上颌尖牙埋伏的生物力学分型与个体化诊疗
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上颌尖牙埋伏阻生是指上尖牙在正常萌出期间,因为颌骨、邻牙或纤维组织阻挡埋伏于粘膜或骨内,而不能萌出到牙弓中正常位置。其对患者口腔正常功能和美观有较大影响,是正畸临床疑难病症之一。以往国内外学者的研究多集中在上颌埋伏尖牙的定位诊断和治疗方法上,对正畸治疗过程中埋伏尖牙移动的生物力学机制认识并不清楚。本研究将影像工程、非线性有限元分析和实验力学技术紧密结合,旨在实现对上颌埋伏尖牙正畸牵引过程的动态仿真和生物力学的量化研究,以建立上颌尖牙埋伏的生物力学分型系统,用于指导临床对埋伏尖牙的精确诊断和个体化矫治器的开发。
     研究方法
     第一部分:对102例上颌尖牙埋伏患者牙颌螺旋CT扫描数据采用表面遮盖成像的三维重建方法,展现各埋伏尖牙及邻近结构的形态、大小和位置。在此基础上,通过对121颗上颌埋伏尖牙与邻牙之间三维位置关系的统计分析,建立适合上颌埋伏尖牙的CT影像分型。再将所有上颌尖牙阻生患者,分为42名腭侧阻生组和60名唇侧阻生组。选择年龄、性别匹配,上颌尖牙正常萌出的50名患者作为对照组。应用MIMICS软件完成牙颌三维CT影像测量,获得所有患者的上前牙宽度、牙弓宽度及颌骨宽度等形态学数据,并进行统计学分析。
     第二部分:选取2例不同类型的上颌尖牙埋伏患者,以其CT数据为基础,利用逆向工程、快速成型等技术来建立包括牙颌组织及矫治器的仿真模型。在前期研究基础上,采用一种超弹模型作为牙周膜材料的非线性本构模型。在不同CT影像分型的上颌埋伏尖牙三维有限元模型上,自不同方向分别加载力值为60g、75g、100g、120g、150g的牵引力,应用ABAQUS软件分析其牙周膜应力分布的量化改变,统计归纳各自的生物力学特点,并通过相移电子散斑干涉技术进行验证,为建立适合不同上颌尖牙埋伏情况的生物力学分型提供理论依据。
     第三部分:利用三维影像导航技术研究开发适合埋伏牙开窗手术的计算机辅助导航定位系统,并对系统精度进行测试。依据不同生物力学分型的上颌埋伏尖牙在正畸牵引过程中的生物力学特点,建立埋伏尖牙矫治难度评估体系,并对现有埋伏牙正畸牵引固定矫治器的结构进行优化和改良,设计一种具有局部调节能力的矫治器方案。
     研究结果
     1、建立了上颌埋伏尖牙CT影像分型数据库并对不同类型上颌尖牙埋伏患者牙颌形态进行了分析,结果显示唇侧阻生患者的所有前牙宽度大于对照组和腭侧组,均有统计学差异;腭侧尖牙阻生患者的中切牙及侧切牙宽度小于正常对照组,有统计学差异,但腭侧尖牙阻生患者的尖牙宽度与对照组比较,无显著性差异;唇、腭侧尖牙阻生患者的第一双尖牙区牙弓宽度都小于对照组,均有显著性差异,但唇、腭侧两组间比较,无统计学差异;三组患者的第一磨牙区牙弓宽度、鼻腔宽度、上下颌骨宽度及两者差值和比例相互之间均无统计学差异。
     2、应用CT扫描和逆向工程技术建立了包括上颌牙列、牙周膜、牙槽骨及矫治器的高精度非线性三维有限元模型。结合非线性有限元分析法和相移电子散斑干涉实验用于研究不同类型上颌埋伏尖牙在牵引力作用下的牙周组织应力应变。两者的分析结果经比较基本一致,说明该有限元分析方法是可靠的。
     3、非线性有限元分析结果显示:不同大小载荷下,均表现为上颌埋伏尖牙牙体长轴与正畸力牵引方向的夹角越小,埋伏牙牙周膜应力分布越平均,越易于被牵出;越大则牙周膜应力分布越集中,越不利于被牵出。以此为主要依据创建了上颌尖牙埋伏的生物力学分型及其矫治难度评估体系。
     4、设计了一种新的埋伏牙定位方法和埋伏牙立体定位专用装置,并自主开发了一套适合口腔科使用的手术导航软件,系统测试结果表明可用于指导埋伏牙开窗手术的精确定位。
     5、提出了由可旋转式托槽和悬臂梁式加力装置组成的新型埋伏尖牙个体化牵引矫治器设计方案。结论
     1、首次应用CT三维重建影像测量分析上颌尖牙埋伏患者的牙颌形态特点,揭示了上颌尖牙唇侧和腭侧阻生患者的牙颌形态学特征存在差异,上颌侧切牙宽度和第一双尖牙区牙弓宽度的变化与上尖牙埋伏位置高度相关。
     2、以牙颌CT影像和逆向工程建模为基础,选用非线性牙周膜本构模型进行三维有限元计算并应用相移电子散斑干涉技术验证结果的方法是切实可行的,能较好用于上颌埋伏尖牙正畸移动的生物力学分析。
     3、上颌埋伏尖牙与邻牙的三维空间位置关系决定其受相同大小方向正畸牵引力下牙周膜应力分布的特征。埋伏尖牙的方位越有利于其牙体长轴与临床需要的牵引方向一致,越容易助萌,反之则越困难。
     4、上颌尖牙埋伏的生物力学分型系统基于三维CT影像和生物力学分析的结果而提出,具有一定的科学理论基础,并且简明、直观,对上颌埋伏尖牙的诊断和治疗有重要的指导意义。
     5、上颌埋伏尖牙三维影像导航定位系统、矫治难度评估体系和个体化矫治器系统的联合运用,有助于实现埋伏尖牙的个性化诊疗,因此具有良好的临床应用前景。
Maxillary canine impaction is a condition in which a canine is embedded in the maxillary alveolus so that its eruption is prevented or the tooth is locked in position by bone or by the adjacent teeth. The impacted canine affects the function and aesthetic of oral cavity.The treatment is usually a challenge to orthodontists. The research in existence about the impacted canine mostly focus on the orientation of impacted tooth and the treatment.But biomechanical mechanism on traction of impacted canine is not clear . In order to realize dynamic simulation and biomechanical quantization of the process during traction of impacted canine, imaging engineering method, nonlinear finite element method, and experimental mechanics method were used to inquire this problem. The aim of this study was to establish a biomechanical classification system for maxillary canine impactions. The classification system will guide the precise diagnosis and development of individualized orthodontic appliance for impacted canines.
     Methods:
     Part I: To show the 3D shape, size and position of the displaced canines, Surface Shaded Display method was used to reconstruct the dentomaxillofacial CT data of 102 patients with maxillary impacted canines. Based on the analysis of 121 impacted canines' spatial relationship to adjacent teeth, a 3D CT image classification system for maxillary canine impactions was established. Patients with impaction of maxillary canines were divided into two groups. 42 patients were in palatal group and 60 patients in labial group. The control group comprised 50 untreated patients who were matched for age and sex exhibiting normally erupted and undisplaced maxillary canines. MIMICS software was used to measure the 3D CT images of jaw and teeth. The maxillary anterior teeth size, maxillary arch and jaw width were measured and analyzed statistically among the three groups.
     Part II: Based on the CT data of 2 patients with different maxillary impacted canines, the dummy model of maxillary dentition, periodontal tissue and Edgewise appliance were set up by reverse engineering software and the rapid prototyping technology. A hyperelastic model was applied to build the nonlinear constitutive model of periodontal ligament.Forces of 60g, 75g, 100g, 120g and 150g were exerted to the finite element models of different impacted canines from different driections. ABAQUS software was use to analyze stress changes of their periodontal ligament. The results of the simulations were tested by experiments of digital speckle pattern interferometry.
     Part III: A computer-assisted surgical navigation system for exposure of impacted teeth was developed by using 3D image guided technology, and an accuracy test was performed. According to biomechanical characteristics in the procedure of impacted maxillary canine movements produced by orthodontic load, a evaluating criterion for difficulty in therapy was established and a set of individualized orthodontic appliance for repositioning of impacted maxillary canines was designed by using computer-aided technology.
     Results:
     1. A database for 3D CT image of different maxillary canine impactions was established. In this database, all anterior teeth size of the labial group was the largest in three groups. In the palatal group, the central and lateral incisors were significantly narrower than that of controls but the size of canine showed no was significantly smaller in patients with impacted canines compared to the control group. The width of arch between 1st molar and jaw was almost normal in three groups.
     2. Three-dimensional finite element model of maxillary dentition, periodontal ligament, alveolar bone and Edgewise appliances were set up by CT scanning and reverse engineering technology. Through nonlinear finite element analysis and electronic speckle pattern interferometer to conduct a preliminary verification, the result was similar. That means that the method of finite element analysis was reliable.
     3. The result of nonlinear finite element analysis showed that when the long axis of the maxillary impacted teeth has angle with the direction of the force, the angle is larger, the maximum stress is larger and the stress distribution concentrates more. The angle between the orientation of the traction and the long axis of the impacted canine is smaller, the stress distribution is more average.According to this result, a novel biomechanical classification system for maxillary canine impactions and evaluation system for difficulty in maxillary impacted canines’therapy were established.
     4. A novel positioning method and device for impacted teeth was designed. A set of surgical navigation software for department of stomatology was developed and proved to be able to guide the surgical exposure of impacted teeth precisely.
     5. A design proposal of individualized orthodontic appliance for impacted maxillary canines which is comprised of a rotatable bracket and cantilever beam forcing device was created.
     Conclusion:
     1. There is a distinction of dentomaxillofacial morphology between palatal and labial canine impactions. The changes of maxillary lateral incisors and arch width between the 1st premolar showed significant associations with the maxillary canine impaction.
     2. Based on the CT image and reverse engineering ,the method through nonlinear finite element analysis and electronic speckle pattern interferometer to test is feasible.The model can be used to biomechanics analysis for numerical simulation of different impacted maxillary canine movements produced by orthodontic load.
     3. The impacted canines' spatial relationship to adjacent teeth determines the characteristics of stress distribution on periodontal ligament. When the long axis of impacted canine is in line with the desired direction of the force,,there are more advantage to the eruption of the impacted canine.
     4. The biomechanical classification system for maxillary canine impactions was established based on 3D CT image and results of biomechanical analysis. This concise classification has a basement of science theory. It will play an important role in diagnosis and the treatment of impacted canines in the future.
     5. Computer-assisted surgical navigation system, difficulty evaluation system and individualized orthodontic appliance will contribute to realize the individualized diagnosis and treatment for impacted maxillary canines, and has good perspective in clinical application.
引文
[1] Bishara SE. Impacted maxillary canines: a review. Am J Orthod Dentofacial Orthop, 1992,101(2):159-171
    [2]曾祥龙.现代口腔正畸学诊疗手册.北京:北京医科大学出版社,2000.460-465
    [3] Warford JH Jr, Grandhi RK, Tira DE. Prediction of maxillary canine impaction using sectors and angular measurement. Am J Orthod Dentofacial Orthop, 2003,124(6):651-655
    [4]姜皑南,顼晋昆,屈双燕,田睿,闫美蓉,徐菁.鼻中隔埋伏牙致鼻中隔脓肿一例.中华耳鼻咽喉头颈外科杂志, 2005,40(6):457
    [5] Schuller H, Freisfeld M. Damage to the remaining teeth from displaced upper canines. Rofo, 1992,157(2):107-110
    [6] Lindauer SJ, Rubenstein LK, Hang WM, et al. Canine impaction identified early with panoramic radiographs. J Am Dent Assoc, 1992,123(3):91-92, 95-97
    [7] Haney E. Comparison of Traditional Radiography and 3D Cone-Beam CT in Management of Impacted Canines. 2006,64(9):83-84
    [8]严斌,王林,张文健,朱鹏,鲍旭东.虚拟牙颌面演示分析系统的初步建立.口腔医学, 2007,27(03):184-186
    [9]邵林琴,巩若箴.上颌埋伏牙的CT分型及价值.医学影像学杂志, 2006,16(8):837-838
    [10]张治勇,邝喆.锥形束CT与牙槽骨九分区法在骨埋伏牙定位中的应用研究.华西口腔医学杂志, 2008,26(6):636-639
    [11]张志华,林军.上颌前牙埋伏牙的定位及导萌治疗研究进展.口腔医学, 2009,29(6):325-327
    [12] Ferguson JW. Management of the unerupted maxillary canine. Br Dent J, 1990,169:11-17
    [13] Jacoby H. The 'ballista spring" system for impacted teeth. Am J Orthod, 1979,75(2):143-151
    [14] Faber J, Berto PM, Quaresma M. Rapid prototyping as a tool for diagnosis and treatment planning for maxillary canine impaction. Am J Orthod Dentofacial Orthop, 2006,129(4):583-589
    [15]张文健,王林,严斌,蔡传宝,李剑,鲍旭东.计算机辅助正畸托槽间接粘接技术的研究.口腔医学, 2007,27(04):184-186
    [16] Nanda R. Biomechanics in clincal orthodontics. Newyork:Saunders, 1997.99-109
    [17]魏志刚,严斌.基于弓丝预应力分析的正畸有限元仿真.中国生物医学工程学报, 2009,28(2):226-230,243
    [18] Moore R, Davids N, Friedenberg R. Study of a biological model of membrane function by finite element analysis. Curr Mod Biol, 1969,3(2):156-168
    [19] Thresher RW, Saito GE. The stress analysis of human teeth. J Biomech, 1973,6(5):443-449
    [20] Farah JW, Craig RG, Sikarskie DL. Photoelastic and finite element stress analysis of a restored axisymmetric first molar. J Biomech, 1973,6(5):511-520
    [21] Jones ML, Hickman J, Middleton J, et al. A validated finite element method study of orthodontic tooth movement in the human subject. J Orthod, 2001,28(1):29-38
    [22]张君,王旭霞,马士良,步捷,任旭升, Jun Z, Xu-xia W, Shi-liang MA, Jie BU, Xu-sheng R.埋伏牙牙周应力分布的三维有限元分析.华西口腔医学杂志, 2008,26(1):19-22
    [23] Kau CH, Pan P, Gallerano RL, et al. A novel 3D classification system for canine impactions--the KPG index. Int J Med Robot, 2009,5(3):291-296
    [24] Betts NJ, Vanarsdall RL, Barber HD, et al. Diagnosis and treatment of transverse maxillary deficiency. Int J Adult Orthodon Orthognath Surg, 1995,10(2):75-96
    [25] Allen D, Rebellato J, Sheats R, et al. Skeletal and dental contributions to posterior crossbites. Angle Orthod, 2003,73(5):515-524
    [26]陈松龄,冉炜,黎炽彬.螺旋CT牙体表面成像对骨内埋伏牙的定位及临床应用.华西口腔医学杂志, 2000,18(04):247-249
    [27]米方林,周燕玲,敬宗林.医学影像技术在正畸治疗埋伏牙中的应用.川北医学院学报, 2007,22(05):415-418
    [28]钟燕雷,曾祥龙,贾绮林,张万林,陈琳.上颌尖牙埋伏阻生的临床分析.中华口腔医学杂志, 2006,41(08):483-485
    [29] McSherry PF. The ectopic maxillary canine: a review. Br J Orthod, 1998,25(3):209-216
    [30] Chaushu S, Sharabi S, Becker A. Dental morphologic characteristics of normal versus delayed developing dentitions with palatally displacedcanines. Am J Orthod Dentofacial Orthop, 2002,121(4):339-346
    [31] Anic-Milosevic S, Varga S, Mestrovic S, et al. Dental and occlusal features in patients with palatally displaced maxillary canines. Eur J Orthod, 2009,31(4):367-373
    [32] Paschos E, Huth KC, Fassler H, et al. Investigation of maxillary tooth sizes in patients with palatal canine displacement. J Orofac Orthop, 2005,66(4):288-298
    [33] Kuftinec MM, Shapira Y. The impacted maxillary canine: I. Review of concepts. ASDC J Dent Child, 1995,62(5):317-324
    [34]钟燕雷,曾祥龙,贾绮林.上颌尖牙埋伏阻生患者上颌切牙牙齿宽度改变的研究.口腔正畸学, 2005,12(1):24-26
    [35] Preda L, La Fianza A, Di MEM, et al. The use of spiral computed tomography in the localization of impacted maxillary canines. Dentomaxillofac Radiol, 1997,26(4):236-241
    [36] Lagravere MO, Carey J, Toogood RW, et al. Three-dimensional accuracy of measurements made with software on cone-beam computed tomography images. Am J Orthod Dentofacial Orthop, 2008,134(1):112-116
    [37] Walker L, Enciso R, Mah J. Three-dimensional localization of maxillary canines with cone-beam computed tomography. Am J Orthod Dentofacial Orthop, 2005,128(4):418-423
    [38] Park SH, Yu HS, Kim KD, et al. A proposal for a new analysis of craniofacial morphology by 3-dimensional computed tomography. Am J Orthod Dentofacial Orthop, 2006,129(5):600.e23-34
    [39] Bass TB. Observations on the misplaced upper canine tooth. Dent Pract Dent Rec, 1967,18:25-33
    [40] Garn SM, Lewis AB. The gradient and the pattern of crown-size reduction in simple hypodontia. Angle Orthod, 1970,40(1):51-58
    [41] Peck S, Peck L, Kataja M. Prevalence of tooth agenesis and peg-shaped maxillary lateral incisor associated with palatally displaced canine (PDC) anomaly. Am J Orthod Dentofacial Orthop, 1996,110(4):441-443
    [42]王镶珊.上颌埋伏阻生中切牙的临床调查及三维研究分析:[硕士学位论文].温州:温州医学院,2009
    [43] Langberg BJ, Peck S. Tooth-size reduction associated with occurrence of palatal displacement of canines. Angle Orthod, 2000,70(2):126-128
    [44] Dewel BF. The upper cuspid: its development and impaction. Angel Ortho, 1949,19:79-90
    [45] Jacoby H. The etiology of maxillary canine impactions. Am J Orthod, 1983,84(2):125-132
    [46] Zilberman Y, Cohen B, Becker A. Familial trends in palatal canines, anomalous lateral incisors, and related phenomena. Eur J Orthod, 1990,12(2):135-139
    [47] Becker A. The orthodontic treatment of impacted tooth. London:Martin Dunit.44-53
    [48] Peck S, Peck L. Palatal displacement of canine is genetic and related to congenital absence of teeth. J Dent Res, 1997,76(3):728-729
    [49] McConnell TL, Hoffman DL, Forbes DP, et al. Maxillary canine impaction in patients with transverse maxillary deficiency. ASDC J Dent Child, 1996,63(3):190-195
    [50] Langberg BJ, Peck S. Adequacy of maxillary dental arch width in patients with palatally displaced canines. Am J Orthod Dentofacial Orthop, 2000,118(2):220-223
    [51] Saiar M, Rebellato J, Sheats RD. Palatal displacement of canines and maxillary skeletal width. Am J Orthod Dentofacial Orthop, 2006,129(4):511-519
    [52]严拥庆,阎贺庆,蔡中,王冬梅,钱玉芬,王成焘.方丝弓矫治器三维有限元力学模型的建立.上海口腔医学, 2005,14(3):301-305
    [53] Yoshida N, Koga Y, Peng CL, et al. In vivo measurement of the elastic modulus of the human periodontal ligament. Med Eng Phys, 2001,23(8):567-572
    [54]龙驭球.有限元法概论.北京:高等教育出版社,1978.20-28
    [55]潘炜娟,张保卫,叶少波,沈金根.牙齿与桩核三维有限元建模的初步探讨.口腔颌面修复学杂志, 2000,1(3):143-144,138,T192
    [56]韩强,张富强.应用于口腔医学领域的三维测量技术.口腔材料器械杂志, 2003,12(1):39-41
    [57]孔亮,胡开进,于擘,赵海涛,张爱君,王鑫,杨君,秦新强. Matlab软件辅助建立全牙列下颌骨三维有限元模型.口腔颌面外科杂志, 2004,14(1):17-19
    [58]储顺礼,周延民,孟维艳,张兴乐.上颌后牙区、上颌窦、颧骨及颧骨种植体的三维有限元模型建立.口腔医学研究, 2006,22(2):143-145
    [59]童水光.逆向工程技术.北京:机械工业出版社,2003.10-15
    [60]王霄,刘会霞,梁佳洪.逆向工程技术及其应用. 2006:19-30
    [61] Toms SR, Dakin GJ, Lemons JE, et al. Quasi-linear viscoelastic behavior ofthe human periodontal ligament. J Biomech, 2002,35(10):1411-1415
    [62] Provatidis CG. A comparative FEM-study of tooth mobility using isotropic and anisotropic models of the periodontal ligament. Finite Element Method. Med Eng Phys, 2000,22(5):359-370
    [63] Toms SR, Eberhardt AW. A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am J Orthod Dentofacial Orthop, 2003,123(6):657-665
    [64] McGuinness NJ, Wilson AN, Jones ML, et al. A stress analysis of the periodontal ligament under various orthodontic loadings. Eur J Orthod, 1991,13(3):231-242
    [65] Natali AN, Carniel EL, Pavan PG, et al. Experimental-numerical analysis of minipig's multi-rooted teeth. J Biomech, 2007,40(8):1701-1708
    [66]魏志刚,严斌.基于黏弹性模型的牙周膜生物力学研究.东南大学学报(自然科学版), 2009,39(3):484-489
    [67] Kojima Y, Fukui H. Numerical simulation of canine retraction by sliding mechanics. Am J Orthod Dentofacial Orthop, 2005,127(5):542-551
    [68]张益,刘林.自动加压接骨压应力衰变的实验研究.华西口腔医学杂志, 1996,14(4):259-261
    [69]万钢,张林春.用光测法研究颈段脊柱的应力状态.上海力学, 1984,12(02):63-71
    [70]于美文.光学信息及信息处理.北京:国防工业出版社,1984
    [71]胡敏,刘磊,张丽雯,吴洪.牙体及牙周支持组织三维冻结光弹模型的设计与制作.吉林大学学报(医学版), 2006,32(6):1125-1127,封三
    [72]都承斐,丁祖泉.生物医学工程中的散斑计量法应用.医用生物力学, 2006,21(1):77-82
    [73]李映欣,邓燕.应用电子散斑干涉术对下颌单侧游离缺失修复体受载的实验研究.中华口腔医学杂志, 1998,33(2):82-84
    [74]李映欣,董本涵.应用电子散斑干涉术对单端固定桥的受载分析.上海生物医学工程, 1997,18(1):26-29
    [75]黄红燕,邱大明.电子散斑干涉技术在口腔修复力学效果测量中应用.实验力学, 1998,13(2):203-206
    [76]黄红燕,张春紫,邱大明,董本涵.用电子散斑干涉技术作磁力扩弓效应的实验研究.实用口腔医学杂志, 2005,21(3):332-334
    [77] Rodriguez D, Moreno V, Gallas M, et al. In-plane electronic speckle pattern of interference (ESPI) with optical fibre system applied to the study of the human jaw. Med Eng Phys, 2004,26(5):371-378
    [78] Kishen A, Murukeshan VM, Krishnakumar V, et al. Analysis on the nature of thermally induced deformation in human dentine by electronic speckle pattern interferometry (ESPI). J Dent, 2001,29(8):531-537
    [79] Zhang J, Jin GC, Meng LB, et al. Strain and mechanical behavior measurements of soft tissues with digital speckle method. J Biomed Opt, 2005,10(3):034021
    [80]谢仲燕,赵守亮,杨国标,刘宏伟,章彰.应用电子散斑技术测量光固化复合树脂充填物的固化收缩.实用口腔医学杂志, 2008,24(4):488-490
    [81]张天军,韩江水,屈钧利.实验力学.陕西:西北工业大学出版社,2008.203-240
    [82]金杰,张安阳, Jie J, An-yang Z.快速成型技术及其应用.浙江工业大学学报, 2005,33(5):592-595,604
    [83]郭侠,王广春.快速成型技术及其在医学领域中的应用.山东大学学报(医学版), 2003,41(5):573-574,578
    [84] Kelly JT, Prasad AK, Wexler AS. Detailed flow patterns in the nasal cavity. J Appl Physiol, 2000,89(1):323-337
    [85] Anderson JR, Chiu DT, Jackman RJ, et al. Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal Chem, 2000,72(14):3158-3164
    [86] D'Urso PS, Thompson RG, Atkinson RL, et al. Cerebrovascular biomodelling: a technical note. Surg Neurol, 1999,52(5):490-500
    [87] Binder TM, Moertl D, Mundigler G, et al. Stereolithographic biomodeling to create tangible hard copies of cardiac structures from echocardiographic data: in vitro and in vivo validation. J Am Coll Cardiol, 2000,35(1):230-237
    [88]罗春红.基于数字相移条纹投影技术的三维测量:[硕士学位论文].长沙:湖南大学,2003
    [89]陈华平.散斑干涉技术及其图像处理系统的研究:[硕士学位论文] :广东工业大学,2004
    [90]王勤波,王玲,刘又南,刘振田.埋伏倒置上中切牙导萌正畸中旋转中心变化规律的研究.实用口腔医学杂志, 2004,20(2):204-206
    [91] Arand M, Hartwig E, Kinzl L, et al. Spinal navigation in cervical fractures--a preliminary clinical study on Judet-osteosynthesis of the axis. Comput Aided Surg, 2001,6(3):170-175
    [92] Roberts DW, Strohbehn JW, Hatch JF, et al. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg, 1986,65(4):545-549
    [93] Caversaccio M, Nolte LP, Hausler R. Present state and future perspectives of computer aided surgery in the field of ENT and skull base. Acta Otorhinolaryngol Belg, 2002,56(1):51-59
    [94]张惠.仿真影像学的关键技术研究:[博士学位论文].南京:东南大学,2003
    [95]孙九爱,刘聚卑,赵俊,庄天戈.计算机辅助外科手术中立体定位技术的研究进展.生物医学工程学杂志, 2001,18(3):475-478
    [96] West JB, Maurer CR Jr. Designing optically tracked instruments for image-guided surgery. IEEE Trans Med Imaging, 2004,23(5):533-545
    [97]周振环,刘兴东.图像融合在手术导航中的应用研究.计算机工程与应用, 2004,40(31):31-32,51
    [98]陈晓军,阎士举,吴轶群,王成焘, Xiaojun C, Shiju Y, Yiqun WU, Chengtao W.基于VTK的口腔种植手术导航系统的图像配准.计算机工程, 2006,32(23):4-6
    [99] Sakabe J, Kuroki Y, Fujimaki S, et al. Reproducibility and accuracy of measuring unerupted teeth using limited cone beam X-ray CT. Dentomaxillofac Radiol, 2007,36(1):2-6
    [100]霍彦明,严勇兰,孙九爱,庄天戈.手术导航中精度问题的研究.北京生物医学工程, 2002,21(3):230-233
    [101]张诗雷,张志愿,沈国芳.计算机及三维导航技术辅助外科手术的应用进展.中国口腔颌面外科杂志, 2004,2(3):187-190
    [102] Sambataro S, Baccetti T, Franchi L, et al. Early predictive variables for upper canine impaction as derived from posteroanterior cephalograms. Angle Orthod, 2005,75(1):28-34
    [103] Celli D, Catalfamo L, Deli R. Palatally impacted canines: the double traction technique. Prog Orthod, 2007,8(1):16-26
    [104] Oppenhuizen G. An extrusion spring for palatally impacted cuspids. J Clin Orthod, 2003,37(8):434-436
    [105] Terry SJ, Thomson ME. Treatment of palatally impacted cuspids with the extrusion spring arm. J Clin Orthod, 1995,29(11):709-712
    [106]胡炜.使用悬臂梁片段弓矫治前牙阻生.中华口腔正畸学杂志, 2009,(2):61-66
    [1]张丁.口腔正畸学的临床基础.北京.中国医药科技出版社,1999,12.
    [2] BURSTONE CHARLES著解保生徐芸译.生物工程学在临床正畸学中的应用.
    [3]刘东旭,王春玲,付传云,等.三种牙移动方式时牙周应力分布的三维有限元研究.口腔正畸学,2003,10(3):120-122.
    [4]白玉兴,周洁珉,王邦康,等.国产无托槽隐形正畸矫治系统的开发与研制.北京口腔医学.2004,12(2):89-96.
    [5]陈莉,张丁,傅民魁,等.摇椅形唇弓矫治力系统的三维非线性有限元研究.中华口腔医学杂志,2004(5),39(3):239-241.
    [6]胡敏,李洪,刘磊,等.应用前倾弯弓丝治疗开口畸形的生物力学研究.中华口腔医学杂志,2004(5),39(3):23-235.
    [7]付钢,杜莉,任嫒姝.上颌第一磨牙核桩冠的三维有限元模型建立.广东牙病防治,2005,13(4):295-296.
    [8]王成焘.牙颌组织几何学与力学仿真建模的研究与应用.上海交通大学博士学位论文,20030301.
    [9] Brosh,T.,Machol,et al,Deformation/ recovery cycle of the PDL in human teeth with single or dual CP. Archives of Oral Biology. 2002,47: 25-92.
    [10] N. Slomka, A.D. Vardimon, A. Gefen, et al. The duration of the viscoela- stic PDL response due to orthodontic tipping Dental Biomechanics(205).
    [11] A.N. Natalia, E.L. Carniela, et al. Experimental–numerical analysis of minipig’s multi-rooted teeth. Journal of Biomechanics,2006(8):1-8.
    [12] C. Bourauel,S. Reimann,et al. Material parameters of the periodontal ligament– Combined experimental and numerical studies on human, pig and rat specimens. Dental Biomechanics,5812.
    [13] A. Rawlinsona, C. Elcock, A. Cheung. An in-vitro and in-vivo methodology study of alveolar bone measurement using extra-oral radiographic alignment apparatus, Image Pro-Plus software and a subtraction programme. Journal of Dentistry,2005,33:781–788.
    [14] Christopher G. Provatidis. A comparative FEM-study of tooth mobility using isotropic and anisotropic models of the periodontal ligament. Medical Engineering&Physics,2000,20:359–370.
    [15] Mc Guinness NJ, Wilson A N, Jones ML,et al. The periodontal ligament under various orthodontic loadings. Eur Orthod,1991,13:231 242.
    [16]卢燕勤,张素银,任力锋,等.正畸牙移动过程中破骨细胞出现区应力特点的三维有限元法分析.现代口腔医学杂志,2005,19(3):306-308.
    [17] Yuji Ashizawaa, Noriyuki Sahara. Quantitative evaluation of newly formed bone in thealveolar wall surrounding the root during the initial stage of experimental tooth movement in the rat. Archives of Oral Biology ,1998,43: 473-484.
    [18] Thomas R. Katona, Nasser H. Stress Analysis of Bone Modeling Response to Rat Molar Orhodontics. J.Biomechanics, 1995,28(1):27-38.
    [19]Roberts, W.E., Huja, S., Roberts, et al, 2004. Bone modelling: biomechan- ics,molecular mechanisms, and clinical per- spectives. Seminars in Orthodonti- cs 10, 123–161.
    [20] Narihiro Mitsui , Naoto Suzuki, et al. Optimal compressive force induces bone formation via increasing bone morpho- genetic proteins production and decr- easing their antagonists, Life Sciences,2005,77:3168–3182.
    [21] Narihiro Mitsui , Naoto Suzuki, et al. Optimal compressive force induces bone formation via increasing bone morphoge- netic proteins production and decrease- ng their antagonists production by Saos-2 cells. Life Sciences, 2006, 78: 2697 -2706.
    [22] Lin Tang, Zhu Lin, Yong-ming Li. Effects of different magnitudes of mechanical strain on Osteoblasts in vitro, Biochemical and Biophysical Research Communications.2006,344: 122–128.
    [23] Vasquez M, Calao E, Becerra F, et al. Initial Stre- ss differences between sliding and sec- tional mechanics with an endossous imp- lant as anchorage: a 3-dimensional finite element analysis. Angle Orthod 2001(8),71(4):247-56.
    [24] Mariano Alca?iz1, Carlos Montserr- at1,et al. An advanced system for the simulation and planning of orthodontic treatment. Medical Image Analysis, 1998,2(1): 61–77.
    [25] K. Yashiro, E. del C. Montero, K. Takada. Simulation of initial tooth displacement by inverse kinematic mode- ling: Prediction of anchorage-loss for orthodontic tooth movement Internati- onal Congress Series.2005,1284:49-54.
    [26]白丁,程碧焕,罗颂椒,等.上颌尖牙远中整体移动的阶段应力分析.四川大学学报(医学版),2004,35(3):358-360.
    [27] Hinterkausen, C.Bourauel, G. Siebers, et al. In vitro analysis of the initial tooth mobility in a novel optomechanical set-up. Medical Engineering & Physics,1998,20:40–49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700