基于IGCT的NPC三电平中压大容量变流装置关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕集成门极换流晶闸管(IGCT:Integrated gate commutated thyristor)和中点箝位式三电平(NPC-3L:neutral point clamped three level),对中压大容量变流装置的关键技术展开了研究,涉及了IGCT的器件特性和驱动技术、PEBB的实用设计方法、NPC-3L的调制策略以及中点平衡问题的解决。
     第一,对4000A/4500V系列不对称型IGCT器件的驱动技术进行了研究。根据IGCT的基本结构与运行机理,得到IGCT的开通、关断、导通等基本功能对驱动电路的设计要求。分析了NPC-3L拓扑中不同工况下IGCT门阴极电位的变化规律,探讨了驱动电路对这些工况的检测以及相关的状态反馈、维持电流抑制、重触发等逻辑控制要求。设计研发了4000A/4500V系列不对称型GCT的门极驱动电路,对驱动电路的工作原理进行了说明。最后,通过电路基本功能测试、开关单脉冲测试与三电平工况测试,IGCT驱动的相关理论与驱动电路的性能得到了验证。
     第二,使用简单的SPWM方式实现了不同控制目标SVPWM调制策略的等效。从线电压伏秒积守恒关系入手,建立线电压坐标系的空间矢量图和开关周期窗口移动图作为推导两种调制方式间等效算法的分析工具,在占空比和矢量序列上为两种调制方式之间的等效架起了桥梁。利用等效工具,以零序注入与调制波分解为手段,以降低开关损耗、优化波形质量、中点电压平衡为控制目标,推导了零序分量与调制波分解量的大小。仿真和实验表明,利用零序注入与调制波分解对多控制目标的SVPWM调制策略进行等效实现,不但简化了调制算法,而且实现了多控制目标调制策略的平滑转换。
     第三,对NPC-3L变流器中点电位不平衡时,输出交流电压的补偿与中点电位的反馈控制问题进行了研究。提出了基于调制波分解和基于零序注入的两种中点电位反馈控制策略,在保证输出交流电压无畸变的同时还能实现中点电位的任意调节。这两种调制策略都基于SPWM原理,实现简单,适用于强化传统的中点电位平衡控制或需要对上下组直流电压进行分别控制的场合。文中分别给出了调制波分解和零序注入下中点电流的控制范围,并量化了零序注入时中点电位的低频波动幅值大小。
     第四,提出了一种简单有效的IGCT变流器吸收箝位电路优化参数选取办法。通过换流工况的详细分析,提出了箝位电路的等效电路。根据等效电路进行了响应分析,综合考虑箝位电路的设计原则,作出了箝位电路关键性能与参数选取的关系曲线。根据曲线给出了优化参数的计算公式,不但大大简化了箝位电路的设计过程,而且降低了最小脉宽限制,提高了动态恢复速度。通过设计实例详细说明了箝位电路的设计流程,并进行了仿真与实验验证。
     第五,对IGCT NPC-3L变流器的热损耗估算方法展开了研究。通过双脉冲测试确定了功率器件开关损耗计算公式的待定系数。针对传统热损耗估算方法限定调制方式和工况理想化引起的误差问题,建立了一种考虑交流电流纹波和中间直流电压脉动的适用于任何调制方式的通用型三电平热损耗仿真模型,PEBB的半桥功率测试说明模型的估算结果可以满足工程设计要求。利用仿真模型,本文还对极限不平衡发热工况下采取不同调制方式时PEBB的载流能力进行了仿真分析。
Focus on "IGCT" device and "NPC three-level" topology, key techniques of medium voltage high power converters are discussed in this dissertation, involves device characteristics and drive techniques of IGCT, design method of PEBB, modulation of NPC-3L and resolution of neutral point balance problem.
     Firstly, drive techniques of4000A/4500V series asymmetric IGCT devices are discussed. The basic structure and operation mechanism of IGCT are analyzed, the design requirements of gate unit to achieve basic functions such as turn-on, turn-off and conducting are proposed. The variation rules of gate-to-cathode voltage according to different working conditions in NPC-3L topology are analyzed. How to detect these working conditions and related logical control requirements such as status detection, back-porch current limitation and retrigger are explained. A4000A/4500V asymmetric GCT gate unit is developed. Finally, through circuit basic function test, single pulse switching test and three-level operation mode test, the drive theory of IGCT and the performance of designed gate unit are verified.
     Secondly, multiple objective SVPWM strategies is equivalent realized by simple SPWM principal. According to the principal of time-voltage product conservation, line voltage space vector diagram and switching window shift diagram are established to derive equivalent algorithms between the two modulation strategies. The two diagrams bridged the gap of duty cycle and vector sequence between the two modulation strategies. Based on the analyses, using zero sequence injection and modulation waveforms decomposition, a few different modulation algorithms are deduced to reduce switching loss, optimize output waveforms quality and balance the neutral point voltage. Simulation and experiments indicated that, using zero sequence injection and modulation waveforms decomposition to equivalent realize multiple objective SVPWM strategies, not only simplify the modulation algorithms, but also realize the smooth switching of different modulation strategies with each objectives.
     Thirdly, output AC voltage compensation and neutral point voltage feedback control under neutral point voltage unbalanced conditions are discussed. Based on zero sequence injection or modulation waves decomposition, two neutral point feedback control strategies are proposed. Using the two strategies, not only output voltage can be guaranteed no distortion but also neutral point voltage can be adjusted at will. Both the two modulation strategies are based on SPWM principal, so they are very simple to realize, and suitable for enhancing neutral point balance control or applications where need to control up and down DC link voltage separately. The neutral point current control abilities of the two strategies are given separately, and the neutral point voltage low frequency fluctuation amplitude is also quantized when using zero sequence injection way.
     Fourthly, a novel design method of the clamping circuit in IGCT converters is proposed and the calculation process has been greatly simplified. After a detailed analysis of the clamping circuit commutating process, an equivalent circuit is presented and its response analysis is made. According to the design rule of the clamping circuit, an optimal parameter design method is introduced, and it reduces the minimum pulse width and speed up the dynamic recovery process. Finally, a design example is presented. Simulations and experiments are made to verify the goodness of the result.
     Fifthly, power loss estimation method for IGCT NPC-3L converter is discussed. The undetermined coefficients in switching loss calculation formulas are determined through double pulse test. Traditional loss estimation method is restricted by one particular modulation strategy and there is estimation error due to idealized working conditions. Aim at this problem, a universal NPC-3L power loss simulation estimator suitable for any modulation strategies is presented. Output current ripple and DC link voltage fluctuation are considered in the estimator. Through PEBB half bridge power test, the accuracy of estimator is verified to meet the engineering requirements. Through estimator calculation, the power capabilities of PEBB under different modulation strategies and critical thermal conditions are analyzed.
引文
[1]吴斌.大功率变频器及交流传动[M].机械工业,2008.
    [2]Klug R D, Klaassen N. High power medium voltage drives-innovations, portfolio, trends:Power Electronics and Applications,2005 European Conference on,2005 [C].
    [3]Rahimo M, Klaka S. High voltage semiconductor technologies:Power Electronics and Applications, 2009. EPE'09.13th European Conference on,2009[C].
    [4]Shenai K, Scott R S, Baliga B J. Optimum semiconductors for high-power electronics[J]. Electron Devices, IEEE Transactions on,1989,36(9):1811-1823.
    [5]High-Power Switching in Semiconductors-What is Beyond Silicon Thyristor[J].
    [6]见CREE公司主页介绍[EB/OL]. http://scn.cree.com/products.
    [7]见SEMISOUTH公司主页产品介绍(?)EB/OL]. http://semisouth.com.
    [8]Vobecky J. Design and technology of high-power silicon devices:Mixed Design of Integrated Circuits and Systems (MIXDES),2011 Proceedings of the 18th International Conference,2011 [C].
    [9]钱照明,盛况.大功率半导体器件的发展与展望[J].大功率变流技术,2010(01).
    [10]Steimer P, Apeldoorn O, Carroll E, et al. IGCT technology baseline and future opportunities: Transmission and Distribution Conference and Exposition,2001 IEEE/PES,2001 [C].
    [11]Bernet S, Teichmann R, Zuckerberger A, et al. Comparison of high-power IGBTs and hard-driven GTO's for high-power inverters[J]. Industry Applications, IEEE Transactions on, 1999,35(2):487-495.
    [12]Steimer P K, Gruning H E, Werninger J, et al. IGCT-a new emerging technology for high power, low cost inverters [J]. Industry Applications Magazine, IEEE,1999,5(4):12-18.
    [13]童亦斌,张婵,谢路耀,等.4000A/4500V系列IGCT器件驱动电路[J].电工技术学报,2010(8):110-115.
    [14]Apeldoorn O, Odegard B, Steimer P, et al. A 16 MVA ANPC-PEBB with 6 kA IGCTs:Industry Applications Conference,2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005, 2005 [C].
    [15]Steimer P K, Apeldoorn O, Odegard B, et al. Very High Power IGCT PEBB technology:Power Electronics Specialists Conference,2005. PESC'05. IEEE 36th,2005[C].
    [16]Nistor I, Wikstrom T, Scheinert M. IGCTs:High-Power Technology for power electronics applications:Semiconductor Conference,2009. CAS 2009. International,2009[C].
    [17]Etxeberria-Otadui I, San-Sebastian J, Viscarret U, et al. Analysis of IGCT current clamp design for single phase H-bridge converters:Power Electronics Specialists Conference,2008. PESC 2008. IEEE,2008[C].
    [18]Qiongxuan G, Yaohua L, Li K. Investigation of topologies for IGCT three-level inverter:Industrial Technology,2008. ICIT 2008. IEEE International Conference on,2008[C].
    [19]Filsecker F, Alvarez R, Bernet S. Comparison of 4.5 kV Press Pack IGBTs and IGCTs for Medium Voltage Converters[J]. Industrial Electronics, IEEE Transactions on,2012,PP(99):1.
    [20]Wakeman F J, Lockwood G W. Electromechanical evaluation of a bondless pressure contact IGBT [J]. Circuits, Devices and Systems, IEE Proceedings-,2001,148(2):89-93.
    [21]Morozumi A, Yamada K, Miyasaka T, et al. Reliability of power cycling for IGBT power semiconductor modules[J]. Industry Applications, IEEE Transactions on,2003,39(3):665-671.
    [22]Sayago J A, Bruckner T, Bernet S. How to Select the System Voltage of MV Drives—A Comparison of Semiconductor Expenses[J]. Industrial Electronics, IEEE Transactions on,2008,55(9):3381-3390.
    [23]Gekenidis S, Ramezani E, Zeller H. Explosion tests on IGBT high voltage modules:Power Semiconductor Devices and ICs,1999. ISPSD'99. Proceedings., The 11th International Symposium on,1999[C].
    [24]Alvarez R, Filsecker F, Bernet S. Comparison of press-pack IGBT at hard switching and clamp operation for medium voltage converters:Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference on,2011[C].
    [25]Golland A, Wakeman F, Li G. Managing power semiconductor obsolescence by press-pack IGBT substitution:Power Electronics and Applications,2005 European Conference on,2005[C].
    [26]Eicher S, Rahimo M, Tsyplakov E, et al.4.5kV press pack IGBT designed for ruggedness and reliability:Industry Applications Conference,2004.39th IAS Annual Meeting. Conference Record of the 2004 IEEE,2004[C].
    [27]Bill P, Welleman A, Ramezani E, et al. Novel press pack IGBT device and switch assembly for Pulse Modulators:Pulsed Power Conference (PPC),2011 IEEE,2011 [C].
    [28]Storasta L, Rahimo M, Bellini M, et al. The radial layout design concept for the Bi-mode insulated gate transistor:Power Semiconductor Devices and ICs (ISPSD),2011 IEEE 23rd International Symposium on,2011[C].
    [29]Storasta L, Kopta A, Rahimo M. A comparison of charge dynamics in the reverse-conducting RC IGBT and Bi-mode Insulated Gate Transistor BiGT:Power Semiconductor Devices & IC's (ISPSD), 2010 22nd International Symposium on,2010[C].
    [30]Rahimo M, Schlapbach U, Schnell R, et al. Realization of higher output power capability with the Bi-mode Insulated Gate Transistor (BIGT):Power Electronics and Applications,2009. EPE'09. 13th European Conference on,2009[C].
    [31]Rahimo M, Kopta A, Schlapbach U, et al. The Bi-mode Insulated Gate Transistor (BIGT) a potential technology for higher power applications:Power Semiconductor Devices & IC's,2009. ISPSD 2009. 21st International Symposium on,2009[C].
    [32]McMurray W. Fast response stepped-wave switching power converter circuit:1971-5-25.
    [33]Dickerson J A, Ottaway G H. Transformerless power supply with line to load isolation:1971-08-03.
    [34]Nabae A, Takahashi I, Akagi H. A New Neutral-Point-Clamped PWM Inverter[J]. Industry Applications, IEEE Transactions on,1981,IA-17(5):518-523.
    [35]Marchesoni M, Mazzucchelli M, Tenconi S. A non conventional power converter for plasma stabilization:Power Electronics Specialists Conference,1988. PESC'88 Record.,19th Annual IEEE, 1988[C].
    [36]Hammond P W. A new approach to enhance power quality for medium voltage drives:Petroleum and Chemical Industry Conference,1995. Record of Conference Papers., Industry Applications Society 42nd Annual,1995[C].
    [37]参见ABB公司主页[EB/OL]. www.abb.com.
    [38]参见Alstom公司主页[EB/OL]. www.alstom.com.
    [39]参见Ansaldo Sistemi Industriali公司主页[EB/OL]. www.asiansaldo.com.
    [40]参见Arrowspeed公司主页[EB/OL]. www.arrowspeed.com.
    [41]参见Converteam公司主页[EB/OL]. www.converteam.com.
    [42]参见Eaton公司主页[EB/OL]. www.eaton.com.
    [43]参见Grupo Jema公司主页[EB/OL]. www.grupojema.com.
    [44]参见Ingeteam公司主页[EB/OL]. www.ingeteam.com.
    [45]参见LS industrial Systems公司主页[EB/OL]. www.lsis.biz.
    [46]参见Rongxin Power Electronic公司主页[EB/OL]. www.rxpe.co.uk.
    [47]参见SIEMENS公司主页[EB/OL]. www.siemens.com.
    [48]参见TMEIC-GE公司主页[EB/OL]. www.tmeic-ge.com.
    [49]参见WEG公司主页[EB/OL]. www.weg.net.
    [50]参见Yaskawa公司主页[EB/OL]. www.yaskawa.eu.com.
    [51]参见利德华福公司主页[(?)EB/OL]. www.ld-harvest.com.
    [52]参见施耐德电气公司主页[(?)EB/OL]. www.schneider-electric.com.
    [53]Kouro S, Malinowski M, Gopakumar K, et al. Recent Advances and Industrial Applications of Multilevel Converters[J]. Industrial Electronics, IEEE Transactions on,2010,57(8):2553-2580.
    [54]Krug D, Bernet S, Fazel S S, et al. Comparison of 2.3-kV Medium-Voltage Multilevel Converters for Industrial Medium-Voltage Drives[J]. Industrial Electronics, IEEE Transactions on, 2007,54(6):2979-2992.
    [55]Fazel S S, Bernet S, Krug D, et al. Design and Comparison of 4-kV Neutral-Point-Clamped, Flying-Capacitor, and Series-Connected H-Bridge Multilevel Converters[J]. Industry Applications, IEEE Transactions on,2007,43(4):1032-1040.
    [56]Papastergiou K D, Wheeler P W, Clare J C. Comparison of losses in multilevel converters for aerospace applications:Power Electronics Specialists Conference,2008. PESC 2008. IEEE, 2008[C].
    [57]Abu-Rub H, Holtz J, Rodriguez J, et al. Medium-Voltage Multilevel Converters-State of the Art, Challenges, and Requirements in Industrial Applications[J]. Industrial Electronics, IEEE Transactions on,2010,57(8):2581-2596.
    [58]Rodriguez J, Bernet S, Bin W, et al. Multilevel Voltage-Source-Converter Topologies for Industrial Medium-Voltage Drives[J]. Industrial Electronics, IEEE Transactions on,2007,54(6):2930-2945.
    [59]Pou J, Pindado R, Boroyevich D. Voltage-balance limits in four-level diode-clamped converters with passive front ends[J]. Industrial Electronics, IEEE Transactions on,2005,52(1):190-196.
    [60]Busquets-Monge S, Alepuz S, Bordonau J, et al. Voltage Balancing Control of Diode-Clamped Multilevel Converters With Passive Front-Ends[J]. Power Electronics, IEEE Transactions on, 2008,23(4):1751-1758.
    [61]Wu C M, Lau W H, Chung H. A five-level neutral-point-clamped H-bridge PWM inverter with superior harmonics suppression:a theoretical analysis:Circuits and Systems,1999. ISCAS'99. Proceedings of the 1999 IEEE International Symposium on,1999[C].
    [62]Apeldoorn O, Odegard B, Steimer P, et al. A 16 MVA ANPC-PEBB with 6 kA IGCTs:Industry Applications Conference,2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005, 2005[C].
    [63]Bruckner T, Bernet S, Guldner H. The active NPC converter and its loss-balancing control[J]. Industrial Electronics, IEEE Transactions on,2005,52(3):855-868.
    [64]Senturk O S, Helle L, Munk-Nielsen S, et al. Power Capability Investigation Based on Electrothermal Models of Press-Pack IGBT Three-Level NPC and ANPC VSCs for Multimegawatt Wind Turbines[J]. Power Electronics, IEEE Transactions on,2012,27(7):3195-3206.
    [65]Marquardt R. Stromrichterschaltungen mit verteilten energiespeichern:2001-1-24.
    [66]Gemmell B, Dorn J, Retzmann D, et al. Prospects of multilevel VSC technologies for power transmission:Transmission and Distribution Conference and Exposition,2008. IEEE/PES,2008[C].
    [67]李俊峰.风光无限2011中国风电发展报告[M].北京:中国环境科学出版社,2011.
    [68]Fried L, Shukla S, Sawyer S. Global Wind Report annual market update 2011[R].GWEC,2012.
    [69]Wilkes J, Moccia J. The European offshore wind industry key 2011 trends and statistics[R].EWEA, 2012.
    [70]Elkraft, Eltra. Regulation TF 3.2.5. Wind turbines connected to grids with voltage above 100kV[S]. Denmark:2004.
    [71]Elkraft, Eltra. Regulation TF 3.2.6. Wind turbines connected to grids with voltage below 100kV[S]. Denmark:2004.
    [72]Interconnection for wind energy,Final Rule[S]. USA:2005.
    [73]EON. Grid code-high and extra high voltage[S]. Germany:2006.
    [74]Nordic grid code[S]. Nordel:2007.
    [75]The grid code,revision 6[S]. UK:2011.
    [76]Zhe C, Guerrero J M, Blaabjerg F. A Review of the State of the Art of Power Electronics for Wind Turbines[J]. Power Electronics, IEEE Transactions on,2009,24(8):1859-1875.
    [77]Andresen B, Birk J. A high power density converter system for the Gamesa G10x 4,5 MW wind turbine:Power Electronics and Applications,2007 European Conference on,2007[C].
    [78]Faulstich A, Stinke J K, Wittwer F. Medium voltage converter for permanent magnet wind power generators up to 5 MW:Power Electronics and Applications,2005 European Conference on, 2005[C].
    [79]Yazdani A, Iravani R. A neutral-point clamped converter system for direct-drive variable-speed wind power unit[J]. Energy Conversion, IEEE Transactions on,2006,21 (2):596-607.
    [80]Carrasco J M, Franquelo L G, Bialasiewicz J T, et al. Power-Electronic Systems for the Grid Integration of Renewable Energy Sources:A Survey[J]. Industrial Electronics, IEEE Transactions on,2006,53(4):1002-1016.
    [81]张明IGCT器件制造中的离子注入扩散技术[J].变流技术与电力牵引,2006(5):23-25.
    [82]张明IGCT器件制造中的阴极梳条成型技术[J].变流技术与电力牵引,2006(6):15-18.
    [83]Satoh K, Morishita K, Hirano N, et al. New design approach for ultra high power GCT thyristor: Power Semiconductor Devices and ICs,1999. ISPSD'99. Proceedings., The 11th International Symposium on,1999[C].
    [84]Gruening H, Koyanagi K. A new compact high dI/dt gate drive unit for 6-inch GCTs [gate commutated turn-off thyristor]:Power Semiconductor Devices and ICs,2004. Proceedings. ISPSD '04. The 16th International Symposium on,2004[C].
    [85]Yamamoto M, Satoh K, Nakagawa T, et al. GCT (gate commutated turn-off) thyristor and gate drive circuit:Power Electronics Specialists Conference,1998. PESC 98 Record.29th Annual IEEE, 1998[C].
    [86]Takata I, Bessho M, Koyanagi K, et al. Snubberless turn-off capability of four-inch 4.5 kV GCT thyristor:Power Semiconductor Devices and ICs,1998. ISPSD 98. Proceedings of the 10th International Symposium on,1998[C].
    [87]Gruening H E, Zuckerberger A. Hard drive of high power GTOs:better switching capability obtained through improved gate-units:Industry Applications Conference,1996. Thirty-First IAS Annual Meeting, IAS'96., Conference Record of the 1996 IEEE,1996[C].
    [88]Backlund B, Luscher M. Recent developments in IGCT gate units:Power Electronics and Applications,2007 European Conference on,2007[C].
    [89]Stiasny T, Streit P. A new combined local and lateral design technique for increased SOA of large area IGCTs:Power Semiconductor Devices and ICs,2005. Proceedings. ISPSD'05. The 17th International Symposium on,2005[C].
    [90]Lophitis N, Antoniou M, Udrea F, et al. Turn-off failure mechanism in large area IGCTs: Semiconductor Conference (CAS),2011 International,2011 [C].
    [91]Kollensperger P, De Doncker R W. Optimized Gate Drivers for Internally Commutated Thyristors (ICTs)[J]. Industry Applications, IEEE Transactions on,2009,45(2):836-842.
    [92]Bragard M, van Hoek H, De Doncker R W. A Major Design Step in IETO Concept Realization That Allows Overcurrent Protection and Pushes Limits of Switching Performance[J]. Power Electronics, IEEE Transactions on,2012,27(9):4163-4171.
    [93]Bragard M, Conrad M, van Hoek H, et al. The Integrated Emitter Turn-Off Thyristor (IETO)-An Innovative Thyristor-Based High Power Semiconductor Device Using MOS Assisted Turn-Off[J]. Industry Applications, IEEE Transactions on,2011,47(5):2175-2182.
    [94]童亦斌,张婵.反并联二极管对IGCT关断过程的影响[J].电工技术学报,2007(11):125-129.
    [95]Luyao X, Xinmin J, Yibin T. The design of IGCT Gate-Unit equipped in the three-level NPC converter:Electrical Machines and Systems (ICEMS),2011 International Conference on,2011[C].
    [96]朱长纯,吴春瑜,王颖,等.集成门极换流晶闸管驱动电路的研究[J].西安交通大学学报,2005(08).
    [97]Boller T, Kennel R, Schmitt G. Modular regenerative switching cell with integrated voltage-clamp: Power Electronics Specialists Conference,2008. PESC 2008. IEEE,2008[C].
    [98]兰志明,李崇坚,朱春毅,等.大功率IGCT高压变流器的研究[J].浙江大学学报(丁学版),2007(10):]674-1678.
    [99]Chongjian L, Chengsheng W, Chunyi Z, et al. Research on the transient state of large power voltage source inverter with IGCTs:Electromagnetic Compatibility (APEMC),2010 Asia-Pacific Symposium on,2010[C].
    [100]赵争鸣,张海涛,袁立强,等.基于IGCT的高压三电平变频器失效机理及保护策略[J].电工技术学报,2006(5):1-6.
    [101]易荣,赵争鸣.受杂散电感影响的大容量变换器中IGCT关断特性研究[J].中国电机工程学报,2007(31):115-120.
    [102]Longcheng T, Congwei L, Yaohua L, et al. The effect of minimum pulse width limitation on neutral point voltage control and their cooperation in high power three-level NPC converters:Electrical Machines and Systems (ICEMS),2010 International Conference on,2010[C].
    [103]袁立强,赵争鸣,刘建政,等.基于IGCT的大功率NPC逆变器设计仿真与分析[J].电力自动化设备,2004(1):46-49.
    [104]Floricau D, Popescu C L, Popescu M O, et al. A comparison of efficiency for three-level NPC and Active NPC voltage source converters:Compatibility and Power Electronics,2009. CPE'09., 2009[C].
    [105]Senturk O S, Helle L, Munk-Nielsen S, et al. Converter Structure-Based Power Loss and Static Thermal Modeling of The Press-Pack IGBT Three-Level ANPC VSC Applied to Multi-MW Wind Turbines[J]. Industry Applications, IEEE Transactions on,2011,47(6):2505-2515.
    [106]Bruckner T, Bernet S, Guldner H. The active NPC converter and its loss-balancing control[J]. Industrial Electronics, IEEE Transactions on,2005,52(3):855-868.
    [107]Qunjing W, Quan C, Weidong J, et al. Analysis and comparison of conduction losses in neutral-point-clamped three-level inverter with PWM control:Electrical Machines and Systems, 2007. ICEMS. International Conference on,2007[C].
    [108]Dieckerhoff S, Bernet S, Krug D. Power loss-oriented evaluation of high voltage IGBTs and multilevel converters in transformerless traction applications[J]. Power Electronics, IEEE Transactions on,2005,20(6):1328-1336.
    [109]Carrara G, Gardella S, Marchesoni M, et al. A new multilevel PWM method:a theoretical analysis[J]. Power Electronics, IEEE Transactions on,1992,7(3):497-505.
    [110]McGrath B P, Holmes D G. Multicarrier PWM strategies for multilevel inverters[J]. Industrial Electronics, IEEE Transactions on,2002,49(4):858-867.
    [111]McGrath B P, Holmes D G, Lipo T. Optimized space vector switching sequences for multilevel inverters[J]. Power Electronics, IEEE Transactions on,2003,18(6):1293-1301.
    [112]Kanchan R S, Baiju M R, Mohapatra K K, et al. Space vector PWM signal generation for multilevel inverters using only the sampled amplitudes of reference phase voltages[J]. Electric Power Applications, IEE Proceedings-,2005,152(2):297-309.
    [113]宋强,刘文华,严干贵,等.基于零序电压注入的三电平NPC逆变器中点电位平衡控制方法[J].中国电机工程学报,2004(5):61-66.
    [114]孟永庆,沈传文,刘正,等.基于零序电压注入的三电平中点箝位整流器中点电位控制方法的研究[J].中国电机工程学报,2007(10):92-97.
    [115]Chenchen W, Yongdong L. Analysis and Calculation of Zero-Sequence Voltage Considering Neutral-Point Potential Balancing in Three-Level NPC Converters[J]. Industrial Electronics, IEEE Transactions on,2010,57(7):2262-2271.
    [116]原熙博,李永东,王琛琛.基于零序分量注入的三电平PWM整流器目标优化控制[J].电工技术学报,2009(3):116-121.
    [117]Celanovic N, Boroyevich D. A fast space-vector modulation algorithm for multilevel three-phase converters[J]. Industry Applications, IEEE Transactions on,2001,37(2):637-641.
    [118]刘斌,薛毓强.消除偶次谐波的三电平NPC逆变器调制方法[J].电力系统及其自动化学报,2011(1):80-85.
    [119]Videt A, Le Moigne P, Idir N, et al. A New Carrier-Based PWM Providing Common-Mode-Current Reduction and DC-Bus Balancing for Three-Level Inverters[J]. Industrial Electronics, IEEE Transactions on,2007,54(6):3001-3011.
    [120]Hee-Jung K, Hyeoun-Dong L, Seung-Ki S. A new PWM strategy for common-mode voltage reduction in neutral-point-clamped inverter-fed AC motor drives[J]. Industry Applications, IEEE Transactions on,2001,37(6):1840-1845.
    [121]Kanchan R S, Tekwani P N, Baiju M R, et al. Three-level inverter configuration with common-mode voltage elimination for induction motor drive[J]. Electric Power Applications, IEE Proceedings-,2005,152(2):261-270.
    [122]Shutian Z, Qiongxuan G, Yaohua L. Three-level NPC inverter with IGCT for high power AC drives: Electrical Machines and Systems,2008. ICEMS 2008. International Conference on,2008[C].
    [123]Yo-Han L, Bum-Seok S, Dong-Seok H. A novel PWM scheme for a three-level voltage source inverter with GTO thyristors[J]. Industry Applications, IEEE Transactions on,1996,32(2):260-268.
    [124]宋文祥,陈国呈,武慧,等.一种具有中点电位平衡功能的三电平空间矢量调制方法及其实现[J].中国电机工程学报,2006(12):95-100.
    [125]Yamanaka K, Hava A M, Kirino H, et al. A novel neutral point potential stabilization technique using the information of output current polarities and voltage vector:Industry Applications Conference,2001. Thirty-Sixth IAS Annual Meeting. Conference Record of the 2001 IEEE, 2001 [C].
    [126]Gupta A K, Khambadkone A M. A Simple Space Vector PWM Scheme to Operate a Three-Level NPC Inverter at High Modulation Index Including Overmodulation Region, With Neutral Point Balancing[J]. Industry Applications, IEEE Transactions on,2007,43(3):751-760.
    [127]Busquets-Monge S, Bordonau J, Boroyevich D, et al. The nearest three virtual space vector PWM-a modulation for the comprehensive neutral-point balancing in the three-level NPC inverter[J]. Power Electronics Letters, IEEE,2004,2(1):11-15.
    [128]Pontt J, Rodriguez J, Huerta R. Mitigation of noneliminated harmonics of SHEPWM three-level multipulse three-phase active front end converters with low switching frequency for meeting standard IEEE-519-92[J]. Power Electronics, IEEE Transactions on,2004,19(6):1594-1600.
    [129]Sirisukprasert S, Jih-Sheng L, Tian-Hua L. Optimum harmonic reduction with a wide range of modulation indexes for multilevel converters[J]. Industrial Electronics, IEEE Transactions on, 2002,49(4):875-881.
    [130]Yongchang Z, Zhengming Z, Jianguo Z. A Hybrid PWM Applied to High-Power Three-Level Inverter-Fed Induction-Motor Drives[J]. Industrial Electronics, IEEE Transactions on, 2011,58(8):3409-3420.
    [131]Silva C, Oyarzun J. High Dinamic Control of a PWM Rectifier using Harmonic Elimination:IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on,2006[C].
    [132]Fei W. Sine-triangle versus space-vector modulation for three-level PWM voltage-source inverters[J]. Industry Applications, IEEE Transactions on,2002,38(2):500-506.
    [133]吴洪洋,何湘宁.多电平载波PWM法与SVPWM法之间的本质联系及其应用[J].中国电机工程学报,2002(5):11-16.
    [134]宋文祥,艾芊,云伟俊,等.基于矢量分区的三电平SVPWM模式零序分量分析[J].电工技术学报,2009(12):102-108.
    [135]姚文熙,王斯然,刘森森,等.三电平空间矢量调制中的共模分量[J].电工技术学报,2009(4):108-113.
    [136]von Jouanne A, Dai S, Zhang H. A multilevel inverter approach providing DC-link balancing, ride-through enhancement, and common-mode voltage elimination[J]. Industrial Electronics, IEEE Transactions on,2002,49(4):739-745.
    [137]Stala R. Application of Balancing Circuit for DC-Link Voltages Balance in a Single-Phase Diode-Clamped Inverter With Two Three-Level Legs[J]. Industrial Electronics, IEEE Transactions on,2011,58(9):4185-4195.
    [138]Orfanoudakis G I, Sharkh S M, Yuratich M A. Circuit for reducing devices voltage stress due to DC-link capacitor voltage ripple in a Neutral-Point-Clamped inverter:Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference on,2011 [C].
    [139]Pou J, Zaragoza J, Rodriguez P, et al. Fast-Processing Modulation Strategy for the Neutral-Point-Clamped Converter With Total Elimination of Low-Frequency Voltage Oscillations in the Neutral Point[J]. Industrial Electronics, IEEE Transactions on,2007,54(4):2288-2294.
    [140]姜卫东,王群京,陈权,等.二极管箝位型多电平逆变器全范围电容电压平衡的PWM调制方法[J].中国电机工程学报,2009(15):28-35.
    [141]宋强,刘文华,严干贵,等.基于零序电压注入的三电平NPC逆变器中点电位平衡控制方法[J].中国电机工程学报,2004(5):61-66.
    [142]田凯,王明彦.三电平双组双调制波载波脉宽调制方法[J].中国电机工程学报,2010(30):55-61.
    [143]田凯,王明彦,刘松斌.新颖的双调制波三电平载波脉宽调制方法[J].中国电机工程学报, 2009(33):54-59.
    [144]宋文祥,陈国呈,武慧,等.一种具有中点电位平衡功能的三电平空间矢量调制方法及其实现[J].中国电机工程学报,2006(12):95-100.
    [145]Busquets-Monge S, Ortega J D, Bordonau J, et al. Closed-Loop Control of a Three-Phase Neutral-Point-Clamped Inverter Using an Optimized Virtual-Vector-Based Pulsewidth Modulation[J]. Industrial Electronics, IEEE Transactions on,2008,55(5):2061-2071.
    [146]Celanovic N, Boroyevich D. A comprehensive study of neutral-point voltage balancing problem in three-level neutral-point-clamped voltage source PWM inverters[J]. Power Electronics, IEEE Transactions on,2000,15(2):242-249.
    [147]Alonso O, Marroyo L, Sanchis P, et al. Analysis of neutral-point voltage balancing problem in three-level neutral-point-clamped inverters with SVPWM modulation:IECON 02 [Industrial Electronics Society, IEEE 2002 28th Annual Conference of the],2002[C].
    [148]Pou J, Boroyevich D, Pindado R. Effects of imbalances and nonlinear loads on the voltage balance of a neutral-point-clamped inverter [J]. Power Electronics, IEEE Transactions on, 2005,20(1):123-131.
    [149]Pou J, Pindado R, Boroyevich D, et al. Evaluation of the low-frequency neutral-point voltage oscillations in the three-level inverter[J]. Industrial Electronics, IEEE Transactions on, 2005,52(6):1582-1588.
    [150]姜卫东,王群京,史晓锋,等.中点箝位型三电平逆变器在空间矢量调制时中点电位的低频振荡[J].中国电机工程学报,2009(3):49-55.
    [151]Zaragoza J, Pou J, Ceballos S, et al. A Comprehensive Study of a Hybrid Modulation Technique for the Neutral-Point-Clamped Converter [J]. Industrial Electronics, IEEE Transactions on, 2009,56(2):294-304.
    [152]Pou J, Zaragoza J, Rodriguez P, et al. Fast-Processing Modulation Strategy for the Neutral-Point-Clamped Converter With Total Elimination of Low-Frequency Voltage Oscillations in the Neutral Point[J]. Industrial Electronics, IEEE Transactions on,2007,54(4):2288-2294.
    [153]Holtz J, Oikonomou N. Neutral Point Potential Balancing Algorithm at Low Modulation Index for Three-Level Inverter Medium-Voltage Drives[J]. Industry Applications, IEEE Transactions on, 2007,43(3):761-768.
    [154]Pou J, Boroyevich D, Pindado R. New feedforward space-vector PWM method to obtain balanced AC output voltages in a three-level neutral-point-clamped converter[J]. Industrial Electronics, IEEE Transactions on,2002,49(5):1026-1034.
    [155]姜卫东,王群京,李争,等.中点电压偏移对SVM控制的三电平逆变器的影响及补偿措施[J].电工技术学报,2006(9):76-80.
    [156]姜卫东,王群京,陈权,等.考虑中点电压不平衡的中点箝位型三电平逆变器空间矢量调制方法[J].中国电机工程学报,2008(30):20-26.
    [157]张明,戴小平,李继鲁,等.1100A/4500V逆导型IGCT组件的研究[J].变流技术与电力牵引,2007(3):15-20.
    [158]张明,戴小平,李继鲁,等.KIc 4000-45非对称型IGCT组件的研究[J].变流技术与电力牵引,2007(2):22-26.
    [159]Yuan L, Zhao Z, Yang Z. Power Losses for IGCTs and Diodes in MV Three-level Inverters:Power Electronics and Drives Systems,2005. PEDS 2005. International Conference on,2005[C].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700