基于砷化镓的介观压阻效应微机械陀螺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陀螺是惯性导航和制导的核心器件之一,决定着武器的精确打击能力,而高灵敏度陀螺是国外禁运技术,因此发展陀螺技术是国防建设的需要。微机械陀螺以体积小、成本低、搞过载能力强等优势,成为世界各国研究的热点。本文就此提出了一种压阻系数比硅高的新型介观压阻效应微机械陀螺,对其敏感机理、结构设计、制造工艺、性能测试等方面开展了研究。
     介观压阻效应的敏感机理是:在力学信号作用下,多层纳米膜结构中的应变发生变化;一定条件下应变可引起结构内建电场的产生;内建电场将导致纳米带结构中量子能级发生变化;量子能级变化会引起共振隧穿电流变化。简言之,在能发生共振隧穿效应的条件下,通过上述四个物理过程,可将一个微弱力学信号转化为一个较强的电学信号。
     本文所研究的微机械陀螺采用电磁驱动的方式,驱动力易控,幅值稳定,驱动模态设计为滑膜阻尼,检测模态设计为压膜阻尼,当质量块运动间隙为15μm时,驱动模态品质因子为4591,检测模态品质因子为167。仿真分析了驱动模态和检测模态的固有频率分别为3530Hz和3671Hz,微机械陀螺工作带宽为76 Hz,驱动X方向抗冲击能力为24579g,检测Z方向抗冲击能力为7974g。结构位移灵敏度设计为5.21×10-8m/°/s,结构应力灵敏度为2.52×10-2Mpa/°/s,量程为±288°/s,热噪声为0.3665°/h/(?)。
     研究了纳米膜压敏结构与微机械陀螺结构制造耦合工艺,利用开发的空气桥、欧姆接触、控制孔、腐蚀自停止等关键工艺在内的MEMS加工工艺,实现了MEMS制造工艺与多层纳米薄膜制作工艺的结合,成功制作了介观压阻效应微机械陀螺。
     研究了介观压阻效应微机械陀螺电磁驱动电路和Goriolis力微弱信号检测电路关键技术,设计了开环驱动电路,驱动反馈检测电路、介观压阻电桥检测电路、可调稳压电源电路、解调电路、滤波电路等,实现了微机械陀螺的驱动和微弱信号的检测。
     搭建了实验测试系统,对微机械陀螺的性能进行了测试。在大气压下,微机械陀螺的驱动模态谐振频率为4060Hz,品质因子为815,驱动模态谐振频率为4040Hz,品质因子为175。理论计算微机械陀螺负阻区灵敏度为19.8mV/°/s,正阻区灵敏度为52.8μV/°/s,实验测试结果显示检测灵敏度为9.35gV/°/s,微机械陀螺工作在正阻区而非所期望的负阻区,输入角速度在[-500°/s,+500°/s]范围内,线性系数为0.99。
     分析和测试结果表明,微机械陀螺因偏压漂移而工作在正阻区,灵敏度较低,但原理上实现了角速度的检测;证明了电磁驱动方法、介观压阻效应检测方法、工艺制造方法和实验测试方法可行,为进一步研究介观压阻效应微机械陀螺奠定了一定的理论基础和实验基础。
Gyroscope is the core device in inertial navigation and guidance, which determines the precision strike capability of weapons. The high sensitivity gyroscope is an embargo technology to foreign, so it is the needs of developing the gyroscope technology in national defense. With the advantages of small size, low cost, greater overload performance, the gyroscope becomes the research hotspot around the world. A novelty meso-piezoresistance effect gyroscope with the higher piezoresistive coefficient than silicon is proposed in the paper. And the main research works will focus on the aspects of sensitive mechanism, structure design, fabrication process, performance measurement of this gyroscope.
     The operating principle of meso-piezoresistance effect is:if a mechanical signal is acted in a related mechanical nano-structure, the corresponding strain distribution will be produced in the structure. The strain distribution can generate built-in electric fields, and then change the electronic energy state which will influence on the value of the tunneling current. In short, a weak mechanical signal can be converted into a strong tunneling current signal.
     The gyroscope studied in this paper using the electromagnetic driven approach which with the advantages of controllable driven force and stable amplitude. The driven modal and detection modal is designed as slide film damping, squeeze film damping, respectively. As the movement gap between the proof mass and the base plate is 15μm, the quality factors of driven modal and detection modal are 4591,167, respectively. The natural frequencies of driven and detection modal are 3530Hz and 3671Hz according to simulation analysis. The performance bandwidth of micromechanical gyroscope is 76Hz; the anti-impact ability in driven X direction and detection Z direction are 24579g,7974g, respectively. The displacement sensitivity of the structural is 5.21×10-8 m/°/s, the stress sensitivity is 2.52×10-2Mpa/°/s, the measurement range is±288°/s, and the thermal noise is 0.3665°/h/(?).
     The coupling process between the nano-film pressure-sensitive structure and micromechanical gyroscope structure is studied. It is achieved the combination of MEMS manufacturing process and multi-layer nano film fabrication process by using some key MEMS processes technology, including the air bridge, ohmic contact, control holes, self-stop etch. And micromechanical gyroscope with the meso-piezoresistance effect is fabricated successfully.
     The key technology of magnetic driven circuit and weak signal detection circuit of meso-piezoresistance effect micromechanical gyroscope are also researched. The open-loop driven circuit, driven feedback detection circuit, meso-piezoresistance bridge detection circuit, adjustable regulated power supply circuit, demodulation circuit, filter circuit are designed, which achieve the driven and weak signal detection of micromechanical gyroscope.
     The performance of MEMS gyroscope is tested by the building measurement system. In the atmospheric pressure, the resonant frequency of driven modal is 4060Hz; and the quality factor of micromechanical gyroscope is 815. The sensitivity of micromechanical gyroscope in negative resistance area and positive resistance area is 19.8mV/°/s and 52.8μV/°/s by theoretical calculation. According to the experimental results, it is show that the detection sensitivity is 9.35μV/°/s as the gyroscope working in positive resistance area not the desired negative resistance area. The linearity coefficient is 0.99 when the angular velocity in the range of [-500°/s,+500°/s].
     The analysis and testing results show that the gyroscope works in the positive resistance area due to the drift of bias voltage, therefore the sensitivity is low, but the angular velocity detection is achieved in principle. The electromagnetic driven-meso-piezoresistance effect detection approaches, manufacturing process method and experimental measurement method is verified feasible, which provide theoretical foundation and experimental foundation for further study of meso-piezoresistance effect micromechanical gyroscope.
引文
[1]袁希光.传感器技术手册.北京:国防工业出版社,1986:1-3.
    [2]嵇钧生.微机电系统及其测量问题,北京:测控技术,1999.
    [3]周兆英,王晓浩,叶雄英,王伯雄,李沙等.微型机电系统.中国机械工程,2000.
    [4]张寿柏,丁桂甫,郭晓芸.微机电系统中的材料和加工.上海有色金属2000,vol.21(3),pp.97-111.
    [5]Zhang Wendong, Wang Jian, Research of cantilever acoustic sensor based on resonant tunneling diode. Chinese Journal of Sensors and Actuators. Vol.19, No.5, pp.2293-2296, October,2006.
    [6]格雷戈里T.A.科瓦奇著,张文栋等译.微传感器与微执行器全书.北京:科学出版社,2003:175-176.
    [7]许江宁,边少锋,殷立吴.陀螺原理.北京:国防工业出版社,2005:27-32.
    [8]王大珩.现代仪器仪表技术与设计.北京:科学出版社,2002:2114-2120.
    [9]郭慧芳,李锦明,刘俊.三框架电容式硅微机械陀螺动力学分析,传感器与系统,2008,27(5):24-26.
    [10]王喆垚.微系统设计与制造[M].北京:清华大学出版社.
    [11]S. Zarabadi, T.Vas, D.Sparks, J. Johnson, Q.Jiang, M. chia and E. Borzabadi, A Resonating Comb/Ring Angular Rate Sensor Vacuum Packaged Via Wafer Bonding.Sensors and Actuators,1999.
    [12]Sassen S, et al. Tuning fork silicon angular rate sensor with enhanced performance for automotive applications. Sens Actuators A,2000,83:80-84
    [13]Voss R, et al. Silicon angular rate sensor for automotive applications with piezoelectric drive and piezoresistive read-out. In:Transducers'97,879-882
    [14]Lutz M, et al. A precision yaw rate sensor in silicon micromachining. In: Transducers'97,847-850
    [15]张文栋,熊继军.微光机电系统.北京:机械工业出版社,2006:87-88.
    [16]Boxenhorn B, Greiff P. A vioratory micromechanical gyroscope [G]. AIAA88-4177-CP:1033-1040.
    [17]方玉明,茅盘松.内框驱动式硅微型角振动陀螺仪灵敏度研究[J].电子器件.2004,27(1)
    [18]刘瑞华,刘建业.MEMS-IMU的发展与应用.惯性导航,2000(2):58-62.
    [19]Mikko Saukoski, Lasse Aaltonen, Teemu Salo, Kari A.I. Halonen. Interface and control electronics for a bulk micromachined capacitive gyroscope. Sensors and Actuators A 147 (2008) 183-193.
    [20]K.Y.Park, C.W.Lee, Y.S.Oh, and Y.H.Cho. Laterally oscillated and force-balanced micro vibratory rate gyroscope supported by fish hook shape springs, in Proc.IEEE Micro Electro Mechanical Systems Workshop(MEMS'97), Japan,1997, pp.494-499.
    [21]Mochida Y, Tamura M, Ohwada K. A Micromachined Vibrating Rate Gyroscope with Independent Beams for the Drive and Detection Modes [C]. MEMS'99:618-623.
    [22]Geen J, et al. Single-chip surface micromachined integrated gyroscope with 50/h Allan deviation. IEEE JSSC,2002,37:1860-1866
    [23]Geen J, Krakauer D. New iMEMS angular-rate-sensing gyroscope. Analog Dialogue, 37-03,2003
    [24]Geen J. Progress in integrated gyroscopes. IEEE A&E Systems magazine,2004,11: 12-17
    [25]Xinxin Li, Minhang Bao, Heng Yang, Shaoqun Shen, Deren Lu. A micromachined piezoresistive angular rate sensor with a composite beam structure. Sensor and Actuators.72 (1999):217-223.
    [26]Tao Jiang, Anlin Wang, Jiwei Jiao, Guangjun Liu, Detection capacitance analysis method for tuning fork micromachined gyroscope based on elastic body model, Sensors and Actuators A 128 (2006) pp.52-59.
    [27]X.S.Liu, Z.C.Yang, A double decoupled lateral axis micromachined gyroscope, Sensor and Actuator A,154(2009) 218-223.
    [28]张寿柏,丁桂甫,郭晓芸.微机电系统中的材料和加工[J].上海有色金属2000,vol.21(3), pp.97-111.
    [29]徐世六.军用微电子技术发展战略思考.微电子学.2004,vol.34(1), pp.1-6.
    [30]Stephen A C. The science and engineering of microelectronic fabrication (second edition) [M], Oxford University Press,2001.
    [31]Miao J M, Hartnagel H L. Micromachining of three-dimensional GaAs membrane structures using high-energy nitrogen implantation. J. Micromech. Microeng,2003, vol.13, pp.35-39.
    [32]Renato P. Ribas, Maskless Fron-Side Bulk Micromachining Compatible to Standard GaAs IC Technology. The Ph. D Disseratation of TIMA.
    [33]Robert G. Knobel, Andrew N. Cleland, Nanometre-scale displacement sensing using a single electron transistor, Nature,2003, vol 424,17. pp.134-136.
    [34]T Lalinsk'y, E Burian and M Dr z ik, Thermal actuation of a GaAs cantilever beam, J. Micromech. Microeng.2000, vol.10. pp.293-298.
    [35]温廷敦,张文栋.介观压阻效应.微纳电子技术,2003,vol.40(7), pp.41-43.
    [36]Jijun Xiong, Wendong Zhang, Haiyang Mao, KaiqunWang. Research on double-barrier resonant tunneling effect based stress measurement methods.Sensors and Actuators A.2009(150):169-174.
    [37]Bo Li, Wendong Zhang, Bin Xie, Chenyang Xue, Jijun Xiong. Development of a novel GaAs micromachined accelerometer based on resonant tunneling diodes. Sensors and Actuators A.2008(143):230-236.
    [38]Chenyang Xue, Shang Chen, Wendong Zhanga, Binzhen Zhanga, Guojun Zhang, Hui Qiao. Design, fabrication, and preliminary characterization of a novel MEMS bionic vector hydrophone.Microelectronics Journal.2007(38):1021-1026.
    [39]Kim J et al.An x-axis single-crystalline silicon microgyroscope fabricated by the extended SBM process. J-MEMS,2005,14:444-445
    [40]闻邦椿,刘树英,张纯宇.机械振动学.冶金工业出版社,2000.
    [41]Park S, et al. A new isolaion methed for single crystal silicon MEMS and its application to Z-axis microgyroscope. In:IEDM'03,969-972
    [42]Park K S, et al. Robust SOI process without footing and its application to ultra high-performance microgyroscopes. Sens Actuators A,2004,114:236-243
    [43]Lee, et al.Surface/bulk micromachined single-crystalline silicon microgyroscope. J MEMS,2000,9:557-567
    [44]陈永.基于滑膜阻尼效应的音叉式微机械陀螺仪研究.北京:中国科学院.2004.
    [45]谢官模编著,振动力学,国防工业出版社,2007年3月出版,北京。
    [46]虞福春,郑春开编著,电动力学(修订版),北京大学出版社,2004年10月出版。
    [47]Bhag Singh Guru, Huseyin R. Hiziroglu.周丁克等译,电磁场与电磁波(第二版),机械工业出版社,北京,2006.1.
    [48]赵凯华,陈熙谋编著,电磁学,高等教育出版社,1985年6月出版。
    [49]威廉 H 海特,约翰 A 巴克著,赵彦珍,李瑞程,孙晓华译,工程电磁场(第七版),西安交通大学出版社,西安,2009.1.
    [50]Wen T D, Anastassakise. Temperature dependence of strains and stresses in under critical cubic superlattices and heterojunctions. Physical Review B,1996,53(8):4741.
    [51]Kontos A G, AnastassakiS E, Iirysantiiakofoulos N C. Strain profiles in overcritical (001) ZnSe/GaAs heteroepitaxial layers. J Applied Physics,1999, vol.86. pp.412.
    [52]Lu Y Q, Zhu Y Y, Chen Y F. Optical properties of an ionic-type phononic crystal. Science,1999, vol.284, pp.1822.
    [53]Wen T. D, Xu L.P, Anastassakis E. On the piezoelectric signals of multilayer systems. Phys Stat Sol (a),2000, vol.3, pp.467.
    [54]Funato M, Fujlta S, Fujlta S. Energy states in ZnSe-GaAs heterovalent quantum structures. Phys Rev B,1999,60(24):1665.
    [55]Omae K, Kawakaml Y, Fujlta S. Effects of internal electric field and carrier density On transient absorption spectra in a thin GaN epilayer. Phys Rev B,65,733038.
    [56]Fan W B, Zhao X G. Coherent dynamics in one dimensional multiband semiconductor superlattices driven by DCAC electric fields, Physica B,2001, vol.2. pp.147.
    [57]Tyc M H, Salejda W. Negative differential resistance in aperiodic semiconductor superlattices. Physica A,2002,303:493.
    [58]L.J.Brillson. S.Yang, A.D.Raisanen, A.Franciosi, L.Vanzetti, andL.Soroa, Appl. Surf.Sci.123/124,289(1998).
    [59]L.M.Claessen, J.C.Maan, M.Altarelli, andP.Wyder, Phys.Rev.Leet.57,2556(1986).
    [60]M.C.Hyeonsik,P.William,E.F.Michael,andH.M.Richard,Phys.Rev.B55,4477(1997).
    [61]Roycl, Khana. Landauer resistor of thue-morse and Fibonacci lattices and some related issues [J]. Phys. Rev. B,1994,49(21):14979
    [62]李旭.共振隧穿力电耦合微结构输出特性测试方法研究,中北大学硕士学位论文.2007.
    [63]Wen Ting-dun, Xu Li-ping and Yang Xiao-feng:ISTM/2003, p355.
    [64]李博,基于共振隧穿结构介观压阻效应的南极点加速度计研究,中北大学博士学位论文,2008.
    [65]牛萍娟,共振隧穿器件及其应用的研究,天津大学博士学位论文,2002.
    [66]仓田卫著,沙麟等译,半导体器件数值分析,上海翻译公司,1986.
    [67]杨之康、申明著,超大规模集成电路设计方法学导论(第三版),清华大学1999.
    [68]J.S.Wu, C.Y.Chang et al, IEEE Electron Device Lett.Vol.10, No.7, pp.301,1989.
    [69]Sen, S.Capasso, F. et al, IEEE Electron Device Lett, Vol.9, No.8, pp.402,1988.
    [70]Zhang Binzhen, Xie Bin, Design of vector hydrophone based on resonant tunneling diodes, Chinese Journal of Sensors and Actuators, Vol.19, No.5, pp.2283-2289, October,2006.
    [71]Xue C Y, Zhang W D, Xiong J J et al. Sensitivity characteristics of a GaAs accelerometer based on resonant tunneling diodes, Applied Physics letter,2004, vol.1, pp.498.
    [72]Andrews M, Harris I, Turner G. A comparison of squeeze-film theory with measurements on a microstructure. Sensors and Actuators A,1993,36:pp.79-87.
    [73]王涛,王晓东,王立鼎.MEMS中微结构动态测试技术进展.中国机械工程,2005/01:83-88.
    [74]Rembe C, Caton P, White R M, et al. Stroboscopic Interferometry for Characterization and Improvement of Flexural Plate-Wave Transducers. Proc. SPIE 2001,4558:108-116.
    [75]杨福俊,何小元,庄春泉.ESPI技术测量静态和准动态面内位移.光电子激光.2003, Vol.14, No.10, pp.1070-1073.
    [76]张熹,孙平,金华.三维电子散斑干涉法在检测残余应力中的应用.实验力学.2000,Vol.15, No.2, pp.125-130.
    [77]邵蕴秋.ANSYS8.0有限元分析实例导航.中国铁道出版社,北京,2004.4.
    [78]赵海峰,蒋迪.ANSYS8.0工程结构实例分析.中国铁道出版社,北京,2004.11.
    [79]ANSYS单元手册摘要.
    [80]Young-Ho Cho, Albert P. Pisano, Roger T. Howe, Visous Damping Model for Laterally Oscillating Microstructures, J. MEMS,1994, Vol.3, No.2, pp.81-86.
    [81]章梓雄,董曾南编著.粘性流体力学,清华大学出版社,1998.
    [82]Young-Ho Cho, Byung Man Kwan, Albert P. Pisano, Roger T. Howe, Slide film damping in laterally driven microstructures, Sensors and Actuators,1994, A40, pp. 31-39.
    [83]Minhang Bao, Micro mechanical tranducers-pressure sensors, accelerometers and gyroscope, ELSEVIER,2000.
    [84]Minhang Bao, Heng Yang, Yuancheng Sun, Yuelin Wang, Squeeze-film air damping of thick hole-plate, Sensors and Actuators A 108 (2003) pp.212-217.
    [85]Zunxian Yang, Xinxin Li, Simulation and optimization on the squeeze-film damping of a novel high-g accelerometer, Microelectronics Journal 37 (2006) pp.383-387.
    [86]Stephen A C. The science and engineering of microelectronic fabrication (second edition) [M], Oxford University Press,2001.
    [87]Minhang Bao.Micro mechanical transducers pressure sensors, Accelerometers and Gyroscopes. ELSEVIER,2000.
    [88]杨树人,王宗昌,王兢.半导体材料(第二版).北京:科学出版社,2004.
    [89]韩郑生等,半导体制造技术,电子工业出版社,2003,pp.448-452.
    [90]蔡辉剑.液相外延InP太阳电池的欧姆接触.北京:北京师范大学,2005.
    [91]Fobelets K, Vounckxt R and Borghs G, A GaAs pressure sensor based on resonant tunnel diodes.J.Micromech.Microeng.1994. vol.4, pp.123-128.
    [92]张威.MEMS压阻式力平衡(伺服)加速度传感器研究-设计、制造、封装和测试.北京:北京大学,2003.
    [93]李婷等.北京大学微电子学研究院实验版图文件设计规范,http://ime.pku.edu.cn/mems/imee/processdoc/2003.
    [94]Mori Y, Watanabe N. A new etching solution system, H3PO4-H2O2-H2O, for GaAs and its kinetics[J]. Journal of Micromechanics and Microengineering,1995, vol.1, pp. 2-4.
    [95]Collins S D. Etch stop techniques for micromachining [J]. Journal of Electrochemical Society,1997, vol.6, pp.2242-2262.
    [96]R Geller. Electron Cyclotron Resonance Ion Sources and ECR Plasmas. Institut des Sciences Nucleaires, Grenoble, France,1996.
    [97]Lii Yed. C. Chang and S.Sze. Etching ULSI Technology, New York:McGraw-Hill, 1996, p.342.
    [98]Lee J. W. Devre M. W et al. Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas. J. Vac. Sci. Techol,2000, vol.4, pp.1220-1224.
    [99]Fobelets K, Vounckxt R and Borghs G, A GaAs pressure sensor based on resonant tunnel diodes. J.Micromech.Microeng.1994. vol.4, pp.123-128.
    [100]Xiong Jijun, Wang Jian, Zhang Wendong, Xue Chenyang, Zhang Binzhen, Hu Jie. Piezoresistive effect in GaAs/InxGa1-xAs/AlAs resonant tunneling diodes for application in micromechanical sensors. Microelectronics Journal.2008(39):771-776.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700