高密度电子封装可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文着重研究了汽车内环境和电子封装可靠性两部分内容,其中第一部分汽车环境研究包括以下内容:
     1.汽车内环境研究对汽车电子模块设计和可靠性研究有重要意义。本文通过汽车内安装的传感器试验测量并记录了汽车在不同时间、不同行为状态下温湿度数据。在此基础上,提出了描述汽车环境的温度指数模型、密闭箱模型和乘客模型,建立了相应物理模型的解析表达式。并利用流体动力学方法通过有限元模拟给出了汽车内的空气流动和温度场分布,进一步验证了上述三种物理模型的合理性,确定了其中的主要物理参数值。另外,还讨论了太阳辐射造成的水汽凝结现象,指出它与初始水汽浓度密切相关。
     2.通过VB和MATLAB/Simulink软件分别对汽车环境进行模拟仿真。将人工记录的汽车活动记录表转化为计算机可识别的活动状态表,基于该状态表和上述三种物理模型进而实现对汽车环境的模块化仿真。为汽车内电子器件封装设计初步提供了一种工具软件。迄今,国内外文献尚未见到关于汽车内温度湿度物理模型、相应的流体力学散热模拟和相应的工具软件的报道。
     论文第二部分电子封装可靠性研究包含对塑封材料中水汽扩散研究、填充不流动胶的倒装焊芯片可靠性研究以及大功率器件散热问题研究三方面内容,最后为实现封装设计标准化和自动化,研究了若干最主要的电子封装构型的参数化有限元建模、加载和相应的求解方法。具体内容可以表述为以下几点:
     1.利用实验称重和Fick扩散方程模拟塑封材料对水的吸收过程,得到水汽在实验塑封材料中的扩散系数和饱和浓度。塑封材料中的水分子存在于高分子链围成的微孔洞中,并与高分子聚合物以氢键相连。当水汽浓度达到饱和时,在塑封材料中可以被水分子进入的有效体积内,实验条件下的水汽密度为标准状态下水蒸气密度的100倍,为液态水密度的8%,表明在塑封材料中的水分子以一种特殊的液态水形态存在。通过倒装焊器件在高温高湿条件下的分层及其分层复合现象的实验结果与模拟结果比较,提出了关于水汽引起界面分层及分层复合的物理机制。认为在一定的水汽浓度下,器件内部塑封材
    
     中国科学院上海微系统与信启、技术研究所博十学位论文
     料在界面处的微孔洞可能出现气液两相共存。两相共存的微孔洞还山于水分
     子争夺高分子的氢键使高分子与芯片表面的二氧化硅层的结合减弱,而逐步
     扩展形成可观察到的分层。吸湿后的封装器件内水汽的存在形式的研究对进
     一步深入研究潮气造成的封装失效问题有重要意义,目前通过试验结合有限
     元模拟讨论塑封材料吸潮机理和水汽存在形态的报道还很少。
    2.近年来,不流动胶倒装焊工艺己开始得到应用,但由于不流动胶的固化温度
     比常规底充胶高,芯片在冷却过程中将承受更大的热应力。本文第六章用断
     裂力学方涪和有限元模拟分析了填充不流动胶芯片断裂问题,计算了芯片的
     应力强度因于K和能量释放率G。模拟表明,山固化温度冷却到室温时,
     所研究的倒装焊封装在填充不流动胶时芯片断裂临界裂纹长度为 12pm,而
     填充传统底充胶时为20Hm。芯片断裂与胶的杨氏模量和热膨胀系数相关,
     与胶的铺展关系不大。山于不流动胶具有更高的CTE和更低的杨氏模量E,
     因此焊点排布和焊点位置会影响芯片变形程度,进而影响芯片断裂参数。在
     特定的焊点排布下,芯片断裂的可能性会达到最小。不流动胶倒装焊封装是
     近年来国际上发展的新技术,本文在不流动胶倒装焊中的芯片断裂问题,属
     首次报道。山于薄型芯片在高密度封装使用中越来越广泛,本文的结果对高
     密度封装设计有重要意义。
    3.比较了不同厚度的引线框架对大功率SOP封装器件散热性能的影晌。结果
     表明,厚度对热阻的影响不是很大。引线框架厚度增加一倍,热阻仅减少2
     “C/W。该结论否定了厚引线框架利于散热的简单想法,因此,在工艺上可
     以选择合适厚度的引线框架,避免了过厚的引线框架切割时造成的引脚翘曲
     甚至断裂情况的发生。该结论对封装工业生产有重要意义,属首次报道。
    4.基于ANSYS有限元模拟软件,围绕先进电于封装设计和工具研究,为实现
     封装设计标准化和自动化,研究了若干最主要的电子封装构型的参数化建模
     方法,以及在相应的JEDEC标准规范条件下电于封装参数化加载方法和相
     应的热学、力学、水汽扩散行为的模拟方涪。
The thesis is composed of two parts, including simulation on the environment of car and reliability research on electronic packaging.
    In the first part, the temperature and the relative humidity were recorded by several sensors in a car. Based on the experimental data, three physical models and corresponding analytical expressions were developed including the exponential temperature model, the closed-box model for calculation of relative humidity and the passenger model for revising the closed-box model. The finite element simulation with computational fluid dynamics (CFD) method was used to calculate the heat dissipation by airflow and the temperature distribution in passenger compartment of a car. The reasonability of three models as above mentioned was validated. The values of some physical constants were determined from the CFD simulation. The condensation of moisture due to sun radiation was analyzed. The result indicated that the condensation was dependent on the initial humidity in a car. After translating the action records into the state table that can be called by computer, the simulation with Visual Basic and MATLAB/Simulink were carried out, respectively. The software developed could be adopted as a tool for the reliability design of automotive electronic packaging.
    In the second part, the reliability research on electronic packaging was concentrated with finite element method (FEM) on moisture diffusion in plastic materials, die cracking of flip-chip with no-flow underfill and thermal performance of high power electronic components. In the last chapter, the design tool for advanced electronic package was studied. The main conclusions in the second part are as follows.
    1. The moisture diffusion in plastic electronic packaging was investigated from both experiment and finite element simulation. The diffusion coefficient and the
    
    
    
    saturate concentration were determined on the Pick's law. The results showed that the water molecules inside the plastic material were chemically bonded with polymers by hydrogen bonds in the micro-holes formed by the polymer molecule chain. On the saturate concentration, the moisture density in the micro-holes was 100 times larger than the vapor density in the standard state, but only 8% of liquid water. The water inside the plastic material was in a special liquid state. The delamination and the delamination recovery were observed by C-SAM. Delamination occurred when the liquid and gas phases of water coexist in micro-holes at chip/underfill interface. The adhesive strength between underfill and chip would be reduced due to the absorbed water molecules, resulting in extension and linkage of these micro-holes to form the delamination. The simulation results showed that the delamination might be observed when the moisture concentration was in the range of 50% and 95% of saturate concentration for non-coating, topside coating and both sides coating samples. The delamination at the interface would initiate due to the reduced adhesive strength and the high vapor pressure at high temperature would cause the popcorn during reflow. The moisture concentration of the interface was simulated to predict popcorning during the subsequent reflow.
    2. The die cracking with no-flow underfill was analyzed during cooling process from the curing temperature of underfill to the room temperature or to the lowest temperature (-55) in thermal cycle test. The stress intensity factor (SIF) and the strain energy release rate were simulated with different pre-crack length for the cases with no-flow underfill and with capillary-flow underfill. The cracking with these two types of underfill might become unstable and lead to catastrophic failure at the end. The critical length was about 12m for the assembly with no-flow underfill and 20m for the package with capillary-flow underfill at 20癈. The height and angle of no-flow underfill fillet little effects on the die cracking. However, the die cracking was dependent on the Young's modulus and CTE of underfill materials. Due to the higher CTE
引文
[1] 严世英,未来汽车工业发展趋势,上海汽车,1998(7)
    [2] Lynn I. Gibbs, David W. Lawrence, Mel A. Kohn, Heat exposure in an enclosed automobile, Journal of the Louisiana State Medical Society, vol.147(12), 1995
    [3] Taeyoung Han, Three-dimensional Navier-Stokes simulation for passenger compartment cooling, Int. J. of Vehicle Design, vol.10, No.2, 1989
    [4] Francoise Thellier, Frederic Althabegoity, and Alain Cordier, Modeling of local thermal sensations of a car driver in winter conditions, Proceeding on the 6th Int. Conf. On Envir. Ergon., Montebello, Canada, 1994, pp.190-191
    [5] Thellier, F., Cordier, A. and Monchoux, F., Clothing effects on thermal evaluation by transient modeling, Proc. 5th Int. Conf. On Environmental Ergonomics, 1992, pp.32-33
    [6] K.C.Parsons, A thermal model of a car driver, Proc. 2nd Int. Conf. On Vehicle comfort, A. T. A., Bologna, pp.323-331
    [7] Haslam, R.A., and Parsons, K. C., Quantifying the effects of clothing for models of human response to the thermal environment, Ergonomics, 1988, vol. 31, No. 12, pp. 1787-1806
    [8] Haslam, R.A., and Parsons, K. C., Computer based models of the thermal environment, In Thermal Physiology, Ed. Mercer, J. B., Elsevier, N.Y.
    [9] Jones, B.W., and Ogawa, Y., Transient interaction between the human and the thermal environment, ASHRAE Trans., 1992, vol.98
    [10] Fanger, P. O., Thermal Comfort, Danish Technical Press, Copenhagen, 1970
    [11] Gagge, A. P., Rational Temperature indices of man's thermal environment and their use with a 2-node model of his temperature regulation, Symposium on temperature regulation during excise, Indiana, Federation Proceedings, vol.32,No.5, 1973
    [12] Gagge, A. P., Stolwijk, J. A. J., and Nishi, Y., An effective temperature scale based on a simple model of human physiological thermoregulatory response, ASHRAE Trans., vol.77(1), pp.247-262
    [13] J. S. Brown, B. W. Jones, A new transient passenger thermal comfort model, ASHRAE Trans., 1993
    
    
    [14] P. Ambros, and U. Essers, Simulation program for design mad optimization of engine cooling systems for motor cars, 93ME108
    [15] G. Besombes, R. Robin, and C. Petitjean, Preliminary experimental validation of a car cabin model for climate control, SAE paper 970530
    [16] P. Gronier, and P. Gilotte, Airflow simulation of an automotive blower for a HVAC unit, SAE paper 960961
    [17] G. Stefurak, B. Hutchinson, and A. Gerber, Using the hemi-cube method to simulate automotive heating and cooling including solar and thermal radiation,Advanced Scientific Computing, 1992
    [18] G. Besombes, M. Robin, Maille: A mesh tool, based on anamorphic stretching of a pre-meshed cube and dedicated to car interior modelization, SAE paper 960813
    [19] G. Fonzes, L. M. Gschwind, J. J. Bezian, Athebes, a car thermal behavior simulation software, ATA-Ingegneria Automotoristica, vol.49, No.3, 1996, p.128-133
    [20] J. Currfe. Numerical simulation of the flow in a passenger compartment and evaluation of the thermal comfort of the occupants, Mercedes-Benz AG.: p.149-159
    [21] 陈礼燔,王宏雁,汤尚水,杜宇等,中国经济型轿车主要技术参数的基本定位,上海汽车,1998(4),p.9-12
    [22] ANSYS User's Manual,Chapt.CFD,1999
    [23] 埃克尔特E.R.G.,德雷克R.M.著.徐明德译.传热与传质.北京:科学出版社,1963
    [24] 施阳等编著,MATLAB语言精要及动态仿真工具SIMULINK,西北工业大学出版社,1997
    [25] Semiconductor Industry Association, 1999
    [26] 姜一兵,集成电路通讯,1999年第3期,p.10
    [27] G.E. Moore, Electronics, vol.38, 1965, p.14-16
    [28] 田民波,梁彤翔,何卫,半导体情报,32(4):p.42-61,1995
    [29] J. Lau, C. P. Wong, Electronic Packaging: Design, Materialos, Process & Reliability, New York: McGraw-Hill Press, 1998
    [30] R.R. Tummala, E. Rymaszewski, Microelectronics Packaging Handbook Part Ⅰ, New York: Van Nostrand Reinhold, 1989
    
    
    [31] C.A. Harper, Handbook of Microelectroonics Packaging, New York: McGraw-Hill Book Company, 1991
    [32] D.P. Seraphim, R. Lasky, C. Y. Li, Principles of Electronic Packaging, New York: McGraw-Hill Book Company, 1989:
    [33] Rao. R. Tummala, Fundamentals of Microsystems Packaging (New York: McGraw-Hill Companies. Inc., 2001), Chapt. 6, p.212-263
    [34] Kraus, The use of Steady State Electrical Network Analysis in Solving Heat Flow Problems, 2nd National ASME-A1ChE Heat Transfer Conference. Chicago, Aug. 1958
    [35] M. Guenin, A. R. Chowdhury, R. L. Groover, and E. J. Derian, Analysis of Thermally Enhanced SOIC Packages, IEEE Trans., Comp., vol.19, 1996, p.458-468
    [36] Chowdhury, B. Guenin, R. Groover, S. Anderson and E. Derian, Thermally Enhanced SOIC Packages for Power IC Devices, in Proc. 8th Int. Symp. Power Semiconductor Devices and Ics, Mani, HI, May 20-23, 1996, pp.313-316
    [37] EIA/JEDEC standard, Integrated Circuits Thermal Test Method Environment Conditions-Natural Convection (Still Air), EIA/JESD51-2, Dec.1995
    [38] C. Alger, W. A. Huffman, S. Gordon, S. Prough, R. Sandkuhle, and K. Yee, Moisture affects on susceptibility to package cracking in plastic surface mount components, IPC Technical Review, Feb. 1988, pp. 21-28
    [39] T.O. Steiner and D. Suhl, Investigation of large PLCC package cracking during surface mount exposure, IEEE Transactions on Component, Hybrid, and Manufacturing Technology, Vol.CHMT-10, No 2, June 1987, p209-216
    [40] Ray P. Prasad, Surface Mount Technology: Principles and Practice, 1989 by Van Nostrand Reinhold
    [41] S. Omi, K. Fujita, T. Tsuda, and T. Maeda, Causes of cracks in SMD and typesspecific remedies, Proceedings of the 41st electronic components and technology conference, pp.766-771,1991
    [42] H. Fujita and N. Mogi, High-reliability Epoxy molding compound for surface mount devices, proceedings of the electronic components and technology conference, IEEE, pp. 735-741, 1993
    [43] G. S. Ganesan and H. M. Berg, Model and analysis for solder reflow cracking phenomenon in SMT plastic packages, IEEE Conference, Orlando, Florida, pp.653-660, June 1993
    
    
    [44] I. Fukuzawa, S. Ishiguro, and S. Nanbu, Moisture resistance degradation of plastic LSIs by reflow soldering, Proceedings of the IEEE International reliability physics symposium, Orland, pp.192-197, 1985
    [45] B. K. Bhattacharyya, W. A. Huffman, W. E. Jahsman, and B. Natarajan, moisture absorption and mechanical performance of surface mountable plastic packages, Proceedings of 38th electronic components conference, ECC, Los Angeles, California, pp.49-58, 1988
    [46] A.Y. Kuo, L.T. Nguyen, and K. L. Chen, Effects of moving evaporation fronts in package popcoring, ASME winter annual meeting, Chicago, Nov. 6-11, pp.75-88, 1994
    [47] M.G. Pecht and A. Govind, In-situ measurements of surface mount IC package deformations during reflow soldering, IEEE Trans. Comp., Packag., Manufact. Technol. C, Vol. 20, July 1997, p207
    [48] A. A. O. Tay and T.Y.Lin, Proceeding of 48th Electronic Components and Technology Conference, Piscataway, NJ:IEEE, 1998, p371
    [49] A.A.O. Tay, G. L. Tan and T. B. Lira, A criterion for predicting delamination in plastic IC packages, Proceedings international reliability physics symposium, pp. 236-243,1993
    [50] S. Liu, J. S. Zhu, J. M. Hu, and Y. H. Pao, Investigation of crack propagation in ceramic/conductive epoxy/glass system, IEEE CPMT Part A, vol.18, No.3,1995
    [51] N. Tanaka and A. Nishimura, Measurement of IC molding Compound adhesion strength and Prediction of interface delamination within package, EEP-vol.10-23, Advances in Electronic Packaging ASME, 1995
    [52] Z. Suo and J. W. Hutchinson, Int. Journal of Fracture 43, 1, 1990
    [53] S. Liu and Y. H. Mei, An investigation to popcorning mechanisms for IC plastic packages: EMC cracking, the International Journal of Microcircuits and Electronic Packaging, Vol.20, No.3, Third Quarter 1997 (ISSN 1063-1674), pp.431-446
    [54] R. Yuuki and S. B. Cho, Efficient boudary element analysis of stress intensity factors for interface cracks in dissimilar materials, Engineering Fracture Mechanics, vol.34, pp.179-188,1989
    
    
    [55] E. F. Rybicki and M. F. Kanninen, A finite element calculation of stress intensity factors by a modified crack closure integral, Engineering Fracture Mechanics, vol.9, pp.931-938,1977
    [56] T. Nakamura and S. M. Kamayh, 3-D fracture Mechanics Analysis of multilayer thin film package, Eep-vol. 4-1, Advances in Electrnic Packaging, ASME, 1993
    [57] T. Y. Lin and A. A. O. Tay, A J-Integral criterion for delamination of Bimaterial Interfaces incorporating hygrothermal stress, EEP-vol. 19-2, Advances in Electronic Packaging- 1997, ASME, pp.1421-1428, 1997
    [58] T. Y. Lin and A. A. O. Tay, Dynamics of moisture diffusion, Hygrothermal stresses and delamination in plastic IC packages, EEP-vol. 19-2, Advances in Electronic Packaging- 1997, ASME, pp.1429-1436, 1997
    [59] Boettiet et al. IEEE trans. CHMT, 1986, pp.16-29
    [60] R.G.Rosset et al., ASME Journal of Electronic Packaging, 1991, vol.113, No.2
    [61] W.Engelmaier, Functional cycles and surface mount attachment reliability, in Surface Mount Technology, International Society for Hybrid Microelectronics, Reston, VA, Technical Monograph Series 6984-002, 1984, pp.87-114
    [62] W. Engelmaier, Test method considerations for SMT solder joint reliability, Proceedings of IEPS, Oct 1984, pp.360-369
    [63] IPC Round Robin Test program for Evaluation of Surface Mount Land Patterns Defined. In IPC-SM-782, Lincolnwood, IL, Aug. 1988
    [64] ANSYS User's manual, Revision 5.4 for SUN Workstation, a registered user of ANSYS Inc.
    [65] 王勖成等编著,《有限单元法基本原理和数值方法》,清华大学出版社,1997.3
    [66] 周正有,硕士毕业论文,1999.3
    [67] 哈富宽,“断裂物理基础”,科学出版社,2000
    [68] 尹双增,“断裂、损伤理论及其应用”,清华大学出版社,1992
    [69] 李庆芬等,“断裂力学及其工程应用”,哈尔滨工程大学出版社,1998
    [70] S. Luo, J. Leisen and C. P. Wong, 2001 Int'l Symposium on Electronic Packaging Technology, 133 (2001) [70] S. Luo, J. Leisen and C. P. Wong, 2001 Int'l Symposium on Electronic Packaging Technology, 133 (2001)
    
    
    [71] J. H. Wu, N. S. Fang and J. C. Lu, 1st International Symposium on High Density Packaging & Component Failure Analysis in electronics Manufacturing, 13(1998)
    [72] W. Tong, and A. Teng, Proceedings of international Symposium on Electronic Materials and Packaging, 464(2000)
    [73] V. Gektin and A. Bar-Cohen, Proceeding of the Inter Society Conference on Thermal Phenomena in Electronic Systems, I-THERMV. Piscataway, NJ:IEEE, 306(1996)
    [74] M. G. Pecht and A. Govind, IEEE Trans. Comp., Packag., Manufact. Technol. C, 20, 207(1997)
    [75] A. A. O. Tay and T. Y. Lin, Proceeding of 48th Electronic Components and Technology Conference, Piscataway, NJ:IEEE, 371 (1998)
    [76] K. Yamamoto, J. Appl. Phys. (Jpn.), 34, 2043(1995)
    [77] M. J. Adamson, J. Mater Sci, 15, 1736(1980)
    [78] C. L. Soles, A. F. Yee, Journal of Polymer Science: Part B: Polymer Physics, 38, 792(2000)
    [79] C. L. Soles, F. T. Chang, B. A. Bolan, H. A. Hristov, D. W. Gidley, A. F. Yee, Journal of Polymer Science, Part B: Polymer Physics, 36, 3035(1998)
    [80] D. W. Van Krevelen, Properties of polymers, 3rd ed., (Elsevier, Amsterdam, 1991), Chap.4
    [81] C. G. L. Khoo, and J. Liu, Circuit World, 22(4), 9(1996)
    [82] S. Luo, J. Leisen and C. P. Wong, 2001 Int'l Symposium on Electronic Packaging Technology, 133(2001)
    [83] S. Ohizumi, Proc. IEEE 40th Electron. Comp. Technol. Conf., 632(1990)
    [84] M. Kitano, A. Nishimura, S. Kawai, and K. Nishi, Analysis of package cracking during reflow soldering process, Proc. Int. Rel. Phys. Symp., 1988, p.90-95
    [85] R. Shook, T. Conrad, V. Sastry, and D. Ateele, Diffusion model to derate moisture sensitive surface mount IC's for factory use conditions, Proc. 46th Electron. Comp. Technol. Conf., 1995, p.440-449
    [86] R. Shook, B. Vaccaro, and D. Gerlach, Method for equivalent acceleration of JEDEC/IPC moisture sensitive levels, Proc. Int. Rel. Phys. Symp., 1998, p.214-219
    [87] R. L. Shook, and J. P. Goodelle, Handling of highly-moisture sensitive components-An analysis of low-humidity containment and baking schedules,
    
    IEEE Transactions on Electronics Packaging Manufacturing, vol.23, No.2, April 2000, p 81-86
    [88] R. Marrs, Trends in IC packaging, Electron. Packag. Prod., Aug. 1996:24-30
    [89] R. R. Tummala, E. J. Rymaszewskl, and A. Klopfenstein, Microelectronics Packaging Handbook, Part Ⅱ, 2nd Ed. New York: Chapman & Hall, 1997
    [90] 陈柳,张群,王国忠,谢晓明,程兆年,倒装焊SnPb焊点热循环失效和底充胶的影响,半导体学报,2001,22(1):107
    [91] 徐步陆,张群,彩霞,黄卫东,谢晓明,程兆年,倒扣芯片连接底充胶分层和焊点失效,半导体学报,2001,22(10):1335
    [92] Z.N. Cheng, L. Chen, G. Wang, X. Xie, and Q. Zhang, The effects of underfill and its material models on thermomechanical behaviors, in Proceedings of 2000 International Symposium on Electronic Materials & Packaging, Hong Kong, Nov.30-Dec.2, 2000:232
    [93] Z.N. Cheng, X. Cai, L. Chen, Q. Zhang, B. Xu, W. Huang, X. Xie, Thermal fatigue failure analysis of SnPb solder bumped flip chip on low-cost board with and without underfill encapsulants, in Proceedings of The Fourth International Symposium on Electronic Packaging Technology, Beijing, China, Aug. 8-11, 2001:403
    [94] Z. N. Cheng, B. Xu, Q. Zhang, X. Cai, w. Huang, and X. Xie, Underfill delamination analysis of flip chip on low cost board, in Proceedings of 2001 International Symposium on Electronic Materials & Packaging, Jeju Island, Korea, Nov. 19-Nov.22, 2001:280-285
    [95] F. Nakano, T. Soga, and S. Amagi, Resin-insertion effect on thermal cycle resistivity of flip-chip mounted LSI devices, in Proc. Int. Soc. Hybrid Microelectron. Conf. '87, 1987:536
    [96] D. Suryanarayana, R. Hsiao, T. P. Gall, and J. M. McCreary, Flip-chip solder bump fatigue life enhanced by polymer encapsulation, in Proc. 40th IEEE Electron. Comp. Technol. Conf. '90, 1990:338
    [97] C.P. Wong, Polymers for Electronic and Photoic Applications. San Diego, CA: Academic, 1993:195
    [98] J.H. Lau, Chip on Board. New York: Van Nostrand Reinhold, Ch. 12, 1994:504
    
    
    [99] C.P. Wong, D. F. Balswin, Noflow underfill for flip-chip packages, U.S. Patent pending, Apr. 1996
    [100] C. P. Wong, S. H. Shi, and G. Jefferson, High performance no-flow underfills for low-cost flip-chip applications: material characterization, IEEE Transactions on Components, Packaging, and Manufacturing Technology—Part A, 1998, 21(3):450
    [101] S. H. Shi and C. P. Wong, Study of the fluxing agent effects on the properties of no-flow underfill materials for flip-chip applications, IEEE Transactions on Components and Packaging Technologies, 1999, 22(2):141
    [102] J. Lu, B. Smith, and D. F. Baldwin, Adhesion characterization of no-flow underfills used in flip-chip assemblies and correlation with reliability, IEEE Transactions on Electronics Packaging Manufacturing, 2001, 24(1):26
    [103] S. Luo, and C. P. Wong, Study on effect of coupling agents on underfill Material in Flip Chip Packaging, IEEE Transactions on Components and Packaging Technologies, 2001, 24(1):38
    [104] Z. Q. Zhang, S. H. Shi, and C. P. Wong, Development of no-flow underfill materials for lead-free solder bumped flip-chip applications, IEEE Transactions on Components and Packaging Technologies, 2001, 24(1):274
    [105] R. Thorpe, D. F. Baldwin, B. Smith, and L. McGovern, Yield analysis and process modeling of low cost, high throughput flip chip assembly based on no-flow underfill materials, IEEE Transactions on Electronics Packaging Manufacturing, 2001, 24(2):123
    [106] L. Wang, H. Li, and C. P. Wong, Reworkable no-flow underfills for flip chip applications, IEEE Transactions on Electronics Packaging Manufacturing, 2001, 24(2):115
    [107] L. H. Fan, S. H. Shi, and C. P. Wong, Incorporation of inorganic filler into the no flow underfill material for flip chip application, International Symposium on Advanced Packaging Materials, 2000:303
    [108] M. A. Previti, No flow underfill reliability is here, Technical Proc. APEX, Long Beach, CA, Mar 12-16, 2000:P-MT1/1-1-1-4
    [109] D. O. Powell and A. K. Trivedi, Flip-chip on FR-4 integrated circuit packaging, in Proc. Electron. Comp. Technol. Conf., 1993:182
    [110] J. H. Lau, S. W. R. Lee, and C. Chang, Effects of underfill material properties on the reliability of solder bumped flip chip on board with imperfect underfill
    
    encapsulants, IEEE Transactions on Components and Packaging Technologies, 2000, 23(2):323
    [111] T. W. Lee, and S. V. Pabbisetty, Eds., 1993, Microelectronic failure analysis: Desk Reference, 3rd Ed., ASM International (the Material Information Society),Materials Part, OH.:366
    [112] M. Pecht, P. Lall, and E. Hakim, Temperature as a reliability factor, Eurotherm Seminar No.45: Thermal Management of Electronic Systems, IMEC, Leuven, Belgium, 1995
    [113] A. Bar-Cohen, State-of-the-Art and Trends in Thermal Packaging of Electronic Equipment, ASME J. Electron. Packag., vol.114, pp.257-270
    [114] V. P. Manno, and K. Azar, Thermal-fluid interactions of neighboring components on air-cooled circuit boards, ASME J. Electron. Packag., vol.113, Mar, 1990, pp.374-381
    [115] V. B. Dutta, Junction-to case thermal resistance-still a myth?, Proceedings of the 4th Annual IEEE SEMI-THERM Symposium, 1988, pp.8-11
    [116] B. Joiner, Evaluation of thermal characterization techniques, Proceedings of the IEPS Conference, 1994, pp.413-420
    [117] A. Malhammer, An experimental method for determining two thermal parameters in microcircuit packages, Presented at EUROTHERM Seminar No.29-Thermal Management of Electronic Systems, Delft, Holland, 1993
    [118] B. S. Seigal, Factors affecting semiconductor device thermal resistance measurements, Proceeding of the 4th Annual IEEE SEMI-THERM Symposium, pp.12-18
    [119] K. Azar, A new method for the measurements of external and internal thermal resistances, Presented at EUROTHERM Seminar No.29-Thermal Management of Electronic Systems, Delft, Holland, 1993
    [120] H. I. Rosten, Delphi-A status report on the ESPRIT funded project for the creation and validation of thermal models of electronic parts, Presented at EUROTHERM Seminar No.45, Thermal Management of Electronic Systems,Leuven, Belgium, 1995
    [121] B. M. Guenin, A. Chowdhury, R. Groover, and E. J. Derian, Analysis of thermally-enhanced SOIC Packages, IEEE Trans. Compon., Packag. Manuf. Technol., Part A, vol.19, No.4, 1996, pp.458-468
    
    
    [122] JEDEC standard, Integrated Circuit Thermal Test Method Environment Conditions-Forced Convection (Moving Air), JESD51-6, Mar. 1995
    [123] EIA/JEDEC standard, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages, EIA/JESD51-3, Aug. 1996
    [124] JEDEC standard, Extension of Thermal Test Board Standards for Packages with Direct Thermal Attachment Mechanisms, JESD51-5, Feb. 1999
    [125] JEDEC standard, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages, JESD51-7, Feb.1999
    [126] JEDEC standard, Test Boards for Area Array Surface Mount Package Thermal Measurements, JESD51-9, July 2000
    [127] JEDEC standard, Test Boards for Through-Hole Perimeter Leaded Package Thermal Measurements, JESD51-10, July 2000
    [128] JEDEC standard, Test Boards for Through-Hole Area Array Leaded Package Thermal Measurements, JESD51-11, June 2001
    [129] S. Mulgaonker, B. Chambers, and Mahalingham, An assessment of the thermal performance of the PBGA family, Proc. 11th IEEE Semitherm Symp., San Jose, CA, Feb. 7-9, 1995,pp.17-27
    [130] A. Mertol, Thermal performance comparison of high pin count cavity-up enhanced plastic ball grid array (EPBGA) packages, IEEE trans. On CPMT-B, vol.19, No.2, 1996, pp.427-443
    [131] T.-Y. Lee, An investigation of thermal enhancement on flip chip plastic BGA packages using CFD tool, IEEE Trans. On Components and Packaging Technologies, vol.23, No.3, 2000, pp.481-489
    [132] G. N. Ellison, Thermal Compntations for Electronic Equipment, Malabar, FL: Krieger Publishing, 1989, Ch. 2
    [133] Dr. Y. Mohammed Kasem, Reliability and Thermal Management Aspects of Low Profile Plastic Packages for Power IC Devices, 1998
    [134] J. H. Lau, Shi-Wei Ricky Lee, Chip Scale Package, McGraw-Hill, 1999, New York
    [135] S. Michaelides, S. K. Sitaraman, IEEE Trans. Advanced Package. Vol. 22, No.4, 1999, pp.602
    [136] D. Plausinis, J. K. Speil, Int. J. Adhesives, vol.15, 1995, pp.143
    [137] S. Kang, The thermal wake function for rectangular electronic modules, ASME J. Electron. Packag., vol.116, 1994, pp.55-59
    
    
    [138] A. M. Anderson, and R. J. Moffat, the adiabatic heat transfer coefficient and the superposition kernel function: Part 1-Data for arrays of flatpacks for different flow conditions, ASME J. Electron. Packag., vol.114, 1992, pp.14-21
    [139] R. J. Moffat, and A. M. Anderson, Applying heat transfer coefficient data to electronics cooling, ASME J. Heat Transfer, vol. 112, 1990, pp.882-890
    [140] J. Lohan, M. Davies, Thermal interaction between electronic components, ASME Proceedings of the 31st National Heat Transfer Conference, HTD-vol. 329, vol.7, Houston, Texas, 1996, pp.73-82
    [141] J. Lohan, M. Davies, and R. Cole, Thermal superposition on a poppulated printed circuit board, ASME Proceedings of the 32nd National Heat Transfer Conference, HTD-vol. 343, vol.5, Baltimore, MD, 1997, pp.73-82
    [142] W. Shi, B. Zhen, J-Integral of dissimilar anisotropic media, International journal of fracture, vol.96, 1999
    [143] 徐步陆,博士学位论文

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700