激光微等离子体光谱分析中的基体效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用YJG-Ⅱ激光微区分析仪、自动扫描多功能组合式光栅光谱仪、CCD数据采集处理系统构成的激光微等离子体光谱分析系统,在减压氩气环境下,以稀土荧光材料和国家土壤成份分析标准物质为样品,研究了激光微等离子体光谱分析中的基体效应。主要内容有:
     1.稀土光谱分析中的基体效应研究:采用第三元素分别为Li、Na、K、Mg、Ca、Sr、Ba自制光谱标样为样品,以EuⅡ420.505nm、SmⅡ443.434nm、DyⅡ400.048nm、TmⅡ424.215nm为分析线,研究其对稀土谱线强度的影响。实验结果表明:不同的碱金属和碱土金属作为第三元素,对稀土元素谱线强度具有明显的基体效应;不同基体对谱线强度具有不同程度的增强作用,其中钾元素对稀土谱线强度增强程度最大,增幅可达4-10倍。说明钾元素在此分析中是一种良好的光谱载体;通过“二谱线法”测量了各基体的电子温度和电子密度随辅助激发高度的变化,结果表明,碱金属和碱土金属元素对稀土谱线增强的主要原因是第三元素降低了基体的电子温度,使得电子温度值向稀土谱线的标准温度靠近,从而提高谱线强度。
     2.土壤光谱分析中的基体效应研究:采用国家土壤成份分析标准物质为分析样品,以CuⅠ324.750 nm、CuⅠ327.466 nm、AlⅠ308.216 nm、AlⅠ309.271 nm为分析线,研究不同土壤标样对铜、铝谱线强度的影响。实验结果表明:由于土壤中的组成成份相近,土壤中的基体效应不明显;在氩气气压和流量不变的情况下,辅助激发高度为4mm时,分析线强度的相对标准偏差(RSD)最大不超过7.2%。
     3.光谱定量分析:为验证所提出的最佳实验条件的广泛性,实验中在气压和流量不变的情况下,选择辅助激发高度为4mm,分别对长余辉材料Y202S:Sm3+中的Sm和土壤中的Al、Ca进行了定量分析,结果表明:Sm含量定量分析RSD为8.96%,分析结果平均值为2.02%;对铝、钙进行定量分析,两种元素含量RSD最大不超过5.80%,分析结果的相对误差最大为7.65%,结果表明分析结果满足要求。
We have investigated the matrix effect of rare-earth fluorescent material and soil standard samples in argon atmosphere at reduced pressure using a laser micro-plasma spectral analysis system which consists of a YJG-Ⅱlaser micro-spectral analyzer, CCD, and a computer. The main contents are as follows:
     1. Study of matrix effect of rare-earth fluorescent materials. Matrix effects of different matrix elements of Li, Na, K, Mg, Ca, Sr and Ba are studied using EuⅡ420.505nm, SmⅡ443.434nm, DyⅡ400.048nm and TmⅡ424.215nm. It is found that different matrix elements have obvious influence on the intensity of the spectral lines, confirming the necessity of using the similar components matrixes. Different matrixes have different enhancement on the intensity of spectral lines, especially the matrix of K which can make enhancement of the intensity for about 4-10 times. Our results suggest that K element is a perfect spectroscopic carrier when rare-earth elements are determined by this method. Enhancement mechanism of the spectral line intensity is explained based on the calculation results of electronic temperature and electronic density.
     2. Study of matrix effect of soil standard samples. Matrix effects of different soil standard samples are studied using CuⅠ324.750 nm, CuⅠ327.466 nm, AlⅠ308.216 nm and AlⅠ309.271 nm as analysis spectral lines. It is found that the matrix effect in soil is not obvious due to the similar components in soil samples. Further studies show that the matrix effect is the lowest at the height of 4 mm under the same experimental conditions. The calculated maximum value of the relative standard deviation (RSD) is not more than 7.2%, meeting the requirements of quantitative analysis accuracy.
     3. Quantitative analysis:Sm in Y2O2S:Sm3+ and Al, Ca in soil are determined by this method at height of 4mm in order to the viability of the optimized experimental conditions. It is found that RSD of quantitative analysis of Sm is 8.96%, and the average of the quantitative analysis is 2.02%. The maximum value of RSD of quantitative analysis of Al and Ca is no more than 5.8% with relative error of no more than 7.65%. Our results are satisfying.
引文
[1]发射光谱分析,发射光谱分析编写组,冶金工业出版社,1977.
    [2]李廷钧编,发射光谱分析,原子能出版社,1983,第一版.
    [3]Bolger J A. Semi-quantitative Laser-Induced Breakdown Spectroscopy for Analysis of Mineral Drill Core Applied Spectroscopy,2000,54(2):181.
    [4]A. Ciucci, M. Corsi, V. Palleschi, et al. New Procedure for Quantitative Elemental Analysis by Laser-Induced Plasma Spectroscopy, Applied Spectroscopy,1999,53(8):960.
    [5]V. Sturm, L. Peter, and R. Noll, Steel Analysis with Laser-Induced Breakdown Spectrometry in the Vacuum Ultraviolet, Applied Spectroscopy,2000,54(9):1275.
    [6]杨国光,近代光学测试技术,浙江大学出版社,2001,第一版,505.
    [7]M.Bengtsson, S.Wallstrom, M.Sjoholm etal, Fungus Covered Insulator Materials Studied with Laser-Induced Fluorescence and Principal Component Analysis, Appl. Spectrosc.,2005,59(8):1037.
    [8]Moenke B., lankenbure, L., Laser Micro Analysis. John Wiley,1989.
    [9]长春地质学院中心实验室激光组,国外激光显微发射光谱定量分析概况,长春地质学院学报,1976,(1):100.
    [10]王昭宏,激光显微发射光谱岩矿分析法,北京:科学出版社,1990.
    [11]Leis. F., Sdorra, W., Ko, J.B., Niemax, K. Basic Investigations for Laser Microanalysis:Ⅰ. Optical Emission Spectrometry of Laser-Produced Sample Plumes, Microchim. Acta, II,1989:185.
    [12]Kagawa K, Yamanoto I and Ueda M. High-power coherent TE N2 laser using four-stage oscillator-amplifier system J. Phys.E.Sci.Instrum.,1988,21:608.
    [13]Kagawa, K.; Tani, M.; Ueda, H.; Sasaki, M.; Mizukami, K. TEA CO2 Laser-Induced Plasma with a Plane Shock Wave Structure, Appl. Spectrosc.,1993,47:1562.
    [14]H. Kurniawan, M. Barmawi, M.O. Tjia, T. Kobayashi, and K. Kagawa, Compact N2 Laser Oscillator-Amplifier System for Laser Microbeam Application, Opt. & Laser Tech.,1991,23(2):115.
    [15]Syahrun Nur Madjid, Hendrik Kurniawan, Iwao Kitazima and Kiichiro Kagawa, Shock Wave and Emission with Sheet-like Structure Induced by Nd-YAG Laser Ablation at Reduced Pressure, Jpn. J. Appl. Phys.,2002,41:3747.
    [16]Kurniawan H, Ikeda N, Kobayashi T and Kagawa K. Emission Spectrochemical Analysis of Halogen Atoms Using Shock Wave Plasma Induced by a TEA CO2 Laser, J. Spectrosc. Soc. Jpn.,1992,41:21.
    [17]Kurniawan H, Kobayashi T and Kagawa K. Detection of Fluorine with a Shock Wave Plasma Induced by a TEA CO2 Laser, Rev. Laser Eng.,1992,20:31.
    [18]Kurniawan H, Kobayashi T and Kagawa K. Effect of Different Atmospheres on the Excitation Process of TEA-CO2 Laser-Induced Shock Wave Plasma Appl. Spectrosc.,1992,46:581.
    [19]张武高,李相波,程玉轩,LMESA法中熵对基体效应的影响,湖北师范学院学报,1987,6(2):16.
    [20]A. B. Whitehead and H. H. Heady, Laser-Spark Excitation of Homogeneous Powdered Materials, Appl.Spectros.,1968,22(1):7.
    [21]李维华,段玉然,关于激光显微光谱基体效应的探讨,光谱学与光谱分析1985,5(1):50.
    [22]Be'atrice Salle',T, David A. Cremers, Sylvestre Maurice, Roger C. Wiens, Laser-induced breakdown spectroscopy for space exploration applications:Influence of the ambient pressure on the calibration curves prepared from soil and clay samples, Spectrochimica Acta Part B,2005,60:479.
    [23]Ana M. Beccaglia, Carlos A. Rinaldi, Juan C. Ferrero, Analysis of arsenic and calcium in soil samples by laser ablation mass spectrometry, Analytica Chimica Acta,2006,579:11.
    [24]B. Salle, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, G. Manhes, Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere, Spectrochimica Acta Part B,2006,61:301.
    [25]Michela Corsi, Gabriele Cristoforetti, Montserrat Hidalgo, Stefano Legnaioli, Vincenzo Palleschi, Azenio Salvetti, Elisabetta Tognoni, Chiara Vallebona, Double pulse, calibration-free laser-induced breakdown spectroscopy: A new technique for in situ standard-less analysis of polluted soils Applied Geochemistry,2006,21:748.
    [26]M.A. Gondal, T. Hussain, Z.H. Yamani, M.A. Baig, The role of various binding materials for trace elemental analysis of powder samples using laser-induced breakdown spectroscopy, Talanta,2006, 19:001.
    [27]Jes'us M. Anzano, Mark A. Villoria, Antonio Ru'iz-Medina, Roberto J. Lasheras, Laser-induced breakdown spectroscopy for quantitative spectrochemical analysis of geological materials:Effects of the matrix and simultaneous determination, Analytica Chimica Acta,2006,575:230.
    [28]Rivie Krasniker, Valery Bulatov, Israel Schechter, Study of matrix effects in laser plasma spectroscopy by shock wave propagation, Spectrochimica Acta Part B,2001,56:609.
    [29]Valery Bulatov, Rivie Krasniker, and Israel Schechter, Study of Matrix Effects in Laser Plasma Spectroscopy by Combined Multifiber Spatial and Temporal Resolutions, Anal.Chem.1998,70:5302.
    [30]辛仁轩,王建晨,铝对稀土元素基体效应的研究,分析化学研究简报,2005,33(2):251.
    [31]康建珍,段太成,郭鹏然等,微量进样ICP-MS体系中的基体效应研究,高等学校化学学报,2004,25(2):252.
    [32]Scott A. Lehn, Kelly A. Warner, Mao Huang, Gary M. Hieftje, Effect of sample matrix on the fundamental properties of the inductively coupled plasma, Spectrochimica Acta Part B,2003,58: 1785.
    [33]Kazuya Tanaka, Yoshio Takahashi, Hiroshi Shimizu, Determination of rare earth element in carbonate using laser-ablation inductively-coupled plasma mass spectrometry: An examination ofthe influence of the matrix on laser-ablation inductively-coupled plasma mass spectrometry analysis, Analytica Chimica Acta,2007,583:303.
    [34]马锦如,基体效应及空白在不同校准方法中的影响和校正,环境监测管理与技术,1993,5(2):7.
    [35]杨申彦,第三元素对光谱法测定钛及钛合金中杂质的影响,稀有金属材料与工程,1994,23(4):72.
    [36]郭庆林,梁宝来等,减压氩气环境下激光显微光谱分析再现性和灵敏度的研究,光谱学与光谱分析,2001,21(5):641.
    [37]张博,郭庆林,王兰勋等,减压氩气环境中铝合金样品激光微区发射光谱研究,河北大学学报(自然科学版)2004,24(1):36.
    [38]G.Dimitrov, Ts.Maximova, Improvement of the Reproducibility and Sensitivity of Laser Microspectral Analysis, Spectroscopy Letters,1981,14(11-12):737.
    [39]杨家敏,丁耀南,陈波等,物理学报,等电子法测量小能量激光打靶等离子体电子温度,2003,52(2):411.
    [40]陈卓,何威,蒲以康,电子回旋共振氩等离子体中亚稳态粒子数密度及电子温度的测量,物理学报,2005,54(5):2153.
    [41]Man B Y, Particle velocity, electron temperature and density profiles of pulsed laser—induced plasmas in air at different ambient pressures, Appl. Phys. B,1998,67:241.
    [42]张继彦,杨家敏,郑志坚等,Al激光等离子体电子温度的时间分辨诊断,强激光与粒子束,2004,16(9):1153.
    [43]郑贤锋,唐晓闩,凤尔银等, 缓冲气体对激光等离子体光谱特性影响的实验研究,原子与分子物理学报,2002,19(3):267.
    [44]薛思敏,陈冠英,苏茂根等,外加电场下激光诱导Al等离子体特性的实验研究,西北师范大学学报(自然科学版),2006,42(2):50.
    [45]史金超,陈金忠,魏艳红等,高压Ar气对激光诱导土壤等离子体辐射的增强效应,光谱学与光谱分析,2006,26(5):798.
    [46]林兆祥,吴金泉,激光氧气等离子体光谱的时间演化研究,光谱学与光谱分析,2006,26(6):994.
    [47]郑志远,鲁欣, 张杰等,激光等离子体动量转换效率的实验研究,物理学报,2005,54(1):192.
    [48]陈新坤,原子发射光谱分析原理,天津科学技术出版社,第一版,1991.
    [49]寿曼立,姜桂兰,原子发射光谱分析,地质出版社,1994.
    [50]张金平,张博,郭庆林等,激光微区发射光谱分析法测定铝酸锶铕镝长余辉材料中的铕,光谱学与分谱分析,2005,25(8):1325.
    [51]Bulatov, V.; Xu, L.; Schechter, I. Spectroscopic Imaging of Laser Induced Plasma, Anal. Chem.1996, 68,2966.
    [52]雷炳富,刘应亮,唐功本等,一种新的橙红色长余辉荧光材料Y202S:Sm3+,高等学校化学学报,2003,24(2):208.
    [53]雷炳富,刘应亮,唐功本等,Y202S:Sm3+发光材料在不同激发波长的浓度特征,光谱学与光谱分析,2004,24(11):1302.
    [54]Qinglin Guo, Yanhong Wei, Jinzhong Chen, Sufang Huai, and Baolai Liang., Laser microprobe
    emission spectrum in argon atmosphere at reduced pressure, SPIE,2000,4221:158.
    [55]陈小波,杨昌黎,杨经国等,LD激光激发金属微区发射光谱的多道检测,光谱学与光谱分析,1999,19(1):64.
    [56]郭庆林,张博,张金平等,减压氩气环境下激光微区发射光谱分析精度的研究,光谱学与光谱分析,2005,25(3):447.
    [57]臧小平,土壤铝毒与植物钙镁营养,广西农业科学,1997,(2):80.
    [58]许仙菊,土壤与植物中钙营养的研究进展,陈明昌,张强等,山西农业科学,2004,32(1):33.
    [59]Parded M, Kurniawan H, Tjia M 0, Ikezawa K, Maruyama T, and Kagawa K, Appl Spectrosc,.2001, 55(9):12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700