散斑干涉信息提取技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子散斑干涉测量技术(Electronic speckle pattern interferometry,简称ESPI)是一种全场非破坏性光学测量技术,广泛应用于粗糙表面的变形测量和无损检测。在应用该技术时,准确提取相位,对物体的位移、应变、振动等测量具有重要意义。目前最常用的相位提取方法是条纹中心线法和相移法,后者多用于静态测量,因其能够得到全场相位信息而备受关注。
     在利用条纹中心线法提取相位时,由于较强颗粒噪声的影响,条纹的可见度和分辨率很差,无法正确读取条纹信息,因此滤除条纹图中的噪声是正确判读条纹信息的关键。本文利用偏微分方程滤波方法和变分法滤除散斑噪声,深入研究了各种偏微分方程滤波模型和变分滤波模型对散斑干涉条纹图的滤波效果,分析各种模型滤波性能优劣的原因,在此基础上,提出基于条纹特征的、滤波性能更佳的偏微分方程滤波方法。对滤波后的条纹图进一步采取二值化、骨架线提取、条纹级数标定、插值一系列操作,得到物体的三维相位信息。在相移相位测量技术中,本文对相位图的生成方式、包裹相位图的滤波方法以及相位展开方法等关键技术进行了探讨和研究。
     由于电子散斑干涉测量技术具有实时显示、灵敏度高、全场测量等优点,该技术在工业无损检测中得到广泛的应用。本文利用电子错位散斑干涉方法,结合相移技术,搭建了一个小型化的错位相移无损检测系统,检测轮胎气泡缺陷。
     本文的创新性工作概括如下:
     (1)在散斑条纹图的滤波方面,改进了PM(Perona-Malik)变分滤波模型和总变分滤波模型。
     (2)提出了两个新的偏微分方程滤波模型:结合条纹的密度信息和其含有乘性噪声的特点,提出一种同态偏微分方程滤波方法;结合条纹的方向信息,提出一种基于条纹等值线和法向曲线的各向异性滤波模型,滤波效果良好。
     (3)在相位提取技术方面,将基于热传导方程的MBO(Merriman-Bence-Osher)方法引入条纹图二值化过程,并对其进行改进,二值化效果明显优于传统阈值方法;改进了最小二乘相位展开方法,提高了相位展开精度。
     (4)搭建了一个小型化的错位散斑相移轮胎气泡缺陷检测系统。对系统进行了总体设计,并获取了轮胎缺陷图片。系统可脱离防震台检测,切实可行。
Electronic speckle pattern interferometry (ESPI) is a whole-field, nondestructive measurement technique, which is well-known for deformative and nondestructive measurement of coarse surface. As using this technique, accurate extraction of phase value is of fundamental importance for the successful measurement of displacement, strain and vibration. At present, two of the most comprehensive phase extraction techniques are the fringe-centerline method and the phase-shifting technology. The latter method is used for static measurement mainly, and is paid more attention because the whole-field phase information is available.
     As using fringe-centerline method to extract phase, the strong grain-shape random noise leads to heavy restrain to the fringe on visibility and resolving ability. It is difficult of accurate extraction of phase value from fringe patterns. Therefore, research on effectively filter to the fringe patterns is of fundamental importance for the development of ESPI. The partial differential equations (PDE) filter methods and the variational filter methods were used for noise reduction. We discussed the filter effect of various PDE filter models and variational filter models to ESPI fringe patterns, analyzed reasons of success or failure, and proposed more effective PDE filter models based on fringe features. After denoising, a series of operations, binarization, skeleton extraction, fringe order assignation and interpolation, were implemented and the three-dimension phase map was obtained. For phase-shifting technology, the generation modes for phase map, filter method for wrapped phase map and the phase unwrapped technique were studied.
     Owing to the prominent advantages, such as real-time display, high sensitivity and whole-field measure, ESPI is widely used in industrial nondestructive detection. Applying the electronic shearing speckle pattern interferometry (ESSPI) and the phase-shifting technology, a miniaturization shearing phase-shifting nondestructive detection system was set up for bubbles detection of tire.
     The major innovations achieved in the dissertation are as follows:
     (1) For noise reduction of ESPI fringe patterns, two variational filter models, i.e. PM variational model and total variational model, were improved.
     (2) Two new PDE filter models were presented. Considering the imfromation of fringe density and the feature of containing multiplicative noise, a homomorphic PDE filter method based on fringe orientation was proposed. And combining the isophote line and the normal curve, a new anisotropic PDE filter method was presented. The filter effect has been improved distinctly.
     (3) For phase extraction technology, the MBO algorithm based on the heat conduction equation was introduced for the binarization of fringe patterns for the first time, and the binarization effect by our improved algothm is better than that by those traditional threshold methods. Furthermore, the least-squares phase unwrapped method was reformed and the precision was improved.
     (4) A miniaturization shearing speckle phase-shifting system for bubbles detection of tire was set up. The overall design was made for the system and some images about tire defect were acquired. The system can not be quakeproof. The feasibility of the system was validated.
引文
[1]杨国光,近代光学测试技术,北京:机械工业出版社,1986, 131~188
    [2]罗伯特.K.厄尔夫,散斑计量学,北京:机械工业出版社,1990
    [3]孙爽滋,ESPI条纹图像的计算机自动处理,[硕士学位论文],哈尔滨工业大学,2000
    [4]王文平,电子散斑干涉条纹图和相位图滤波方法的应用研究,[硕士学位论文],天津大学,2007
    [5] X.L. Gong, S. Toyooka, Investigation on mechanism of plastic deformation by digital speckle pattern interferometry, Experimental Mechanics, 1999, 39:25~29
    [6] C. Quan, C.J. Tay, F. Yang, et al, Phase extraction from a single fringe pattern based on guidance of an extreme map, Appl. Opt. 2005, 44:4814~4821
    [7]秦玉文,戴嘉彬,陈金龙,电子散斑方法的进展,试验力学,1996,11(4):410~416
    [8] F.P. Chiang, D. Li, W. Radom, Speckle Patterns for displacement and Strain measurement : Some recent advances, Opt. Eng., 1985, 24:936~943
    [9]汪柳生,伍小平,散斑与数字技术,试验力学,1989,4(4):341~349
    [10] Y. Y. Hung, R. E. Rowlands, and 1. M. Daniel, Speckle-Shearing Interferometric Technique: a Full-Field Strain Gauge, Appl. Opt., 1975, 14: 618~622
    [11] T. Young and K.S. Fu, Handbook of Pattern Recognition and Image Processing, Academic Press.INC, Harcourt Brace Jovanovich, Orlando, Florida, 1986.
    [12]刘文耀,光电图像处理,北京:电子工业出版社,2002
    [13] Y. Qin, J. Chen and H. Fan, The study and application of a new filtering method on electronic speckle pattern interferometric fringe [J], Optics and Lasers in Engineering, 2003, 39: 449~456.
    [14] Q. Yu, Spin filtering processes and automatic extraction of fringe centerlines in digital interferometric patterns, Appl. Opt., 1988, 27(18): 3782~3784
    [15] Q. Yu, X. Sun, X. Liu, Z. Qiu, Span filtering with curve windows for interferometric fringe patterns, Appl. Opt., 2002, 41(14): 2650~2654
    [16]于起峰,伏思华,基于条纹方向和条纹等值线的ESPI与InSAR干涉条纹图处理方法,北京:科学出版社,2007
    [17] R. Crane, Interference Phase Measurement, Appl. Opt., 1969, 8: 538~542
    [18] R. D?ndliker, Heterodyne holographic interferometry, in Progress in Optics, 1980, Vol. 17, E.Wolf, Ed. (North-Holland, Amsterdam), Chap. 1
    [19] N.A. Massie, Real time digital heterodyne interferometry, Appl. Opt., 1980, 19:154~160
    [20]罗印龙,PZT相移系统及其标定方法,[硕士学位论文],昆明理工大学,2004
    [21] C. Roddier, F. Roddier, Interferogram analysis using Fourier transform techniques, Appl. Opt., 1987, 26: 1668~1673
    [22] D.J. Bone, H.-A. Bachor, and R.J. Sandeman, Fringe-pattern analysis using a 2-D Fourier transform, Appl. Opt., 1986, 25(10): 1653~1660
    [23] K.A. Nugent, Interferogram analysis using an accurate fully automatic algorithm, Appl. Opt., 1985, 24(18), 3101~3105
    [24] D.W. Robinson, Automatic fringe analysis with a computer image-processing fringe pattern analysis, Appl. Opt., 1983, 22(14): 2169~2176
    [25] M. Takeda, I. Hideki, S. Kobayashi, Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry, J. Opt. Soc. Am., 1982, 72: 156~160
    [26]金观昌,唐寿鸿,同步相位算法及其应用于自动条纹图分析,应用激光,1991,10(2):63~66
    [27] Xin Chen, Maureen Gramaglia, and John A. Yeazell, Phase-shift calibration algorithm for phase-shifting interferometry, J. Opt. Soc. Am. A, 2000, 17: 2061~2066
    [28] S.H. Baik, S.K. Park, C.J. Kim, et al, Two-channel spatial phase shifting electronic speckle pattern interferometer, Opt. Commun., 2001, 192:205~211
    [29] C.J. Tay, C. Quan, L. Chen, et al, Phase extraction from electronic speckle patterns by statistical analysis, Opt. Commun., 2004, 236:259~269
    [30] G. Lai, T. Yatagai, Generalized phase-shifting interferometry, J. Opt. Soc. Am. A, 1991, 8(5): 822~827
    [31] A.L. Weijers, H. van Brug, and H. J. Frankena, Polarization phase stepping with a savart element, Appl. Opt., 1998, 37(22): 5150~5155
    [32] K. Qian, F. Shu, and X. Wu, Determination of the best phase step of the Carréalgorithm in phase shifting interferometry, Measurement science and technology, 2000, 11: 1220~1223
    [33]陈金龙,秦玉文,计欣华,双界面材料粘接质量定量检测的相移错位散斑技术,复合材料学报,2001,18(1):127~129
    [34] F.S.Chau, J. Zhou, Direct measurement of curvature and twist of plates using digital shearography, Optics and Lasers in Engineering, 2003, 39: 431~440
    [35]王任达,邓兴峰,激光电子散斑术用于蜂窝夹层结构粘接质量检测,无损检测技术交流文集,中国航空科技机电集团公司,2000
    [36]吕晓旭,钟丽云,陈虹等,数字剪切散斑用于物体的三维面形测量,激光杂志,2002,23(1):63~65
    [37] C. Wyant, Interferomtric optical metrology: basic principles and new system, Laser focus, 1982, 3: 65~71
    [38]金观昌,相位测量技术的新进展及其应用,物理,1993,22(6):374~377
    [39]陈金龙,洪友仁,基于液晶体的大错位量散斑相移技术研究,光学学报,2004,24(9):1292~1296
    [40]邹博,InSAR干涉相位处理研究,[硕士学位论文],国防科学技术大学,2005
    [41]李勇,相位测量轮廓术关键技术及应用研究,[博士学位论文],四川大学,2006
    [42]孙平,李爱华,张丽等,在电子散斑干涉中利用反相位法进行三维变形测量,光学学报,2006,26(2):193~196
    [43]朱越,光学相位测量中余弦相位展开方法研究,[硕士学位论文],昆明理工大学,2004
    [44]杨新,图像偏微分方程的原理与应用,上海:上海交通大学出版社,2003,68~105
    [45] G. Sapiro, Geometric partial differential equations and image analysis, Cambridge University Press, 2001, 310~311
    [46] C. Tang, F. Zhang, H. Yan and Z. Chen, Denoising in electronic speckle pattern interferometry fringes by the filtering method based on partial differential equations, Opt. Commun., 2006, 260: 91~96
    [47] C. Tang, F. Zhang and Z. Chen, Contrast enhancement for electronic speckle pattern interferometry fringes by the differential equation enhancement method, Appl. Opt., 2006, 45, 2287~2294
    [48] Chen Tang, Fang Zhang, and Botao Li, Performance evaluation of partial differential equation models in electronic speckle pattern interferometry and mollification method of phase map, Appl. Opt., 2006, 45 (28): 7392~7400
    [49]杜啸晓,施鹏飞,杨新等,一种改进的偏微分方程图像平滑方法,上海交通大学学报,2001,35(2):201~204
    [50] G. Sapiro and V. Caselles, Histogram modification via differential equations, Journal of Differential Equations, 1997, 135:238~268
    [51] G. Sapiro and V. Caselles, Contrast enhancement via image evolution flows, Graph. Models Image Process. 1997, 59:407~416
    [52] J. Deng and H.T. Tsui, A fast level set method for segmentation of low contrast noisy biomedical images, Pattern Recognition Letters, 2002, 23:161~169
    [53] J.-M. Morel and S. Solimini, Variational methods in image segmentation, Progress in Nonlinear Differential Equations and Their Applications, Birkh?user, Boston, 1995, 14: 245
    [54] D. Gabor, Information theory in electron microscopy, Lab. Invest. 1965, 14: 801~807
    [55] J.J. Koenderink, The structure of images, Biol. Cyber. 1984, 50: 363~370
    [56] A. P. Witkin, Scale-space filtering, Proceedings of the International Joint Conference on Artificial Intelligence, ACM Inc. 1983, 1019~1021
    [57] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE TPAMI. 1990, 12: 629~639
    [58] L. Rudin, S. J. Osher, and E. Fatemi. Total variation based image restoration with free local constraints, Proc. IS IEEE Int. Conf. Image Processing, 1994, 1: 31~35
    [59] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 1989, 17: 577~685
    [60] L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms [J], Physica D, 1992, 60: 259~268
    [61]乔明,基于偏微分方程的SAR图像降相干斑方法研究: [硕士学位论文],北京;中国科学院电子学研究所,2004
    [62] M. Lysaker, S. Osher, and X.-C. Tai. Noise removal using smoothed normals and surface fitting, IEEE Trans. Image Processing, 2004, 13: 1345~1357
    [63] J. Shah, A common framework for curve evolution, segmentation and anisotropic diffusion, IEEE Conf. on Computer Vision and Pattern Recognition, June, 1996, 136~142
    [64] P. Bourdon, B. Augereau, C. Chatellier, et al, A multi-resolution, geometry-driven error concealment methodfor corrupted JPEG color images, Signal Processing: Image Communication, 2005, 20: 681~694
    [65] S. L. Keeling, Total variation based convex filters for medical imaging, Applied Mathematics and Computation, 2003, 139: 101~119
    [66] A. Sarti, K. Mikula, F. Sgallari, et al, Evolutionary partial differential equations for biomedical image processing, Journal of Biomedical Informatics, 2002, 35: 77~91
    [67] A. Bruhna, T. Jakob, M. Fischer, et al, High performance cluster computing with 3-D nonlinear diffusion filters, Real-Time Imaging, 2004, 10: 41~51
    [68] H. Y. Kim, J. Giacomantone and Z. H. Cho, Robust anisotropic diffusion to produce enhanced statistical parametric map from noisy fMRI, Computer Vision and Image Understanding, 2005, 99: 435~452
    [69]李兰兰,吴乐南,一种各向异性扩散图像去噪的方法,电路与系统学报,2003,8(6):143~145
    [70]王发牛,一种基于四阶偏微分方程的噪声消除方法,微机发展,2003,13(10):82~84
    [71]贾迪野,黄凤岗,文小芳,一种全局优化的水平集图像分割方法,中国图象图形学报,2005,10(1):25~30
    [72]乔明,基于偏微分方程的SAR图像降相干斑方法研究: [硕士学位论文],北京;中国科学院电子学研究所,2004
    [73]张亶,陈刚,基于偏微分方程的图像处理,北京:高等教育出版社,2004,74~136
    [74]付树军,阮秋琦,王文洽,偏微分方程(PDEs)模型在图像处理中的若干应用,计算机工程与应用,2005,35~36
    [75]曾启林,谢雷,赵志强等,激光散斑轮胎无损检测仪的研制,轮胎工业,2008,28(2):113~116
    [76]陈宁,汽车无损检测技术,汽车工艺与材料,2003,8:43~44
    [77]粟定华,当今的轮胎X光检测,现代橡胶技术,2003, 29(3):35~37
    [78]何清滨,姬新生,赵松善,赵玉良,王朝群,全钢载重子午线轮胎X光检测线,轮胎工业,2003,23(8):478~482
    [79]吴绍林,X-RA型X射线探伤机在全钢子午线轮胎生产中的应用,橡胶技术与设备,1994,3:49~54
    [80]涂永杰,国内轮胎原材料及成品性能测试技术进展,轮胎工业,2005,25(4):199~202
    [81]曾启林,盛保信,孙旭等,航空轮胎激光无损检测技术,轮胎工业,2005,25(2):112~116
    [82]盛保信,航空轮胎成品检测的最新方法,特种橡胶制品,2006,27(4):50~53
    [83]孙旭,杭柏林,错位散斑技术及其在轮胎检测中的应用,轮胎工业,2007,27(7):441~443
    [84] N.A. Ochoa, F.M. Santoyo, C.P. López, B. Barrientos, Multiplicative electronic speckle-pattern interferometry fringe, Appl. Opt., 2000, 39(28): 5138~5141
    [85]何玉明,线性相关计算法形成数字剪切散斑相关条纹图,光子学报,1995,24(1):13~17
    [86]何玉明,数字剪切散斑相关条纹图的形成及其分析,实验力学,1995,10(1):17~24
    [87]于起峰,陆宏伟,刘肖琳,基于图像的精密测量与运动测量,北京:科学出版社,2002
    [88]孙翠茹,基于液晶体的数字错位散斑干涉技术研究,天津大学硕士学位论文,2005
    [89]《国防科技工业无损检测人员资格鉴定与认证培训教材》编审委员会,全息和散斑检测,北京:机械工业出版社,2005
    [90]钱伟长,广义变分原理,上海:知识出版社,1985
    [91]王正明,朱炬波,SAR图像提高分辨率技术,北京:科学出版社,2006
    [92] R.A. Carmona and S. Zhong, Adaptive smoothing respecting feature directions, IEEE Trans. Image Process., 1998, 7: 353~358
    [93]钱伟新,刘瑞根,王婉丽,祁双喜,王伟,程晋明,基于图像特征方向的各向异性扩散滤波方法,中国图象图形学报,11(6),2006,818~822
    [94] L. Alvarez, P.-L. Lions, and J.-M. Morel, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal. 1992, 29: 845~866
    [95] Y. Chen, C.A.Z. Barcelos and B.A. Mair, Smoothing and edge detection by time-varying coupled nonlinear diffusion equations, Computer Vision and Image Understanding, 2001, 82: 85~100
    [96] G. Gilboa, N. Sochen, and Y.Y. Zeevi, Forward-and-Backward Diffusionprocesses for Adaptive Image Enhancement and Denoising, IEEE transactions on image processing, 2002, 11(7), 689~703
    [97] G. Gilboa, N. Sochen, and Y.Y. Zeevi, Image Enhancement and Denoising by Complex Diffusion Processes, IEEE transactions on pattern analysis and machine intelligence, 26(8), 2004, 1020~1036
    [98]冈萨雷斯著,阮秋琦等译,数字图像处理(Matlab版),北京:电子工业出版社,2005
    [99] F. Catté, P.-L. Lions, J.-M. Morel, et al, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal. 1992, 29: 182~193
    [100] A. Dávila, G.H. Kaufmann and D. Kerr, Scale-space filter for smoothing electronic speckle pattern interferometry fringes, Opt. Eng. 1996, 35: 3549~3554
    [101]张红英,彭启琮,全变分自适应图像去噪模型[J],光电工程,2006,33(3):50~53
    [102] X. Yang, Q. Yu, S. Fu, An algorithm for estimating both fringe orientation and fringe density, Opt. Commun., 2007, 274, 286~292
    [103]谢美华,王正明,非线性扩散方程在SAR图像噪声抑制中的应用,现代雷达,2005,27(9),48~51
    [104]李大辉,张英琦,张剑飞,蒋立辉,基于同态滤波与Lee滤波器级联算法的散斑噪声压缩,佳木斯大学学报(自然科学版),2001,19(1),12~15
    [105] X. Zhou, J.P. Baird, J.F. Arnold, Fringe-orientation estimation by use of a Gaussian gradient filter and neighboring-direction averaging, Appl. Opt., 1999, 38(5), 795~804
    [106] Q. Yu, X. Sun, Removing speckle noise and extracting the skeletons from a single speckle fringe pattern by spin filtering with curved-durface window, Optical Engineering, 2003, 41(1), 68~74
    [107] M. Kass, A. Witkin, Analyzing oriented patterns, Computer Vision, Graphics, and Image Processing, 1987, 37(3): 362~385
    [108] Otsu. N, Discriminant and least square threshold selection, In: Proc 4IJCPR, 1978, 592~596
    [109]苗东,二维条码的识别与应用[硕士学位论文],北京科技大学,2004年
    [110] B. Merriman, J. Bence, and S. Osher, Diffusion generated motion by mean curvature, in Computational Crystal Growers Workshop (J. E. Taylor, Eds.), Amer. Math. Soc., Providence, RI, 1992, 73~83
    [111] B. Merriman, J. Bence, and S. Osher, Motion of multiple junctions: A level set approach, J. Comput. Phys., 1994, 112, 334~363.
    [112] B. Jawerth and P. Lin, Shape Recovery by Diffusion Generated Motion, Journal of Visual Communication and Image Representation, 2002, 13, 94~102
    [113] S. Nakamura著,梁恒,刘晓燕等译,科学计算引论——基于MATLAB的数值分析,北京:电子工业出版社,2002,232~237
    [114]金观昌,计算机辅助光学测量,北京:清华大学出版社,1997
    [115] Y.Y. Hung, A phase shift technique for automation of phase determination in digital shearography, Proceedings of SEM conference, 1994, 1: 48~52
    [116]孙建刚,改进的电子散斑干涉法,山东大学学报(工学版),2005,35(4):115~119
    [117] J.M. Huntley and H. Saldner, Temporal phase-unwrapping algorithm for automated interferogram analysis, Appl. Opt., 1993, 32(17): 3047~3052
    [118]蒋涛,相移数字散斑干涉中的相位计算的基本研究,[硕士学位论文],昆明理工大学,2006
    [119]郑文,相移数字散斑干涉计量及其在热变形测量中的应用,光子学报,1993,22(2):172~177
    [120] H. A. Aebischer and S. Waldner, A simple and effective method for filtering speckle-interferometric phase fringe patterns, Opt. Commun., 1999, 162: 205~210
    [121]孙晨光,数字相移相位测量技术及其应用,[硕士学位论文],天津大学,2003
    [122] Ghiglia D C, Romero L A, Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods, J. Opt. Soc. Am. A,1994, 11 (1): 107~117
    [123]马民,张东升,最小二乘相位解包络方法,光学技术,2002,28(1):94~96
    [124]陈家风,陈海清,任海霞,基于小波变换的最小二乘相位解缠算法,光学技术,2007,33(4):613~619
    [125]杨锋涛,相位展开算法及在相位测量轮廓术中的应用研究,[硕士学位论文],昆明理工大学,2005
    [126]郭广平,计算机模拟技术在错位散斑干涉法中的应用,机械工程学报,2001,37(11):103~105
    [127]曾启林,用激光全息与电子散斑技术检测轮胎缺陷的对比研究,现代橡胶技术,2003,30(5):43~45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700