and the need for trigger conditions. Firstly, traction substation secondary equipment hidden fault has been classified, and the difference of hidden fault and traditional fault has been clarified. Considering the secondary equipment measure values have the interrelated characteristics, hidden fault can be monitored.
     Transformer needs high reliability to provide the correct measurement values for detection and protection. When the transformer has hidden failure, the inaccurate measured values caused by waveform distortion will affect the sensitivity of protection, resulting in protection devices refusing to operate or mal-operating. In this paper, take the current transformer (CT) for example, according to Kirchhoff's current law (KCL) and the traction power supply system topology, the current constraint relation between each branch of CT associated is constructed in form of matrix to obtain the analytical current value of every CT. Using the analytical and measured values of similarity coefficient to establish voting rules by the law of the impact of hidden failure to achieve CT hidden online fault diagnosis. The method is based on PSCAD/EMTDC simulation, regardless the impact of system load current fluctuation.
     The current-voltage characteristics of the different types of fault protection devices will take a different protection algorithms, the measured values of the sampling analysis and protection setting value is compared to choose whether or not action. That the measurement circuit measuring element such as time components and impedance element has a hidden failure will directly affect the reliability of protection. In this paper, the feeder distance protection, for example, the relationship of distance protection measure impedance has been analyzed with different locomotive operating conditions and different places of double-track AT and singlet AT power supply. The hidden fault diagnosis criterion simulation verifies its effectiveness in PSCAD/EMTDC.
     The purpose of secondary equipment online diagnosis is to find hidden fault and warning in advance. In this paper, the inadequate of current method of secondary device status detection has been analyzed, and the frame of traction substation secondary equipment failure warning system has been build. The study focus on multi-source data acquisition and processing technology, equipment status assessment, fault warning technology and the protection of maintenance decision-making techniques, which provides a good theoretical basis for hidden fault further study.
引文
[1]林飞,罗君,李志锋.2003、2004年全国电力牵引供电系统故障统计分析[J].甘肃科技纵横.2006,35(3):27-28.
    [2]周玉兰,王玉玲,赵曼勇.2004年全国电网继电保护与安全自动装置运行情况[J].电网技术.2005,29(16):42-48.
    [3]沈晓凡,程逍,章激扬.2005年全国电网继电保护装置运行情况分析[J].电力设备.2007,8(2):26-29.
    [4]Koeunyi Bae, J S T. A Stochastic Study of Hidden Failures in Power System Protection. Decision Support Systems[J].1999,24(3):259-268.
    [5]Koeunyi Bae, Thorp, J.S. An importance sampling application:179 bus WSCC system under voltage based hidden failures and relay misoperation[J]. In Proc.1998 System Science, Thirty-first Hawaii International Conf.1998,3:39-46.
    [6]Xingbin Yu, Singh, C. Power system reliability analysis considering protection failures[J]. IEEE PES Summer Meeting.2002,2:963-968.
    [7]Morison K Y S. System disturbance stability studies for WSCC[R].1997.
    [8]U.S. Federal Power Commission. Northeast Power Failure 1965[R].1965.
    [9]WSCC. Disturbance Report for the Power System Outages that occurred on the Western Interconnection on July 2 1996 14:24 MAST and July 3 1996 14:03 MAST[R].1996.
    [10]Elizondo D C, De La Ree J. Analysis of hidden failures of protection schemes in large interconnected power systems[C].2004.
    [11]Phadke A G, Thorp J S. Expose hidden failures to prevent cascading outages [in power systems] [J]. Computer Applications in Power, IEEE.1996,9(3):20-23.
    [12]Elizondo D C, De La Ree J, Phadke A G, et al. Hidden failures in protection systems and their impact on wide-area disturbances[C].2001.
    [13]Tobon-Mejia D A, Medjaher K, Zerhouni N, et al. Hidden Markov Models for failure diagnostic and prognostic[C].2011.
    [14]Ahmadi A, Kumar U, Ghodrati B. Risk based maintenance decision for periodically tested repairable components subject to hidden failure[C].2010.
    [15]Feng J, Shi L. The analysis and strategy of influence factors on hidden dangers of safety production behavior based on the improved C-HIP model in the modern work mode of China's manufacturing industry[C].2011.
    [16]Salfner F, Malek M. Using Hidden Semi-Markov Models for Effective Online Failure Prediction[C]. 2007.
    [17]刘相鹏,刘金辉.继电保护隐藏故障的研究分析[J].黑龙江科技信息.2011(9):4.
    [18]宋鹏.基于数字化变电站的电力设备故障诊断研究[D].山东大学,2010.
    [19]董烨,李永斌,张勋.智能变电站一次设备在线监测系统建设方案[J].科技信息.2011(22):797,799.
    [20]林洁伟.谈继电保护CT\PT回路弊端处理[J].沿海企业与科技.2010(9):117-118.
    [21]秦越.变电所电压互感器故障及分析处理[J].煤矿现代化.2011(2):64-65.
    [22]毕君.电压互感器故障判断及电量分析[J].电工技术.2011(3):62-63.
    [23]Tamronglak S. Analysis of Power System Disturbances due to Relay Hidden Failures[D]. Blacksburg, Virginia:Virginia Polytechnic and State University,1994.
    [24]Tamronglak S, Horowitz S H. Anatomy of power system blackouts:preventive relaying strategies[J]. Power Delivery, IEEE Transactions on.1996,11(2):708-715.
    [25]Phadke A G, Thorp J S. Expose hidden failures to prevent cascading outages[J]. Computer Applications in Power, IEEE.1996,9(3):20-23.
    [26]Phadke A G. Anatomy of Power System Blackouts and Preventive Strategies by Rational Supervision and Control of Protection Systems[R]. Martin Marietta Energy Systems, Inc. Oak Ridge, Tennessee,1993.
    [27]刘辉.继电保护CT、PT回路缺陷处理要点分析[J].今日科苑.2010(2):72.
    [28]高仕斌.基于变电所自动化系统的互感器断线检测[J].铁道学报.2002,24(2):39-43.
    [29]兰世红,万全,张建.导纳法在二次回路故障监测中的应用分析[J].电测与仪表.2007,44(3):25-29.
    [30]熊小伏,杨雪东,刘年.基于站间信息的电子式互感器故障协同诊断方法[J].电力系统保护与控制.2012(21):80-83.
    [31]程宏波,罗杰,王勋,等.一种基于解析冗余的互感器故障的检测及容错方法[J].电力系统保护与控制.2011,39(23):69-73.
    [32]电力工业部科学技术情报研究所.国外电网结构和供电可靠性计算[M].1980.
    [33]湖北省电力工业局.湖北电网1972年7月7日事故报告[R].1972.
    [34]广东省电力工业局.广东电网九月二十日大面积停电事故报告[R].1990.
    [35]印永华,郭剑波,赵建军,等.美加“8.14”大停电事故初步分析以及应吸取的教训[J].电网技术.2003,27(10):8-11,16.
    [36]De La Ree J, Elizondo D C. A methodology to assess the impact of hidden failures in protection schemes[C].2004.
    [37]林涛,范杏元,徐遐龄.电力系统脆弱性评估方法研究综述[J].电力科学与技术学报.2010,25(4):20-24.
    [38]丁理杰,刘美君,曹一家,等.基于隐性故障模型和风险理论的关键线路辨识[J].电力系统自 动化.2007,31(6):1-5,22.
    [39]刘青,王增平,郑振华.小波奇异熵在线路暂态保护和全线相继速动保护中的应用[J].电力系统自动化.2009,33(22):79-83.
    [40]Huang J. Adaptive wide area protection of power system[D]. Iowa State University,2004.
    [41]陈利,蒋维东,杨礼.支持向量数据描述法在变压器故障预警中的应用[J].西南民族大学学报(自然科学版).2008,34(3):568-571.
    [42]韩郁葱,郜兵.模糊综合评判在设备故障预警专家系统中的应用[J].合肥工业大学学报(自然科学版).2007,30(6):746-749.
    [43]赵扬,阎有运.基于Lab VIEW的设备状态监视与故障预警系统[J].科技信息.2009(17):45-46.
    [44]何正友,程宏波.高速铁路牵引供电系统健康管理及故障预警体系研究[J].电网技术.2012,36(10):259-264.
    [45]Bajracharya G, Koltunowicz T, Negenborn R, et al. Optimization of maintenance for power system equipment using a predictive health model[C].2009.
    [46]Morgan I, Honghai L, Tormos B, et al. Detection and Diagnosis of Incipient Faults in Heavy-Duty Diesel Engines[J]. Industrial Electronics, IEEE Transactions on.2010,57(10):3522-3532.
    [47]蔡伟贤.继电保护隐藏故障风险分析及电网扰动记录方法研究[D].重庆大学,2008.
    [48]Elizondo D C, de La Ree J, Phadke A G, et al. Hidden failures in protection systems and their impact on wide-area disturbances[Z].2001:2,5.
    [49]李文翔.电力系统继电保护的隐形故障及处理措施研究[J].数字技术与应用.2011(11):67-69.
    [50]熊小伏,王胜涛,孙鑫,等.一种基于小波的继电保护启动元件性能监测方法[J].电力系统保护与控制.2010,38(24):43-47.
    [51]熊小伏,刘晓放.基于WAMS的继电保护静态特性监视及其隐藏故障诊断[J].电力系统自动化.2009,33(9):11-15,19.
    [52]张玮,潘贞存,李磊.一种基于线路相关集的大电网继电保护隐藏故障算法[J].继电器.2007,35(22):1-5,22.
    [53]孙鑫,熊小伏,杨洋.基于故障录波信息的输电线路继电保护内部故障在线检测方法[J].电力系统保护与控制.2010,38(3):6-10.
    [54]刘翠艳,杨贵宇.小波变换在继电保护隐藏故障检测中的应用[J].中国新技术新产品.2011(23):159-160.
    [55]吕静,陈青,魏华.电力系统继电保护中一种新型在线校核方法的研究[J].广东输电与变电技术.2006(5):1-3.
    [56]曾丽柳.继电保护隐藏故障监测及风险分析方法研究[J].科技风.2012(13):123-152.
    [57]周鸿坤.继电保护隐藏故障监测方法研究[J].硅谷.2011(24):92.
    [58]刘晓放.继电保护静态特性监视及隐藏故障诊断方法研究[D].重庆大学,2009.
    [59]王胜涛.继电保护隐藏故障监测方法研究[D].重庆大学,2010.
    [60]王伟,余锐,熊小伏,等.基于继电保护信息管理系统的隐藏故障分析[J].四川电力技术.2009(2):54-57.
    [61]张信权,梁德胜,赵希才.时钟同步技术及其在变电站中的应用[J].继电器.2008,36(9):69-72,86.
    [62]谢黎,黄国方,沈健.数字化变电站中高精度同步采样时钟的设计[J].电力系统自动化.2009,33(1):61-65.
    [63]赵敏,陈红伟.数字化变电站的主要特征和关键技术分析[J].中国电力教育.2012(33).
    [64]李秉宇,郝晓光.保护用电流互感器励磁特性测试及误差校核[J].电力自动化设备.2011,31(1):146-149.
    [65]谭熙静.复杂配电网健康诊断及隐藏故障识别[D].西南交通大学,2012.
    [66]吕艳萍,刘亚东.应用数学形态学方法分析识别特高压线路雷击干扰[J].高电压技术.2010,36(12):2948-2953.
    [67]张小瑜,吴俊勇.电气化铁路接入电力系统的电压等级问题[J].电网技术.2007,31(7):12-17.
    [68]熊小伏,杨雪东,刘年.基于站间信息的电子式互感器故障协同诊断方法[J].电力系统保护与控制.2012(21).
    [69]张雪松,王慧芳,黄晓明,等.继电保护隐含故障探讨[J].电力建设.2011,32(2):47-51.
    [70]王奇,刘志刚,白玮莉,等.基于PSCAD/EMTDC的牵引供电系统仿真模型研究[J].电力系统保护与控制.2009,37(16):35-40,45.
    [71]戴铭.10kV地下电缆早期故障检测与识别方法探讨[D].西南交通大学,2012
    [72]吴杰余,张哲,尹项根,等.电气二次设备状态检修研究[J].继电器.2002,30(2):22-24.
    [73]王鑫.高速铁路牵引变电所容性设备在线监测系统设计及应用[D].西南交通大学,2012.
    [74]刘海鹏.大中型水电站设备健康状态评估体系研究[D].重庆大学,2010.
    [75]刘蓉.城轨车辆设备维修策略优化与决策模型[D].北京交通大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700