芳胺染料在溴(碘)基染料敏化太阳能电池中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在染料敏化太阳能电池(Dye-sensitized Solar Cell, DSC)中,光敏染料吸收太阳光并将激发态电子注入到纳米半导体二氧化钛(TiO2)的导带,同时产生的氧化态染料分子快速地被电解质中的氧化还原电对还原再生。光敏染料是DSC获得高光电转换效率和长寿命的决定因素之一。为了降低DSC的成本,纯有机光敏染料作为贵金属配合物光敏染料的替代品,在近年来成为光敏染料的研究热点并取得了长足的发展。
     基于纯有机光敏染料的应用前景,本论文共设计合成了23个以三苯胺、吩噻嗪和咔唑为电子给体(Donor, D)、氰基羧乙烯基为电子受体(Acceptor, A)、并通过不同的π-桥基(π-conjugation)相连的D-π-A电子推拉型芳胺类纯有机光敏染料。利用质谱(MS)、核磁共振氢谱(1H-NMR)对这些染料进行了结构表征。研究了这些染料的光物理、电化学性质,并将其分别应用于碘基电解质和溴基电解质DSC,系统地考察了染料结构与电池性能之间的关系。
     光敏染料的结构对其光物理、电化学性质有着重要的影响。在染料π-桥基中引入三键或蒽结构单元,同时调节染料分子结构的共面性,可以有效地增大π-桥基的共轭体系和拓宽染料的吸收光谱,从而增强染料对光的捕捉能力。所有染料的最低空余轨道(Lowest Unoccupied Molecular Orbital, LUMO)和最高占有轨道(Highest Occupied Molecular Orbital, HOMO)能级分别满足了激发态染料分子向TiO2导带中注入电子和氧化态染料分子从碘基电解质中得到电子而还原再生的能级匹配要求。以三苯胺和咔唑为电子给体、氰基羧乙烯基为电子受体的芳胺染料TC301-TC308的HOMO能级都要比溴基电解质电势更正,同时也满足了氧化态染料分子从溴基电解质中得到电子而还原再生的能级匹配要求。
     在染料的π-桥基中引入三键,能提高电子转移产率、单色光光电转换效率(Incident Photon-to-current Conversion Efficiency, IPCE)和电池的光电转换效率。而在染料的π-桥基中引入蒽结构单元能极大得提高电子在TiO2膜中的寿命,抑制电子复合,从而提高电池的开路电压(Voc)。通过优化染料吸收光谱和分子共面性,以三苯胺为电子给体、氰基羧乙烯基为电子受体、π-桥基中含有三键的染料TC103敏化DSC实现了5.00%的光电转换效率,而以三苯胺为电子给体、氰基羧乙烯基为电子受体、π-桥基中含有蒽结构单元的染料TC501敏化DSC实现了7.03%的光电转换效率
     用溴基电解质代替碘电解质后,因为电解质中氧化还原电对电势和TiO2费米能级之间能差的增大和电子复合的抑制,电池开路电压大幅度提高。对于HOMO能级比溴基电解质电势更正的染料,其被碘基电解质和溴基电解质还原再生的驱动力都是足够的,所以其能有效地被碘基电解质和溴基电解质还原再生。而对于HOMO能级和溴基电解质电势相比不够正的染料,其被碘基电解质还原再生的驱动力是足够的,而被溴基电解质还原再生的驱动力却是不够的,所以其只能有效地被碘基电解质还原再生,而不能被溴基电解质有效地还原再生。在使用溴基电解质的情况下,染料TC301敏化DSC实现了高达1.156 V的开路电压和3.68%的光电转换效率,而染料TC305敏化DSC在实现了5.22%的高光电转换效率的同时保持了0.939 V的高开路电压。
Photo sensitizer, which harvests the sunlight to form excited state and achieves the process of electrons injection into the conduction band of nanosemiconductor TiO2, is one of the most important parts of dye-sensitized solar cell (DSC) for getting higher efficiency and longer stability. The resultant oxidized dye is regenerated by redox mediator in electrolyte. To decrease the cost of DSC, the metal-free organic dyes as the alternative to noble metal complex sensitizer have been a research topic of high priority and develop rapidly in recent years.
     Based on the prospective of metal-free organic dyes,23 novel donor acceptorπ-conjugated (D-π-A) metal-free organic dyes have been engineered and synthesized as sensitizers for the application in DSC. The electron-donating moieties are triphenylamine, phenothiazine and carbazole derivatives, and the electron-withdrawing moieties are cyanoacrylic acid group. Differentπ-conjugations (double bond, triple bond, thienyl, phenyl and anthracyl, etc) are introduced to the molecules and serve asπ-conjugations. The structures of the dyes have been characterized by mass spectra (MS) and proton nuclear magnetic resonance (1H-NMR) technology. The photophysical and electrochemical properties of the dyes were studied. DSC based on the dyes and I-/I3- or Br-/Br3--containing electrolytes were constructed and the detailed relationship between dye properties and DSC performances has been investigated.
     The molecular structures of the dyes have important influence on dyes'photophysical and electrochemical properties. The introduction of a triple bond or an anthracene moiety intoπ-conjugations and fine-tune of planar configurations of molecular structures can enlargeπ-conjugations, red-shift absorptions and enhance light-absorbing abilities of the dyes. The Lowest Unoccupied Molecular Orbital (LUMO) and Highest Occupied Molecular Orbital (HOMO) levels of all the dyes match well with that of I-/I3--containing electrolyte and the conduction band of TiO2, respectively. And the HOMO levels of the dyes TC301-TC308, whose electron-donating moieties are carbazole derivatives and electron-withdrawing moieties are cyanoacrylic acid group, also match well with that of Br-/Br3--containing electrolyte.
     The introduction of a triple bond intoπ-conjugations can enhance electron transfer yields, incident photon-to-current conversion efficiency (IPCE) and solar energy conversion efficiencies of DSCs. And the introduction of an anthracene moiety intoπ-conjugations can enhance electron lifetimes in TiO2 films, suppress electron recombination thus increase the opencircuit-voltages (Voc) of DSC to a large extent. Through broadening absorption spectra of the dyes and fine-tuning planar configurations of molecular structures, solar energy conversion efficiencies of 7.03% was achieved for DSC sensitized by the dye TC501, whose electron-donating moieties are carbazole derivatives, electron-withdrawing moieties are cyanoacrylic acid group, andπ-conjugation is introduced an anthracene moiety.
     Upon using Br-/Br3- instead of I-/I3-, the opencircuit-voltages of DSC were enhanced to a large extent because of not only the enlarged energy difference between the potential of redox mediator and the Femi level of TiO2, but also the suppressed charge recombination. The driving forces to regenerate the dyes with I-/I3- and Br-/Br3- are both sufficient for the dyes whose HOMO levels are more positive than that of Br-/Br3-. And for the dyes whose HOMO levels are equal to that of Br-/Br3-, the driving forces to regenerate the dyes with I-/I3- is sufficient, but with Br-/Br3- is insufficient. Using Br-/Br3- based electrolytes, a very high opencircuit-voltage of 1.156 V and a good solar energy conversion efficiency of 3.68% were achieved by DSC sensitized by the dye TC301, and a high opencircuit-voltage of 0.939 V and a very good solar energy conversion efficiency of 5.22% were also achieved by DSC sensitized by the dye TC305.
引文
[1]中国光伏产业发展研究报告,2004.
    [2]王革华.新能源概论.北京:化学工业出版社,2006.
    [3]http://baike.baidu.com/view/21294.html?wtp=tt (百度百科).
    [4]http://www.chinabaike.com/article/316/327/2007/2007022258605.html(太阳常数-中国百科网).
    [5]雷永泉.二十一世纪新材料丛书—新能源材料.天津:天津大学出版社,2002.
    [6]施敏.现代半导体器件物理.北京:科学出版社,2001.
    [7]http://amuseum.cdstm.cn/AMuseum/diqiuziyuan/er2_2_l.html (中国数字科技馆)
    [8]http://cwera.cma.gov.cn/(中国气象局风能太阳能资源评估中心).
    [9]陈瑞奎.四氢喹啉类光敏染料用于染料敏化太阳能电池的研究(博士学位论文).大连:大连理工大学化工学院,2007.
    [10]Green M A. Photovoltaic principles. Physica E.2002,14:11-17.
    [11]Goetzberger A, Hebling C, Schock H W. Photovoltaic materials, history, status and outlook. Materials Science and Engineering R.2003,40:1-46.
    [12]Becquerel A E. Recherches sur les effets de la radiation chimique de la lumiere solaire, au moyen des courants electriques. C. R. Acad. Sci., Paris.1839,9:561-567.
    [13]Adams W G, Day R E. Proc. Roy. Soc. London A.1877,25:113.
    [14]Fritts C E. Proc. Am. Assoc. Adv. Sci.1883,33:97.
    [15]Firtts C E. Am. J. Sci.1883,26:465.
    [16]Ohl R S. Light-sensitive electric device. US Patent No.2402622,1941.
    [17]Ohl R S. Light-sensitive device including silicon. US Patent No.2443542,1941.
    [18]Chapin D M, Fullerand C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys.1954,25:676.
    [19]O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature.1991,353:737-740.
    [20]Gratzel M. Photoelectrochemical cells. Nature.2001,414:338-344.
    [21]http://www.nrel.gov/ncpv/thin_film/docs/kaz_best_research_cells.ppt.
    [22]黄春晖,李富友,黄岩谊.光电功能超薄膜.北京:北京大学出版社,2001.
    [23]Moser J. Notizuber verstarkung photo-elektrischer strome durch optischer sensibilierung [J]. Monatsh. Chem.1887,8:373.
    [24]Gerischer H, Tributsch H. Electrochemische untersuchungen zur spectraleu sensibilisierung von ZnO-einkristallen [J]. Ber. Bunsen. Phys. Chem.1968,72:437-445.
    [25]Tributch H, Gerischer H. Elektrochemische untersuchungen uber den mechanismus der sensibilisierung und iibersensibilisierung an ZnO-einkristallen. Ber [J]. Bunsen. Phys. Chem.1969,73: 251-260.
    [26]Memming R. Faraday Discuss. Chem. Soc.1974,261-270.
    [27]Memming R, Schroppel F. Electron transfer reactions of excited ruthenium (Ⅱ) complexes in monolayer assemblies at the SnO2-water interface [J]. Chem. Phys. Lett.1979,62:207-210.
    [28]Memming R, Schroppel F, Bringmann U. Sensitized oxidation of water by tris(2,2'-bipyridyl) ruthenium at SnO2 electrodes [J]. J. Electroanal. Chem.1979,100:307-318.
    [29]Kiwi J, Gratzel M. Projection, size factors, and reaction dynamics of colloidal redox catalysts mediating light induced hydrogen evolution from water [J]. J. Am. Chem. Soc.1979,101:7214-7217.
    [30]Vlachopoulos N, Liska P, Gratzel M, et al. Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films [J]. J. Am. Chem. Soc.1988,110:1216-1220.
    [31]Liska P, Vlachopoulos N, Gratzel M, et al. cis-Diaquabis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) sensitizes wide band gap oxide semiconductors very efficiently over a broad spectral range in the visible [J]. J. Am. Chem. Soc.1988,110:3686-3687.
    [32]Kavan L, Gratzel M. Nafion modified TiO2 electrodes:photoresponse and sensitization by Ru(II)-bipyridyl complexes [J]. Electrochimica Acta.1989,34:1327-1334.
    [33]Nazeeruddin Md K, Kay A, Gratzel M, et al. Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes [J]. J. Am. Chem. Soc.1993,115:6382-6390.
    [34]Hagfeldt A, Gratzel M. Molecular photovoltaics [J]. Acc. Chem. Res.2000,33:269-277.
    [35]Gratzel M. Perspectives for dye-sensitized nanocrystalline solar cells [J]. Prog. Photovolt. Res. Appl. 2000,8:171-185.
    [36]Gratzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J]. J. Photochem. Photobiol. A.2004,164:3-14.
    [37]Gratzel M. Molecular photovoltaics that mimic photosynthesis [J]. Pure Appl. Chem.2001,73: 459-467.
    [38]Wang H, Li H, Meng Q et al. Solid-state composite electrolyte LiI/3-hydroxypropionitrile/SiO2 for dye-sensitized solar cells. J. Am. Chem. Soc.2005,127:6394-6401.
    [39]Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems [J]. Chem. Rev.1995, 95(1):49-68.
    [40]唐笑,钱觉时,黄佳木。染料敏化太阳能电池中的光电极制备技术[J]。材料导报.2006,20:97-103.
    [41]Ran A, Dutta V. Achievement of 4.7% conversion efficiency in ZnO dye-sensitized solar cells fabricated by spray deposition using hydrothermally synthesized nanoparticles [J]. Nanotech.2008,19 (44): 445712/1-445712/9.
    [42]Guillen E, F A, J A, et al. Photovoltaic performance of nanostructured zinc oxide sensitised with xanthene dyes [J]. J. Photochem. Photobiol. A:Chem.2008,200 (2-3):364-370.
    [43]Gao H, Fang G, Wang M, et al. The effect of growth conditions on the properties of ZnO nanorod dye-sensitized solar cells [J]. Mater. Res. Bull.2008,43 (12):3345-3351.
    [44]Hua G, Zhang Y, Zhang J, et al. Fabrication of ZnO nanowire arrays by cycle growth in surfactantless aqueous solution and their applications on dye-sensitized solar cells [J]. Mater. Lett.2008,62 (25): 4109-4111.
    [45]Zhang Q, Chou T, Russo B, et al. Polydisperse aggregates of ZnO nanocrystallites:a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells [J]. Adv. Funct. Mater.2008, 18(11):1654-1660.
    [46]Jiang C, Sun X, Tan K, et al. High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode [J]. Appl. Phys. Lett.2008,92(14):143101/1-143101/3.
    [47]Zhang Q, Chou T, Russo B, et al. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells [J]. Angew. Chem. Int. Ed.2008,47(13):2402-2406.
    [48]Kim I, Hong J, Lee B, et al. Dye-sensitized solar cells using network structure of electrospun ZnO nanofiber mats [J]. Appl. Phys. Lett.2007,91(16):163109/1-163109/3.
    [49]Gao Y, Nagai M, Chang, T, et al. Solution-derived ZnO nanowire array film as photoelectrode in dye-sensitized solar cells [J]. Cryst. Growth Des.2007,7(12):2467-2471.
    [50]Chou T, Zhang Q, Fryxell G, et al. Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency [J]. Adv. Mater.2007,19(18):2588-2592.
    [51]Jiang C, Sun X, Lo G, et al. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode [J]. Appl. Phys. Lett.2007,90 (26):263501/1-263501/3.
    [52]Robertson N. Optimizing dyes for dye-sensitized solar cells [J]. Angew. Chem. Int. Ed..2006,45: 2338-2345.
    [53]梁茂,陶占良,陈军.染料敏化太阳能电池中的敏化剂[J].化学通报.2005,889-896.
    [54]Murakoshi K, Kano G, Wada Y et al. Importance of binging states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell. J. Electroanal. Chem.1995,396:27-34.
    [55]Meyer T J, Meyer G J, Pfennig B W et al. Molecular-level electron transfer and excited state assemblies on surfaces on metal oxides and glass. Inorg. Chem.1994,33:3952-3964.
    [56]Anderson S, Con E C, Dare-Edwards M P et al. Chemical modification of a titanium(IV) oxide electrode to give dye sensitisation without a supersensitiser. Nature.1979,280:571-573.
    [57]Amadelli R, Argazzi R, Bignozzi C A et al. Design of antenna-sensitizer polynuclear complexes. Sensitization of titanium dioxide with [Ru(bpy)2(CN)2]2Ru(bpy(COO)2)22-.J. Am. Chem. Soc.1990,112, 7099-7103.
    [58]Nazeeruddin Md K, Pechy P, Gratzel M. Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenimu complex. Chem. Commun.1997,1705-1706.
    [59]Nazeeruddin Md K, Pechy P, Gratzel M et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc.2001,123:1613-1624.
    [60]Wang P, Zakeeruddin S M, Gratzel M et al. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem. Commun.2002,2972-2973.
    [61]Wang P, Zakeeruddin S M, Gratzel M et al. Molecular-scale interface engineering of TiO2 nanocrystals:improving the efficiency and stability of dye-sensitized solar cells. Adv. Mater.2003, 15:2101-2104.
    [62]Wang P, Zakeeruddin S M, Gratzel M et al. New sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells. Adv. Mater.2004,16:1806-1811.
    [63]Klein C, Nazeeruddin Md K, Gratzel M et al. Amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cells. Inorg. Chem.2004,43:4216-4226.
    [64]Klein C, Nazeeruddin Md K, Gratzel M et al. Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity. Inorg. Chem.2005, 44:178-180.
    [65]Wang P, Klein C, Gratzel M et al. A high molar extinction coefficient sensitizer for dye-sensitized solar cells. J. Am. Chem. Soc.2005,127:808-809.
    [66]Kuang D, Ito S, Gratzel M et al. High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. J. Am. Chem. Soc.2006,128:4146-4154.
    [67]Nazeeruddin Md K, Wang Q, Gratzel M et al. DFT-INDO/S modeling of new high molar extinction coefficient charge-transfer sensitizers for solar cell applications. Inorg. Chem.2006,45:787-797.
    [68]Kuang D, Klein C, Gratzel M et al. Ion Coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells:influence of lithium ions on the photovoltaic performance of liquid and solid-state cells. Nano. Lett.2006,6:769-773.
    [69]Kuang D, Klein C, Gratzel M et al. High molar extinction coefficient ion-coordinating ruthenium sensitizer for efficient and mesoscopic dye-sensitized solar cells. Adv. Funct. Mater.2007,17:154-160.
    [70]Sauve G, Cass M E, Doig S J et al. High quantum yield sensitization of nanocrystalline titanium dioxide photoelectrodes with cis-dicyanobis(4,4'-dicarboxy-2,2'-bipyridine)osmium (II) or tris(4,4'-dicarboxy-2,2'-bipyridine)osmium(II) complexes. J. Phys Chem. B.2000,104:3488-3491.
    [71]Sauve G, Cass M E, Coia G et al. Dye sensitization of nanocrystalline titanium dioxide with osmium and rutheium polypyridyl complexes. J Phys. Chem. B.2000,104:6824-6836.
    [72]Argazzi R, Larramona G, Contado C et al. Preparation and photoelectrochemical characterization of a red sensitive osmium complex containing 4,4',4"-tricarboxy-2,2':6',2"-terpyridine and cyanide ligands. J. Photochem. Photobiol. A.2004,164:15-21.
    [73]Geary E A M, Yellowlees L J, Jack L A et al. Synthesis, structure, and properties of [Pt(II)(diimine) (dithiolate)] dyes with 3,3'-,4,4'-,and 5,5'-disubstituted bipyridyl:applications in dye-sensitized solar cells. Inorg. Chem.2005,44:242-250.
    [74]Georg M, Meyer G J. Diffusion-limited interfacial electron transfer with large apparent driving forces. J. Phys. Chem. B.1999,103:7671-7675.
    [75]Georg M, Meyer G J. Diffusion-limited interfacial electron transfer with large apparent driving forces. J. Phys. Chem. B.1999,103:7671-7675.
    [76]Ferrere S, Gregg B A. Photosensitization of TiO2 by [FeⅡ(2,2'-bipyridine-4,4'-dicarboxylic acid)2(CN)2]:band selective electron injection from ultra-short-lived excited States. J. Am. Chem. Soc. 1998,120:843-844.
    [77]Ferrere S. New photosensitizers based upon [Fe(L)2(CN)2] and [Fe(L)3] (L=substituted 2,2'-bipyridine): yields for the photosensitization of TiO2 and effects on the band selectivity. Chem. Mater.2000, 12:1083-1089.
    [78]Ferrere S. New photosensitizers based upon [FeⅡ(L)2(CN)2] and [FeⅡL3], where L is substituted 2,2'-bipyridine. Inorganica Chimica Acta.2002,329:79-92.
    [79]Alonso-Vante N, Nierengarten J F, Sauvage J P et al. Spectral sensitization of large-band-gap semiconductors (thin films and ceramics) by a carboxylated bis(1,10-phenanthroline) copper(Ⅰ) complex. J. Chem. Soc., Dalton Trans.1994,1649-1654.
    [80]Koehorst R, Boschloo G, Savenije T, et al. Spectral sensitization of TiO2 substrates by monolayers of porphyrin heterodimers [J]. J. Phys. Chem. B.2000,104:2371-2377.
    [81]Cherian S, Wamser C. Adsorption and photoactivity of tetra(4-carboxyphenyl)porphyrin (TCPP) on nanoparticulate TiO2 [J]. J. Phys. Chem. B.2000,104:3624-3629.
    [82]Ma T, Inoue K, Noma H, et al. Effect of functional group on photochemical properties and photosensitization of TiO2 electrode sensitized by porphyrin derivatives [J]. J. Photochem. Photobiol. A, Chem.2002,152:207-212.
    [83]Odobel F, Blart E, Lagree M, et al. Porphyrin dyes for TiO2 sensitization [J]. J. Mater. Chem.2003,3: 502-510.
    [84]Tanaka M, Hayashi S, Eu S, et al. Novel unsymmetrically pi-elongated porphyrin for dye-sensitized TiO2 cells [J]. Chem. Commun.2007,20:2069-2071.
    [85]Schmidt-Mende L, Campbell W, Wang Q, et al. Zn-porphyrin-sensitized nanocrystalline TiO2 heterojunction photovoltaic cells [J]. ChemPhysChem.2005,6(7):1253-1258.
    [86]Jasieniak J, Johnston M, Waclawik, E. Characterization of a porphyrin-containing dye-sensitized solar cell [J]. J. Phys. Chem. B.2004,108(34):12962-12971.
    [87]Wang Q, Campbell W, Bonfantani E, et al. Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films [J]. J. Phys. Chem. B.2005,109(32):15397-15409.
    [88]Giribabu L, Kumar C, Reddy P. Porphyrin-rhodanine dyads for dye sensitized solar cells [J]. J. Porphyrins Phthalocyanines.2006,10(8):1007-1016.
    [89]Campbell W, Jolley K, Wagner P, et al. Highly efficient porphyrin sensitizers for dye-sensitized solar cells [J]. J. Phys. Chem. C.2007,111(32):11760-11762.
    [90]Eu S, Hayashi S, Umeyama T, et al. Quinoxaline-fused porphyrins for dye-sensitized solar cells [J]. J. Phys. Chem. C.2008,112(11):4396-4405.
    [91]He J, Benko G, Korodi F, et al. Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode [J]. J. Am. Chem. Soc.2002,124:4922-4932.
    [92]Komori T, Amao Y. Dye-sensitized solar cell with the near-infrared sensitization of aluminum phthalocyanine [J]. J. Porphyrins Phthalocyanines.2003,7,131-136.
    [93]Reddy P, Giribabu L, Lyness C, et al. Efficient sensitization of nanocrystalline TiO2 films by a near-IR-absorbing unsymmetrical zinc phthalocyanine [J]. Angew. Chem. Int. Ed..2007,46(3):373-376.
    [94]Rawling T, McDonagh A, Ruthenium phthalocyanine and naphthalocyanine complexes:synthesis, properties and applications [J]. Coord. Chem. Rev.2007,251(9+10):1128-1157.
    [95]Eu S, Katoh T, Umeyama T, et al. Synthesis of sterically hindered phthalocyanines and their applications to dye-sensitized solar cells [J]. Dalton Trans.2008,40:5476-5483.
    [96]Hara K, Saynma K, Ohga Y, et al. A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%[J]. Chem. Commun.2001,569-570.
    [97]Hara K, Sato T, Katoh R, et al. Molecular design of coumarin dyes for efficient dye-sensitized solar cells [J]. J. Phys. Chem. B.2003,107:597-606.
    [98]Hara K, Kurashige M, Dan-oh Y, et al. Design of new coumarin dyes having thiophene moieties for higyly efficient organic-dye-sensitized solar cell [J]. New. J. Chem.2003,27:783-785.
    [99]Hara K, Tachibana Y, Arakawa H, et al. Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes [J]. Sol. Energy Mater. Sol. Cells.2003,77:89-103.
    [100]Hara K, Dan-oh Y, Arakawa H, et al. Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells [J]. Langmuir.2004,20:4205-4210.
    [101]Wang Z, Hara K, Arakawa H, et al. Photophysical and (photo) electrochemical properties of a coumarin dye [J]. J. Phys. Chem. B.2005,109:3907-3914.
    [102]Hara K, Miyamoto K, Yanagida M, et al. Electron transport in coumarin-dye-sensitized nanocrystalline TiO2 electrodes [J]. J. Phys. Chem. B.2005,109:23776-23778.
    [103]Wang Z, Cui Y, Hara K, et al. A high-light-harvesting-efficiency coumarin dye for dye-sensitized solar cells [J]. Adv. Mater.2007,19:1138-1141.
    [104]Horiuchi T, Miura H, Uchida S. Highly-efficient metal-free organic dyes for dye-sensitized solar cells [J]. Chem. Commun.2003,3036-3037.
    [105]Horiuchi T, Miura H, Sumioka K, et al. High efficiency of dye-sensitized solar cell based on metal-free indoline dyes [J]. J. Am. Chem. Soc.2004,126:12218-12219.
    [106]Horiuchi T, Miura H, Uchida S. Highly efficient metal-free organic dyes for dye-sensitized solar cells [J]. J. Photochem. Photobiol. A:Chem.2004,164:29-32.
    [107]Ito S, Zakeeruddin S, Gratzel M, et al. High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-Ti02 electrode thickness [J]. Adv. Mater.2006,18:1202-1205.
    [108]Kuang D, Uchida S, Humphry-Baker R, et al. Organic dye-sensitized ionic liquid based solar cells: remarkable enhancement in performance through molecular design of indoline sensitizers [J]. Angew. Chem. Int. Ed.2008,47(10):1923-1927.
    [109]Ito S, Miura H, Uchida S, et al. High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem. Commun.2008,41:5194-5196.
    [110]Sayama K, Hara K, Arakawa H, et al. Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain [J]. Chem. Commun.2000, 1173-1174.
    [111]Wang Z, Li F, Huang C, et al. Photoelectric conversion properities of nanocrystalline TiO2 electrodes sensitized with hemicyanine derivatives [J]. J. Phys. Chem. B.2000,104:9676-9682.
    [112]Wang Z, Li F, Huang C. Photocurrent enhancement of hemicyanine dyes containing RSO3- group through treating TiO2 films with hydrochloric acid [J]. J. Phys. Chem. B.2001,105:9210-9217.
    [113]Yao Q, Meng F, Huang C, et al. Photoelectric conversion properties of four novel carboxylated hemicyanine dyes on TiO2 electrode [J]. J. Mater. Chem.2003,13:1048-1053.
    [114]Hara K, Kurashige M, Arakawa H, et al. Novel polyene dyes for highly efficient dye-sensitized solar cells [J]. Chem. Commun.2003,252-253.
    [115]Kitamura T, Ikeda M, Shigaki Km et al. Phenyl-conjugated oligoene sensitizers for TiO2 solar cell [J]. Chem. Mater.2004,16:1806-1812.
    [116]Hara K, Sato T, Katoh R, et al. Novel conjugated organic dyes for efficient dye-sensitized solar cells [J]. Adv. Funct. Mater.2005,15:246-252.
    [117]Hagberg D, Edvinsson T, Sun L, et al. A novel organic chromophore for dye-sensitized nanostructured solar cells [J]. Chem. Commun.2006,2245-2247.
    [118]Zeng W, Cao Y, Bai Y, et al. Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks [J]. Chem. Mater,2010,22: 1915-1925.
    [119]Xu W, Peng B, Chen J, New Triphenylamine-based dyes for dye-sensitized solar cells [J]. J. Phys Chem. C.2008,112(3):874-880.
    [120]Xu W, Pei J, Shi J, et al. Influence of acceptor moiety in triphenylamine-based dyes on the properties of dye-sensitized solar cells [J]. J. Power Sources.2008,183(2):792-798.
    [121]Hwang S, Lee J, Park C, et al. A highly efficient organic sensitizer for dye-sensitized solar cells [J]. Chem. Commun.2007,4887-4889.
    [122]Kim S, Lee J, Kang S, et al. Molecular engineering of organic sensitizers for solar cell applications [J]. J. Am. Chem. Soc.2006,128(51):16701-16707.
    [123]Kim S, Kim D, Choi H, et al. Enhanced photovoltaic performance and long-term stability of quasi-solid-state dye-sensitized solar cells via molecular engineering [J]. Chem. Commun.2008,40: 4951-4953.
    [124]Choi H, Lee J, Song K, et al. Novel organic dyes containing bis-dimethylfluorenyl amino benzo[b]thiophene for highly efficient dye-sensitized solar cell [J]. Tetrahedron.2007,63(15):3115-3121.
    [125]Jung I, Lee J, Song K, et al. Synthesis and photovoltaic properties of efficient organic dyes containing the benzo[b]furan moiety for solar cells [J]. J. Org. Chem.2007,72(10):3652-3658.
    [126]Yum J, Jang S, Walter P, et al. Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizers [J]. Chem. Commun.2007,44:4680-4682.
    [127]Choi H, Baik C, Kang S, et al. Highly efficient and thermally organic sensitizers for solvent-free dye-sensitized solar cells [J]. Angew. Chem. Int. Ed.2008,47(2):327-330.
    [128]Kim C, Choi H, Kim S, et al. Molecular engineering of organic sensitizers containing π-phenylene vinylene unit for dye-sensitized solar cells [J]. J. Org. Chem.2008,73(18):7072-7079.
    [129]Qin H, Wenger S, Xu M, et al. An organic sensitizer with a fused dithienothiophene unit for efficient and dye-sensitized solar cells [J]. J. Am. Chem. Soc.2008,130(29):9202-9203.
    [130]Kim D, Lee J, Kang S, et al. Molecular engineering of organic dyes containing N-aryl carbazole moiety for solar cell [J]. Tetrahedron.2007,63(9):1913-1922.
    [131]Koumura N, Wang Z, Mori S, et al. Alkyl-functionalized organic dyes for efficient molecular photovoltaics [J]. J. Am. Chem. Soc.2008,130(12):4202-4203.
    [132]Wang Z, Koumura N, Cui Y, et al. Hexylthiophene-functionalized carbazole dyes for efficient molecular photovoltaics:Tuning of solar-cell performance by structural modification [J]. Chem. Mater. 2008,20(12):3993-4003.
    [133]Chen R, Yang X, Tian H, et al. Effect of tetrahydroquinoline dyes structure on the performance of organic dye-sensitized solar cells [J]. Chem. Mater.2007,19(16):4007-4015.
    [134]Chen R, Yang X, Tian H, et al. Tetrahydroquinoline dyes with different spacers for organic dye-sensitized solar cells [J]. J. Photochem. Photobiol. A:Chem.2007,189(2-3):295-300.
    [135]Ferrere S, Zaban A, Gregg B. Dye sensitization of nanocrystalline tin oxide by perylene derivatives [J]. J. Phys. Chem. B.1997,101(23):4490-4493.
    [136]Ferrere S, Gregg B. New perylenes for dye sensitization of TiO2 [J]. New J. Chem.2002,26(9): 1155-1160.
    [137]Zafer C, Kus M, Turkmen G, et al. New perylene derivative dyes for dye-sensitized solar cells [J]. Sol. Energy Mater. Sol. Cells.2007,91(5):427-431.
    [138]Shibano Y, Umeyama T, Matano Y, et al. Imahori, Hiroshi. Electron-donating perylene tetracarboxylic acids for dye-sensitized solar cells [J]. Org. Lett.2007,9(10):1971-1974.
    [139]Fortage J, Severac M, Houarner-Rassin C, et al. Synthesis of new perylene imide dyes.and their photovoltaic performances in nanocrystalline TiO2 dye-sensitized solar cells [J]. J. Photochem. Photobiol. A:Chem.2008,197(2-3):156-169.
    [140]Li C, Yum J, Moon S, et al. An improved perylene sensitizer for solar cell applications [J]. ChemSusChem.2008,1(7):615-618.
    [141]Nazeeruddin Md K, Zakeeruddin S M, Gratzel M, et al. Acid-base equilibria of (2,2'-bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania [J]. Inorg. Chem.1999,38:6298-6305.
    [142]Nazeeruddin Md K, Pechy P, Gratzel M, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells [J]. J. Am. Chem. Soc.2001,123:1613-1624.
    [143]Chen C, Chen J, Wu S, et al. Multifunctionalized ruthenium-based supersensitizers for highly efficient dye-sensitized solar cells [J]. Angew. Chem. Int. Ed.2008,47(38):7342-7345.
    [144]Gao F, Wang Y, Shi D, et al. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells [J]. J. Am. Chem. Soc.2008,130(32):10720-10728.
    [145]Liu Y, Hagfeldt A, Xiao X, et al. Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell [J]. Sol. Energy Mater. Sol. Cells.1998,55: 267-281.
    [146]Haque S, Tachibana Y, Willis R, et al. Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films [J]. J. Phys. Chem. B.2000,104:538-547.
    [147]Lindstrom H, Rensmo H, Sodergren S, et al. Electron transport properties in dye-sensitized nanoporous-nanocrystalline TiO2 films [J]. J. Phys. Chem.1996,100:3084-3088.
    [148]Pelet S, Moser J, Gratzel M. Cooperative effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystalline TiO2 [J]. J. Phys. Chem. B.2000,104: 1791-1795.
    [149]Hara K, Horiguchi T, Kinoshita T, et al. Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells [J]. Sol. Energy Mater. Sol. Cells.2001,70: 151-161.
    [150]Huang S, Schlichthorl G, Nozik A, et al. Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells [J]. J. Phys. Chem. B.1997,101:2576-2582
    [151]Nakade S, Kambe S, Kitamura T, et al. Effects of lithium ion density on electron transport in nanoporous TiO2 electrodes [J]. J. Phys. Chem. B.2001,105:9150-9152.
    [152]Desilvestro J, Gratzel M, Kavan L, et al. Highly efficient sensitization of titanium dioxide [J]. J. Am. Chem. Soc.1985,107:2988-2990.
    [153]Wang Z, Sayama K, Sugihara H. Efficient eosin Y dye-sensitized solar cell containing Br-/Br3-electrolyte [J]. J. Phys. Chem. B.2005,109(47):22449-22455.
    [154]Oskam G, Bergeron B, Meyer G, et al. Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells [J]. J. Phys. Chem. B.2001,105(29):6867-6873.
    [155]Sapp, S, Elliott C, Contado C, et al. Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells [J]. J. Am. Chem. Soc.2002,124(37): 11215-11222.
    [156]Wang P, Zakeeruddin S, Gratzel M, et al. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells [J]. J. Am. Chem. Soc.2003,125:1166-1167.
    [157]Schmidt-Mende L, Zakeeruddin S M, Gratzel M. Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic ruthenium-dye [J]. Appl. Phys. Lett.2005,86: 013504/1-013054/3.
    [158]Gratzel M. Mesoscopic solar cells for electricity and hydrogen production from sunlight [J]. Chem. Lett.2005,34:8-13.
    [159]M. Gratzel. Dye-sensitized solid-state heterojunction solar cells [J]. Mrs. Bulletin.2005,30:23-27.
    [160]Bach U, Lupo D, Gratzel M, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J]. Nature.1998,395:583-585.
    [161]Schmidt-Mende L, Bach U, Gratzel M, et al. Organic dye for highly efficient solid-state dye-sensitized solar cells [J]. Adv. Mater.2005,17:813-815.
    [162]Wang M, Xu M, Shi D, et al. High-performance liquid and solid dye-sensitized solar cells based on a novel metal-free organic sensitizer [J]. Adv. Mater.2008,20(23):4460-4463.
    [163]Kron G, Egerter T, Werner J, et al. Electronic transport in dye-sensitized nanoporous TiO2 solar cells-comparison of electrolyte and solid-state devices [J]. J. Phys. Chem. B.2003,107:3556-3564.
    [164]Ruhle S, Cahen D. Electron tunneling at the TiO2/substrate interface can determine dye-sensitized solar cell performance [J]. J. Phys. Chem. B.2004,108:17946-17951.
    [165]Bai Y, Cao Y, Zhang J, et al. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts [J]. Nature Mater.2008,7:626-630.
    [166]Suzuki K, Yamaguchi M, Kumagai M, et al. Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells [J]. Chem. Lett.2003,32(1):28-29.
    [167]Murakami T, Ito S, Wang Q, et al. Highly efficient dye-sensitized solar cells based on carbon black counter electrodes [J]. J. Electrochem. Soc.2006,153(12):2255-2261.
    [168]Ramasamy E, Lee W, Lee D, et al. Nanocarbon counterelectrode for dye sensitized solar cells [J]. Appl. Phys. Lett.2007,90(17):173103/1-173103/3.
    [169]Kim Y, Sung Y, Xia J, et al. Solid-state dye-sensitized TiO2 solar cells using poly(3,4-ethylenedioxythiophene) as substitutes of iodine/iodide electrolytes and noble metal catalysts on FTO counter electrodes [J]. J. Photochem. Photobiol. A:Chem.2008,193(2-3):77-80.
    [170]Chen J, Wei H, Ho K. Using modified poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) film as a counter electrode in dye-sensitized solar cells [J]. Sol. Energy Mater. Sol. Cells.2007,91(15+16): 1472-1477.
    [171]Xia J, Masaki N, Jiang K, et al. The influence of doping ions on poly(3,4-ethylenedioxythiophene) as a counter electrode of a dye-sensitized solar cell [J]. J. Mater. Chem.2007,17(27):2845-2850.
    [172]Saito Y, Kitamura T, Wada Y, et al. Application of poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells [J], Chem. Lett.2002,31:1060-1061.
    [173]Wu J, Li Q, Fan L, et al. High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells [J]. J. Power Sources.2008,181(1):172-176.
    [174]Sommeling P, O'Regan B, Haswell R, et al. Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells [J]. J. Phys. Chem. B.2006,110:19191-19197.
    [175]Lin J, Elangovan A, Ho T. Structure-property relationships in conjugated donor-acceptor molecules based on cyanoanthracene:computational and experimental studies. J. Org. Chem.2005,70:7397-7407.
    [176]Wang C, Palsson L, Batsanov S, et al. Molecular wires comprising π-extended ethynyl-and butadiynyl-2,5-diphenyl-1,3,4-oxadiazole derivatives:synthesis, redox, structural, and optoelectronic properties.J. Am. Chem. Soc.2006,128:3789-3799.
    [177]Gagne R, Koval C, Lisensky G. Ferrocene as an internal standard for electrochemical measurements [J]. Inorg. Chem.1980,19:2854-2855.
    [178]Tachibana Y, Hara K, Sayama K, et al. Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-DSSCs. Chem. Mater.2002,14:2527-2535.
    [179]Wang Q, Moser J, Gratzel M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B.2005,109(31):14945-14953.
    [180]Zhao D, Peng T, Lu L, et al. Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 nanoparticles. J. Phys. Chem. C.2008,112: 8486-8494.
    [181]Kern R, Sastrawan R, Ferber J, et al. Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim. Acta.2002,47:4213-4225.
    [182]Fabregat-Santiago F, Bisquert J, Cevey L, et al. Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor. J. Am. Chem. Soc.2009,131:558-562.
    [183]Hyunbong Choi, Jae Kwan Lee, Kyu Ho Song, et al. Synthesis of new julolidine dyes having bithiophene derivatives for solar cell. Tetrahedron.2007,63:1553-1559.
    [184]Cameron P. J., Peter, L. M., Zakeeruddin, S. M., et al. Electrochemical studies of the Co(Ⅲ)/Co(Ⅱ)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells. Coord. Chem. Rev.2004,248,1447.
    [185]Reichardt C. Solvatochromic dyes as solvent polarity indicators.Chem. Rev.1994,94(8):2319-2358.
    [186]Furube A, Katoh R, Hara K, et al. Lithium ion effect on electron injection from a photoexcited coumarin derivative into a TiO2 nanocrystalline film investigated by visible-to-IR ultrafast spectroscopy. J. Phys. Chem. B 2005,109(34):16406-16414.
    [187]Redmond G, Fitzmaurice D. Spectroscopic determination of flatband potentials for polycrystalline titania electrodes in nonaqueous solvents. J. Phys. Chem.1993,97(7):1426-1430.
    [188]Lindstrom H, Sodergren S, Solbrand A, et al. Li+ion insertion in TiO2 (Anatase).2. voltammetry on nanoporous films. J. Phys. Chem. B.1997,101(39):7717-7722.
    [189]Kuang, D. Ito, S. Wenger, B.et al. High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. J. Am. Chem. Soc.2006,128(12):4146-4154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700