基于电力电子集成概念的三相逆变电源系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆变电源技术,作为电能变换和控制的最主要形式之一,广泛应用于当今社会各个领域,尤其在新能源技术领域有着更加广阔的前景。而始于二十世纪九十年代的电力电子集成技术被认为是二十一世纪电力电子技术发展的必由之路,为逆变电源的进一步发展带来了新的契机。但逆变电源等电力电子集成技术有别于微电子集成技术,目前制约其发展的一些问题亟待解决。本学位论文从电力电子集成概念出发,以三相逆变电源系统为主线,对其中SVPWM驱动控制系统数字集成化,MATLAB模型的直接代码生成驱动控制系统的设计,宽电压输入辅助直流变换器的实现,电力电子集成关键技术等问题进行了深入研究和探讨。
     本论文首先从PWM控制的一般原理出发,探讨了工业最常用SPWM的机理,包括控制方式、控制特性分析,计算机实现方法(即采样方法的理论推导和分析)等。进一步提出了直流电压利用率高、易于数字化实现的空间矢量脉冲宽度调制(SVPWM)算法,进行了深入的理论推导。在高压大功率领域,三相多电平逆变器得到了广泛应用,文中提出了一种箝位二极管式电压型三电平逆变器拓扑,详细论述了此三电平逆变器空间电压矢量调制工作原理和实现方法,仿真实验验证了其可行性。
     将系统集成思想应用于三相全桥式功率电路的驱动控制系统,提出了一种基于TMS320F2182型DSP和IR2136的驱动控制系统结构。对基于IR2136的典型驱动应用电路进行了仿真分析,为实际设计驱动控制电路提供了参考依据。重点研究了三种SVPWM调制算法,为了寻求合理选择控制算法的理论依据,详细分析了其实现机理,对比研究了三种调制模式直流电压利用率、调制函数和输出线电压谐波分布之间的关系。根据不同调制算法的特点,细述了实际工程应用中DSP实现SVPWM的两种方式:硬件法实现(五段法SVPWM)和软件法实现(七段法SVPWM和三段法SVPWM)。分析了不同实现方法对实验结果的影响。在常规手工编程驱动控制系统基础上,本论文首次提出了一种基于MATLAB模型的DSP直接代码生成驱动控制系统。以简易的PWM DSP直接代码实现演示了基于MATLAB模型的控制算法DSP直接代码实现过程,验证了其可行性;进一步研究了基于五段法SVPWM的MATLAB模型到DSP直接代码的工程实现,并进行了仿真及实验验证。
     宽电压输入辅助变换器可以应用各种电压场合,从而可以满足不同工作环境和客户的需求。本论文以易于集成的反激式变换器为研究对象,详细论述了其结构特点及三种工作模式(CCM、DCM和临界电流连续模式)的工作特性。提出了一种基于电流型PWM控制芯片UC2845的宽电压输入反激变换器拓扑设想,探讨了通过合理设计反馈回路及转换工作模式来实现宽电压输入反激变换器的原理。对宽电压输入反激变换器的关键技术进行了详细的分析和讨论,这些关键技术包括:宽电压输入反激高频变压器设计;尖峰电压干扰抑制技术;电流型控制电路的斜率补偿及稳定反馈技术。制作了25W、两路输出反激变换器样机,进行了实验研究。理论和实验研究均表明,合理设计变换器工作模式和反馈控制回路,可以生产出性能稳定的宽电压输入反激变换器。
     逆变电源系统架构和电力电子集成关键技术将对集成项目的进行提供有益的参考和发展的思路。论文给出了三相逆变系统的整体构架,在此系统上进行了实验研究,分析了辅助电源输入电压对系统工作模式及开关应力的影响,反馈斜率补偿网络对系统工作性能影响及不同控制算法对电源系统工作性能的影响。结合微电子集成电路技术的发展,分析了电力电子集成技术的可能性。对三相逆变器电力电子集成关键技术:三维封装及互连技术、磁集成技术、集成设计方法技术等进行了分析和综述。提出了基于OrCAD、Origin、Ansys等软件集成一体化的热设计方法。
     本论文工作作为电力电子集成的初步探索,为逆变电源系统及其集成技术提供了设计思路和有益的工程借鉴。
Inverter is the main technology of electronic power conversion and control. The applications of it are proliferating in many areas of modern society. With the ever-increasing energy demand of the world, inverter will play key role in the new energy resources. However, in power electronics, it is generally believed that advancements can be achieved only through a systems-level approach by developing intelligent, integrated power electronics modules (IPEMs) that initiated in the 1990’s. And the novel power electronics integration technology will push the further development of inverter.But, power electronics integration technology in inverter is diffirent with the technology of integrated circuit. Some dominant technology barriers must be solved emergently. In this dissertation, three phase inverter system with the concept of power electronics integration will be the main contents.Key technologies of it, such as numeralization and integration of SVPWM based driving and control system, MATLAB model based design of driving and control system, realization of wide input voltage auxiliary power supply and power electronics integration technology are researched and discussed thoroughly.
     PWM scheme is widely used in inverters. Firstly, the universal principle of PWM is presented. The mechanism of SPWM widely used in industry is discussed in details, including control mode, analysis of control characteristic and method for computer realization of SPWM(i.e. theoretical derivation and analysis of sampling method. ). In order to obtain high DC bus voltage utilization and numeralization easily, the SVPWM is proposed with detailed theoretical derivation. For high voltage and power applications, the three-phase three-level PWM inverters are widely used. A neutral-point-clamped voltage-source inverter with three-level is presented in this thesis. The SVPWM operation principle and realization of it are discussed in detail. The simulation results validate it.
     The driving and control system with integration concept is the core of the power electronics integration module intelligence.The TMS320F2812 DSP and IR2136 based driving and control system for three-phase inverter is proposed. IR2136 based driving circuit is simulated with Pspice software. The results provide the laws for other designs. Three SVPWM schemes are presented and the realization principle is analysed. The DC bus voltage utilization, modulation functions and harmonic contents for three different schemes are studied using comparison. According to the feature of three control scheme, two SVPWM realization methods by DSP, i.e. using harware(5-segment SVPWM) and using software(3-segment and 7-segment SVPWM ), are introduced. The experimental results of them are given and the effect to control performance is analysed. In addition, to avoid stated problems, such as document-based specification misunderstanding, coding errors and extend development time of the control algorithms, of traditional manual coding, a MATLAB model based DSP driving and control system is firstly proposed. The DSP code realization procedure of the model based control system is demonstrated through the model based design of a simple PWM control system and the experimental results validate the design. Detailedly, the model based 5-segment SVPWM DSP control system is studied. Also, the simulation and experimental results are given.
     Wide input voltage converters can be used in all kinds of applications.Thus it can meet the different customers and operate in all power systems.In this dissertation, the flyback converter topology which can be easily integrated is presented.The structure characteristic of it and operation performance of its three modes(CCM,DCM and critical current mode) are introduced at length. The UC2845 based wide input voltage flyback converter is proposed. The design principle of it is analysed through designing feedback loop properly and changing operation mode.The core technologies are stated, which are the design of high frequency transformer, the interference suppression of spike voltage, the slope compensation of current mode controller and the design of stable feedback loop. The prototype with two output and 25W power is assembled. And the experiment is implemented. The results of theory and experiment show that high performance wide input voltage flyback converter can be realized by designing the operation mode and feedback control loop properly.
     The system structure of inverter and key technologies of power electronics integration can provide us the useful ideas for the new system integration. In this thesis, the system structure of three phase inverter is presented and the experiment is done on this platform. The impact of auxiliary power supply input voltage on operation mode and power devices stress, impact of feedback loop and slope compensation on system performance and impact of control algorithm on system performance are analysed. The probability analysis of power electronics integration is given with the knowledge of microelectronic integrated circuit development. And the core technologis, such as three-dimensional packaging and interconnection, magnetics-integration technologis and integrated design methodology, of power electronics integration for three phase inverter, are overviewed. A novel thermal design method integrated the software OrCAD, Origin and Ansys, is proposed.
     The work done in the dissertation is only the first step of integration.But it provides the design ideas and good engineering example for inverter system and its integration technology.
引文
[1] Akagi H. The state-of-the-art of power electronics in Japan. Power Electronics, IEEE Transactions on, 1998, 13(2):345-356.
    [2] Bose B K. Power electronics and motor drives - technology advances, trends and applications. In: IEEE International Conference on Industrial Technology, ICIT'05. 2005, 20-64.
    [3] Bose B K. Energy, environment, and advances in power electronics. Power Electronics, IEEE Transactions on, 2000, 15(4):688-701.
    [4] Calais M, Myrzik J, Spooner T, et al. Inverters for single-phase grid connected photovoltaic systems-an overview. In: 2002 IEEE 33rd Annual Power Electronics Specialists Conference, PESC'02. 2002, 4:1995-2000.
    [5] Ericsen T, Hingorani N, Khersonsky Y. Power electronics and future marine electrical systems. Industry Applications, IEEE Transactions on, 2006, 42(1):155-163.
    [6] Steimer P K, Apeldoorn O, Odegard B, et al. Very high power PEBB technology. In: 2005 European Conference on Power Electronics and Applications. 2005, 1-11.
    [7]王兆安,杨旭,王晓宝等.电力电子集成技术的现状及发展方向.电力电子技术, 2003, 37(5):90-94.
    [8]王兆安,陈桥梁.集成化是电力电子技术发展的趋势.变流技术与电力牵引, 2006, (1):2-6.
    [9]钱照明,陈辉明,吕征宇等.电力电子系统集成理论及若干关键技术.科学技术与工程, 2004, 4(7):580-583.
    [10]钱照明,张军明,谢小高等.电力电子系统集成研究进展与现状.电工技术学报, 2006, 21(3):1-14.
    [11]叶斌.电力电子应用技术.北京:清华大学出版社, 2006.
    [12]陈道炼. DC-AC逆变技术及其应用.北京:机械工业出版社, 2003.
    [13]陈坚.电力电子学-电力电子变换和控制技术.北京:高等教育出版社, 2002.
    [14]彭力.基于状态空间理论的PWM逆变电源控制技术研究[博士学位论文].武汉:华中科技大学图书馆, 2004.
    [15] Perkinson J. UPS systems: a review. In: Third Annual IEEE Applied Power Electronics Conference and Exposition, APEC'88. 1988, 151-154.
    [16] Liu Bangyin, Duan Shanxu, Kang Yong, et al. Genetic algorithm optimized fuzzy repetitive controller for low cost UPS inverter application. In: IEEE International Conference on Electric Machines and Drives. 2005, 840-845.
    [17] Deng H, Ramesh O, Dipti S. Adaptive digital control for UPS inverter applications with compensation of time delay. In: Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, APEC'04. 2004, 1:450-455.
    [18] Kimura N, Taniguchi K, Morita H. Study of emergency power supply using induction generator with flywheel. In: The 4th International Power Electronics and Motion Control Conference, IPEMC'04. 2004, 2:989-994.
    [19] Wang Lu, Chen Min, Xu Dehong. Increasing inductive power transferring efficiency for maglev emergency power supply. In: 37th IEEE Power Electronics Specialists Conference, PESC'06. 2006, 1-7.
    [20] Jahns T M, Blasko V. Recent advances in power electronics technology for industrial and traction machine drives. Proceedings of the IEEE, 2001, 89(6):963-975.
    [21] Bernet S. Recent developments of high power converters for industry and traction applications. Power Electronics, IEEE Transactions on, 2000, 15(6):1102-1117.
    [22] Stemmler H. Power electronics in electric traction applications. In: International Conference on Industrial Electronics, Control, and Instrumentation, Proceedings of the IECON'93. 1993, 2:707-713 .
    [23] Wang Chien-Ming, Yang Chia-Hao. A novel high input power factor soft-switching single-stage single-phase AC/DC/AC converter. In: IEEE Vehicle Power and Propulsion Conference. 2005, 184-188.
    [24] Hara Y, Masada E, Miyatake M, et al. Application of unified power flow controller for improvement of power quality. In: IEEE Power Engineering Society Winter Meeting. 2000, 4:2600-2606.
    [25] Huang Z Y, Ni Y X, Shen C M, et al. Application of unified power flow controller in interconnected power systems-modeling, interface, control strategy, and case study. Power Systems, IEEE Transactions on, 2000, 15(2):817-824.
    [26] Wang Zhaoan, Wang Qun, Yao Weizheng, et al. A series active power filter adopting hybrid control approach. Power Electronics, IEEE Transactions on, 2001, 16(3):301-310.
    [27] Hou W J, Hsu W P, Jou H L, et al. Novel Circuit Topology for Three-Phase Active Power Filter. Power Delivery, IEEE Transactions on, 2007, 22(1):444-449.
    [28]彭晓涛,程时杰,王少荣等.一种新型的电流源型变流器PWM控制策略及其在超导磁储能装置中的应用.中国电机工程学报, 2006, 26(22):60-66.
    [29] Kim H J, Seong K C, Cho J W, et al. 3 MJ/750 kVA SMES system for improving power quality. Applied Superconductivity, IEEE Transactions on, 2006, 16(2):574-577.
    [30] Andersen B R. HVDC transmission-opportunities and challenges. In: The 8th IEE International Conference on AC and DC Power Transmission. 2006, 24-29.
    [31] Strauss P, Engler A. AC coupled PV hybrid systems and microgrids-state of the art and future trends. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion. 2003, 3: 2129-2134.
    [32] Kjaer S B, Pedersen J K, Blaabjerg F. Power inverter topologies for photovoltaic modules-a review. In: Industry Applications Conference, 37th IAS Annual Meeting. 2002, 2:782-788.
    [33] Xue Yaosuo, Chang Liuchen, Song Pinggang. Recent developments in topologies of single-phase buck-boost inverters for small distributed power generators: an overview. In: The 4th International Power Electronics and Motion Control Conference, IPEMC'04. 2004, 3:1118-1123.
    [34] Xue Yaosuo, Chang Liuchen, Sren Baekhj K, et al. Topologies of single-phase inverters for small distributed power generators: an overview. Power Electronics, IEEE Transactions on, 2004, 19(5):1305-1314.
    [35] Nayar C V. Control and interfacing of bi-directional inverters for off-grid and weak grid photovoltaic power systems. In: IEEE Power Engineering Society Summer Meeting. 2000, 2:1280-1282.
    [36] Dede E J, Jordan J, Esteve V. State-of-the art and future trends in transistorised inverters for induction heating applications. In: Proceedings of the Fifth IEEEInternational Caracas Conference on Devices, Circuits and Systems. 2004, 1:204-211.
    [37]金海明,郑安平.电力电子技术.北京:北京邮电大学出版社, 2005.
    [38] Ohashi H. Power electronics innovation with next generation advanced power devices. In: The 25th International Telecommunications Energy Conference, INTELEC'03. 2003, 9-13.
    [39] Motto E R, Donlon J F, Majumdar G, et al. A new intelligent power module with microprocessor compatible analog current feedback, control input, and status output signals. In: Conference Record of the 1996 IEEE Industry Applications Conference, Thirty-First IAS Annual Meeting, IAS'96. 1996, 3:1287-1291.
    [40] Zhen X L, Lee F C, Lu G Q, et al. Embedded power-a multilayer integration technology for packaging of IPEMs and PEBBs. In: International Workshop on Integrated Power Packaging, IWIPP 2000. 2000, 41-45.
    [41] Aftandilian L, Mangtani V, Dubhashi A. Advances in power semiconductors and packaging lead to a compact integrated power stage for AC drives. In: WESCON'97, Conference Proceedings. 1997, 334-339.
    [42] Beihoff B. Power cell concepts for the next generation of appliances.In: IEEE International Electric Machines and Drives Conference, IEMDC'03. 2003, 1:16-23 .
    [43] Hudgins J L, Mookken J, Beker B, et al. The new paradigm in power electronics design. In: Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems, PEDS'99. 1999, 1:1-6.
    [44]陈文洁,杨旭,杨拴科等.分立元件构成的电力电子集成功率模块的设计.中国电机工程学报, 2003, 23(12):104-110.
    [45] Kajiwara T, Yamagaguchi A, Hoshi Y, et al. New intelligent power multi-chips modules with junction temperature detecting function. In: The 1998 IEEE Industry Applications Conference, Thirty-Third IAS Annual Meeting. 1998, 2:1085-1090.
    [46]陈桥梁,杨旭,王兆安等.基于电力电子集成技术的开关电源模块研究.电力电子技术, 2004, 38(2):50-53.
    [47]陈文洁,杨拴科,杨旭等.采用电力电子集成技术的软开关PFC电路的研究.电力电子技术, 2003, 37(2):53-55.
    [48] Lee F C, van Wyk J D, Liang Z X, et al. An integrated power electronics modularapproach: concept and implementation. In: The 4th International Power Electronics and Motion Control Conference, IPEMC'04. 2004, 1:1-13 .
    [49] Jinghong G, Celanovic I, Borojevic D. Distributed software architecture of PEBB-based plug and play power electronics systems. In: Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition, APEC'01. 2001, 2:772-777.
    [50] Giacomini D, Bianconi E, Martino L, et al. A new fully integrated power module for three phase servo motor driver applications. In: Conference Record of the 2001 IEEE Industry Applications Conference, Thirty-Sixth IAS Annual Meeting. 2001, 2:981-987.
    [51] Klumpner C, Nielsen P, Boldea I, et al. New solutions for a low-cost power electronic building block for matrix converters. Industrial Electronics, IEEE Transactions on, 2002, 49(2):336-344.
    [52] Jie C, Braun D. High-frequency AC-AC converter using 3-in-1 IBPMs and adaptive commutation. In: 30th Annual IEEE Power Electronics Specialists Conference, PESC'99. 1999, 1:351-357.
    [53]王勇.矩阵变换器的空间矢量调制、系统集成及应用研究[博士学位论文].杭州:浙江大学图书馆, 2005.
    [54] Mankikar M. Standard products (brick converters): product development, marketing/advertising/selling & making profit. In: Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition, APEC'02. 2002, 1:132-134.
    [55] Visairo H, Rodriguez E, Alou P, et al. Multi-output half-bridge converter with single-winding self-driven synchronous rectification. In: Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, APEC'03. 2003, 1:341-347.
    [56] Xie X, Liu J C P, Poon F N K, et al. Two methods to drive synchronous rectifiers during dead time in forward topologies. In: Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2000. 2000, 2:993-999.
    [57] Murakami N, Namiki H, Sakakibara K, et al. A simple and efficient synchronous rectifier for forward DC-DC converters. In: Eighth Annual Applied Power Electronics Conference and Exposition, APEC'93. 1993, 463-468.
    [58]张军明,谢小高,吴新科等. DC/DC模块有源均流技术研究.中国电机工程学报,2005, 25(19):31-36.
    [59] Calata J N, Bai J G, Liu X, et al. Three-Dimensional Packaging for Power Semiconductor Devices and Modules. Advanced Packaging, IEEE Transactions on, 2005, 28(3):404-412.
    [60]陈文洁,杨旭,杨拴科等.电力电子集成模块的封装结构与互连方式的研究现状.电子技术应用, 2004, 30(4):1-4.
    [61] Siddabattula K, Zhou C, Boroyevich D. Evaluation of metal post interconnected parallel plate structure for power electronic building blocks. In: Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2000. 2000, 1:271-276.
    [62] Haque S, Kun X, Ray-Lee L, et al. An innovative technique for packaging power electronic building blocks using metal posts interconnected parallel plate structures. Advanced Packaging, IEEE Transactions on, 1999, 22(2):136-144.
    [63] Liu X S, Haque S, Lu G Q. Three-dimensional flip-chip on flex packaging for power electronics applications. Advanced Packaging, IEEE Transactions on, 2001, 24(1):1-9.
    [64]王建冈,阮新波,吴伟等.倒装芯片集成电力电子模块.中国电机工程学报, 2005, 25(17):32-36.
    [65] Bai J G, Lu G Q, Liu X S. Flip-chip on flex integrated power electronics modules for high-density power integration. Advanced Packaging, IEEE Transactions on, 2003, 26(1):54-59.
    [66] Wen S S, Huff D, Lu G Q. Dimple-array interconnect technique for packaging power semiconductor devices and modules. In: Proceedings of the 13th International Symposium on Power Semiconductor Devices and ICs, ISPSD'01. 2001, 69-74.
    [67] Boyer F R, Epassa H G, Savaria Y. Embedded power-aware cycle by cycle variable speed processor. Computers and Digital Techniques, IEE Proceedings, 2006, 153(4):283-290.
    [68] Zhen X L, van Wyk J D, Lee F C. Embedded power: a 3-D MCM integration technology for IPEM packaging application. Advanced Packaging, IEEE Transactions on, 2006, 29(3):504-512.
    [69] Fisher R, Fillion R, Burgess J,et al. High frequency, low cost, power packaging usingthin film power overlay technology. In: Tenth Annual Applied Power Electronics Conference and Exposition, APEC'95. 1995, 1:12-17.
    [70] Yerman A J, Roshen W A, Charles R J, et al. MHz transformers for high density power conversion. In: 41st Electronic Components and Technology Conference. 1991, 431-436.
    [71] Lee F C, van Wyk J D, Boroyevich D, et al. Technology trends toward a system-in-a-module in power electronics. IEEE Circuits and Systems Magazine, 2002, 2(4):4-22.
    [72]顾亦磊,吕征宇,钱照明等.中小功率系统集成DC/DC标准模块的一族候选拓扑.中国电机工程学报, 2005, 25(10):45-49.
    [73]顾亦磊,汤建新,吕征宇等.电力电子系统集成技术发展的若干新思路.电力电子技术, 2005, 39(6):141-144.
    [74]杨旭,陈文洁,王兆安等.开关电源用电力电子集成模块的研究.电力电子技术, 2003, 37(1):70-73.
    [75]余小玲,曾翔君,杨旭等.混合封装电力电子集成模块内的传热研究.西安交通大学学报, 2004, 38(3):258-261.
    [76]张良华,曾翔君,杨旭等.混合封装三相桥式电力电子集成模块研究.电力电子技术, 2005, 39(4):124-126.
    [77]蒋赢.软开关变换器中平面集成磁件的研究[硕士学位论文].阜新:辽宁工程技术大学图书馆, 2006.
    [78]刘春喜.开关变换器中平面集成磁件设计的理论研究[硕士学位论文].阜新:辽宁工程技术大学图书馆, 2004.
    [79]陈乾宏.开关电源中磁集成技术的应用研究[博士学位论文].南京:南京航空航天大学图书馆, 2002.
    [80] Profumo F, Boglietti A, Griva G, et al. Space vector and sinusoidal PWM techniques comparison keeping in account the secondary effects. In: AFRICON'92 Proceedings, 3rd AFRICON Conference. 1992, 394-399.
    [81] Lai Yen-Shin, Bowes S R. A new suboptimal pulse-width modulation technique for per-phase modulation and space vector modulation. Energy Conversion, IEEE Transaction on, 1997, 12(4):310-316.
    [82] Kolar J W, Ertl H, Zach F C. Minimizing the current harmonics RMS value of three-phase PWM converter systems by optimal and suboptimal transition between continuous and discontinuous modulation. In: 22nd Annual IEEE Power Electronics Specialists Conference, PESC'91. 1991, 372-381.
    [83] Jing N, Yuyao H. Phase-Shifted Suboptimal Pulse-Width Modulation Strategy for Multilevel Inverter. In: 1st IEEE Conference on Industrial Electronics and Applications. 2006, 1-5.
    [84] van der Broeck H W, Skudelny H C, Stanke G V. Analysis and realization of a pulsewidth modulator based on voltage space vectors. Industry Applications, IEEE Transactions on, 1988, 24(1):142-150.
    [85] Bowes S R, Lai Yen-Shin. The relationship between space-vector modulation and regular-sampled PWM. Industrial Electronics, IEEE Transactions on, 1997, 44(5):670-679.
    [86] Jian S, Grotstollen H. Optimized space vector modulation and regular-sampled PWM: a reexamination. In: Conference Record of the 1996 IEEE Industry Applications Conference, Thirty-First IAS Annual Meeting, IAS'96. 1996, 2:956-963.
    [87] Keliang Z, Danwei W. Relationship between space-vector modulation and three-phase carrier-based PWM: a comprehensive analysis [three-phase inverters]. Industrial Electronics, IEEE Transactions on, 2002, 49(1):186-196.
    [88] Hariram B, Marimuthu N S. Space vector switching patterns for different applications - a comparative analysis. In: IEEE International Conference on Industrial Technology, ICIT'05. 2005, 1444-1449.
    [89] Halasz S, Zakharov A. PWM strategies of three-level inverter-fed AC drives. In: Conference Record of the Industry Applications Conference, 37th IAS Annual Meeting. 2002, 3:1982-1987.
    [90] Ge Qiongxuan, Wang Xiaoxin, Zhang Shutian, et al. A high power NPC three-level inverter equipped with IGCTs. In: The 4th International Power Electronics and Motion Control Conference, IPEMC'04. 2004, 3:1097-1100.
    [91] Jae Hyeong S, Chang Ho C, Dong Seok H. A new simplified space-vector PWM method for three-level inverters. Power Electronics, IEEE Transactions on, 2001,16(4):545-550.
    [92]张卫丰,余岳辉.三电平逆变器空间电压矢量控制算法仿真研究.电力电子技术, 2006, 40(1):3-5.
    [93]苏奎峰,吕强,耿庆锋等. TMS320F2812原理与开发.北京:电子工业出版社, 2005.
    [94] Ying-Shieh K, Pin-Ging H. High performance position controller for PMSM drives based on TMS320F2812 DSP. In: Proceedings of the 2004 IEEE International Conference on Control Applications. 2004, 1:290-295.
    [95] Ahmad R H, Karady G G, Blake T D, et al. Comparison of space vector modulation techniques based on performance indexes and hardware implementation. In: 23rd International Conference on Industrial Electronics, Control and Instrumentation, IECON'97. 1997, 2:682-687.
    [96] Perruchoud P J P, Pinewski P J. Power losses for space vector modulation techniques. IEEE Power Electronics in Transportation, 1996, 167-173.
    [97] Trzynadlowski A M, Kirlin R L, Legowski S F. Space vector PWM technique with minimum switching losses and a variable pulse rate [for VSI]. Industrial Electronics, IEEE Transactions on, 1997, 44(2):173-181.
    [98]张卫丰,余岳辉,刘璐等.一种基于IPM的简化空间矢量PWM研究.华中科技大学学报(自然科学版), 2006, 34(7):82-84.
    [99]张卫丰,余岳辉.基于DSP的优化空间矢量脉宽调制研究.武汉理工大学学报, 2006, 28(6):80-83.
    [100] Zhang Weifeng, Yu Yuehui. Comparison of three SVPWM strategies. Journal of Electronic Science and Technology of China, 2007(Accepted).
    [101]刘凤君.正弦波逆变器.北京:科学出版社, 2002.
    [102] French C D, Acarnley P P. Simulink real time controller implementation in a DSP based motor drive system. In: IEE Colloquium on DSP Chips in Real Time Measurement and Control. 1998, 1-5.
    [103] Hercog D, Curkovic M, Edelbaher G, et al. Programming of the DSP2 board with the Matlab/Simulink. In: 2003 IEEE International Conference on Industrial Technology. 2003, 2:709-713.
    [104] Sangswang A, Rost G, Nwankpa C O. A modular Simulink-based controlled three-phase switch mode inverter. In: IEEE Power Engineering Society Summer Meeting. 2000, 4:2101-2106.
    [105] Teng F C. Real-time control using Matlab Simulink. In: 2000 IEEE International Conference on Systems, Man, and Cybernetics. 2000, 4:2697-2702.
    [106]李真芳,苏涛,黄小宇等. DSP程序开发: MATLAB调试及直接目标代码生成.西安:西安电子科技大学出版社, 2003.
    [107] Kim Soo-Seok, Choi Dae-Kyu, Jang Su-Jin, et al. The active clamp sepic- flyback converter. In: IEEE 36th Power Electronics Specialists Conference, PESC'05. 2005, 1209-1212.
    [108] Shimizu T, Wada K, Nakamura N. Flyback-Type single-phase utility interactive inverter with power pulsation decoupling on the DC input for an AC photovoltaic module system. Power Electronics, IEEE Transactions on, 2006, 21(5):1264-1272.
    [109] Walker G R, Sernia P C. Cascaded DC-DC converter connection of photovoltaic modules. Power Electronics, IEEE Transactions on, 2004, 19(4):1130-1139.
    [110] Hren A, Korelic J, Milanovic M. RC-RCD clamp circuit for ringing losses reduction in a flyback converter. Circuits and Systems II: Express Briefs, IEEE Transactions on , 2006, 53(5):369-373.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700