光谱线型法研究介质阻挡放电等离子体参量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用发射光谱法,研究了氩气及氩气/空气介质阻挡放电中的电子密度、气体温度、电子温度及分子振动温度。
     通过引入Stark位移,进一步发展了测量电子密度的光谱线型法。研究了大气压氩气/空气介质阻挡放电四边形斑图及六边形斑图中微放电通道的电子密度。利用氮分子发射光谱,研究了两种斑图微放电通道中的分子振动温度。实验发现,由Stark频移与Stark展宽两种方法计算所得的电子密度的值大致相同。当电压增加,四边形斑图演化到六边形斑图时,电子密度及分子振动温度均增大。
     在大气压及近大气压氩气介质阻挡放电中,通过考虑氩原子696.54 nm发射谱线的各种展宽机制,分离出van der Waals展宽,得到了放电的气体温度。结果表明,气体温度随气体压强的增大而增大。与通过氮分子第一负带(0,0)转动谱线得到的气体温度进行比较,发现同一气压条件下,两种方法计算得到的气体温度一致。
     研究了介质阻挡放电中电子温度和氮分子振动温度,以及它们随气体压强、外加电压等的变化关系。实验还发现,在氩气/空气混合气体放电中,气体成分及比例极大地影响放电的发光特性和能量传输特性。
     本工作结果对等离子体斑图形成机制研究及介质阻挡放电的应用具有重要参考价值。
Plasma parameters such as electron density, gas temperature, electron temperature and molecular vibration temperature in a dielectric barrier discharge (DBD) in argon or argon/air have been investigated by means of optical emission spectroscopy (OES).
     The Stark shift is introduced here, which improved the method of measuring electron density by OES. The electron density of an individual microdischarge channel in different stable patterns including a square and a hexagon pattern in a dielectric barrier discharge in argon/air at atmospheric pressure is investigated. Vibrational temperature of individual microdischarge channel in square and hexagon patterns is investigated by using a method of N2 molecules spectra. It is found that the values of electron density deduced from the two methods, Stark shift and Stark broadening, are almost the same. Besides, the electron density and vibrational temperature are all increased from square pattern to hexagon pattern with the increase of applied voltage.
     The gas temperature is measured in a subatmospheric dielectric barrier discharge by using the van der Waals broadening deduced from several broadening factors of Ar I 696.54 nm spectral line. It is found that the gas temperature in a dielectric barrier discharge increases with the increase of gas pressure. In addition, the gas temperature calculated from the (0,0) band of the N2+negative system is same as that from the van der Waals method under the same gas pressure.
     The electron temperature and vibrational temperature in a dielectric barrier discharge are investigated as a function of experimental conditions such as gas pressure and applied voltage. It is observed that the component and ratio of gas in gas mixture influence the optical characteristic and energy transfer peculiarity in mixed gas discharge.
     This work is of great importance to the study of pattern formation mechanism in DBD and applications in industry.
引文
[1]郭书印,黄林,邱孝明.等离子体物理学原理[M].原子能出版社,1983,第一版:1.
    [2]U. Kogelschatz, Filamentary, Patterned, and Diffuse Barrier Discharges, IEEE Trans on Plasma. Sci., 2002,30 (4),1400-1408.
    [3]U. Kogelschatz, Dielectric-barrier Discharges:Their History, Discharge Physics, and Industrial Applications, Plasma Chemistry and Plasma Processing,2003,23 (1),1-46.
    [4]B.Eliasson, U.Kogelschatz, Modeling and Applications of Silent Discharge Plasmas, IEEE Trans. on Plasma Sci.,1991,19(2),309-323.
    [5]S.H.Liu and M. Neiger, Excitation of dielectric barrier discharges by unipolar submicrosecond square pulses, J. Phys. D:Appl. Phys.,2001,34 (11),1632-1638.
    [6]I. Stefanovic, N. K. Bibinov, A. A. Deryugin, I. P. Vinogradov, A. P. Napartovich and K. Wiesemann, Kinetics of ozone and nitric oxides in dielectric barrier discharges in O2/NOx and N2/O2/NOx mixture, Plasma Sources Sci. Technol.,2001,10 (3),406-416.
    [7]J. R. Roth, J. Rahel, X. Dai and D. M. Sherman, The physics and phenomenology of One Atmosphere Uniform Glow Discharge Plasma (OAUGDPTM) reactors for surface treatment applications, J. Phys. D: Appl. Phys.,2005,38(4),555-567.
    [8]N. Gherardi, S. Martin and F. Massines, A new approach to SiO2 deposit using a N2-SiH4-N2O glow dielectric barrier-controlled discharge at atmospheric pressure, J. Phys. D:Appl. Phys.,2000,33(19), L104-L108.
    [9]J. Kim, D.J. Byun, J.S. Kim, D.S. Kum, Low-temperture growth of GaN by atomic nitrogen based on a dielectric barrier discharge, Journal of Crystal Growth,2000,210,478-486.
    [10]M. Kuzumoto, S.J. Ogawa, M. Tanaka, and S. Yagi, Fast Axial Flow CO2 Laser Excited by Silent Discharge, IEEE Journal of Quantum Electronics,1990,26(6),1130-1134.
    [11]T.Koichi, and F.Tamiya, Multipoint Barrier Discharge Process for Removal of NOx from Diesel Engine Exhaust, IEEE Trans. on Plasma Sci.,2001,29(3),518-523.
    [12]S. K. Dhali and I. Sardja, Dielectric barrier discharge for processing SO2/Nox, J. Appl. Phys.,1991, 69(9),6319-6324.
    [13]H. D. Park and S. K. Dhali, Generation of atmospheric pressure plasma with a dual-chamber discharge, Appl. Phys. Lett,2000,77(14),2112-2114.
    [14]R.P. Mildren and R. J. Carman, Enhanced performance of a dielectric barrier discharge lamp using short-pulsed excitation, J. Phys. D:Appl. Phys.,2001,34(1), L1-L6.
    [15]H. S. Uhm, E. H. CHoi, and Y. Lim, Secondary electron emission in a mixed gas for application to the plasma display panel, Appl. Phys. Letts.,2002,80(5),737-739.
    [16]Y. K. Shin, J. K. Lee, and C. H. Shon, Two-Dimensional Breakdown Characteristics of PDP Cells for Varying Geometry, IEEE Trans.on Plasma Sci.,1999,27(1),14-15.
    [17]欧阳颀,反应扩散系统中的斑图动力学,上海科技教育出版社,2000年12月,第一版.
    [18]凌一鸣,徐建军介质阻挡无声放电中电子温度和电子能量分布的探极诊断,电子学报,2001,19(2),218-221.
    [19]M. Moisan, C. M.Ferreira, Y. Hajlaoui, D. Henry, J. Hubert, R. Pantel, A. Ricard, Z. Zakrazewski, Properties and applications of surface wave produced plasma, Revue Phys. Appl,1982,17,707-727.
    [20]K.Kunze, M.Miclea, G.Musa,G.Musa, J.Franzke, C.Vadla, K.Niemax, Diode laser-aided diagnostics of a low-pressure dielectric barrier discharge applied in element-selective detection of molecular species, Spectrochimica Acta part B,2002,57,137-146.
    [21]B. Y. Man, Particle velocity, electron temperature, and density profiles of pulsed laser-induced plasmas in air at different ambient pressures, Appl. Phys. B,1998,67,241-245.
    [22]董丽芳,冉俊霞,毛志国,大气压氩气微放电通道中电子激发温度的时间演化,物理学报,2005,54(5),2167.
    [23]T. Wujec, W. Olchawa, J. Halenka and J. Musielok, Experimental and theoretical Stark broadening studies of the hydrogen Paschen line, Phys. Rev. E,2002,66(11),066403.
    [24]U. Fantzl and D. Wiinderlich, A novel diagnostic technique for H-(D-) densities in negative hydrogen ion sources, New Journal of Physics,2006,8,301.
    [25]S. Y. Moon and W. Choe, Characteristics of an atmospheric microwave-induced plasma generated in ambient air by an argon discharge excited in an open-ended dielectric discharge tube, Physics of plasmas,2002,9(9),4045-4051.
    [26]S. Pellerin, K. Musiol, B Pokrzywka, and J Chapelle, Stark width of Ar I transition (696.543nm), J. Phys. B:At. Mol. Opt. Phys.,1996,29(11),3911-3924.
    [27]C. Penache, M. Miclea, A. Brauning-Demian, O. Hohn, S. Schossler, T. Jahnke, K. Niemax and H. Schmidt-Bocking, Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy, Plasma Sources Sci. Technol.,2002,11(4),476-483.
    [28]V. Milosavljevic, S. Djenize, The He 1706.52 nm line shape characteristics in the plasma diagnostics, Eur. Phys. J. D,2003,23,385-390.
    [29]R. Konjevic, N. Konjevic, On the use of non-hydrogenic spectral line profiles for electron density diagnostics of inductively coupled plasmas, Spectrochimica Acta Part B,1997,52,2077-2084.
    [30]N. Konjevic, On the use of non-hydrogenic spectral line profiles for plasma electron density diagnostics, Plasma Sources Sci. Technol.,2001,10(2),356-363.
    [31]H.R Griem. Plasma spectroscopy, New York:McGraw-Hill,1964,492.
    [32]H.R Griem, Spectral line broadening by plasmas, New York:Academic,1974.
    [33]S. Djurovic, D. Nikolic, Z. Mijatovic,.R. Kobilarov, and N. Konjevic, Line shape study of neutral argon lines in plasma of an atmospheric pressure wall stabilized argon arc, Plasma Sources Sci. Technol.,2002,11 A95-A99.
    [34]M. Christova, V. Gagov, and I. Koleva, Analysis of the profiles of the argon 696.5 nm spectral line excited in non-stationary wave-guided discharges, Spectrochimica Acta Part B.,2002,55 815-822.
    [35]N..Balcon, A. Aanesland, and R. Boswell, Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon Plasma Sourses Sci. Techno.,2007,16 217-225.
    [36]I. G.Koo, J. H. Cho, M. Y. Choi, and W. M. Lee, Room-temperature slot microplasma in atmospheric pressure air between cylindrical electrodes with a nanoporous alumina dielectric, Appl. Phys. Lett., 2007,91,041502.
    [37]T. Nozaki, Y. Unno, Y. Miyazaki and K. Okazaki, Optical diagnostics for determining gas temperature of reactive microdischarges in a methane-fed dielectric barrier discharge, J. Phys. D:Appl. Phys,2001, 34,2504-2511.
    [38]X. Duten, A. Rousseau, A. Gicquel, K.Hassouni and P. Leprince, Time-resolved measurements of the gas temperature in a H2/CH4 medium pressure microwave 915 MHz pulsed plasma, J. Phys. D: Appl. Phys.,2002,35,1939-1945.
    [39]B. A. Cruden, M.V.V.S. Rao, Surendra P. Sharma, and M. Meyyappan, Neutral gas temperature estimate in CF4/O2/Ar inductively coupled plasmas, Appl. Phys. Lett.,2002,81 (6),990-992.
    [40]Q.Wang, F. Doll, V. Donnelly, D.J. Economou, N. Sadeghi and G..F. Franz, Experimental and theoretical study of the effect of gas flow on gas temperature in an atmospheric pressure microplasmas, J. Phys. D:Appl. Phys.2007,40,4202-4211.
    [41]C. Yubero, M.S. Dimitrijevic, M.C. Garcia and M.D. Calzada, Using the van der Waals broadening of the spectral atomic lines to measure the gas temperature of an argon microwave plasma at atmospheric pressure, Sepctrochim. Acta Part B,2007 62,169-176.
    [42]董丽芳,冉俊霞,尹增谦,毛志国,大气压氩气介质阻挡放电中的电子激发温度,光谱学与光谱分析,2005,25(8),1184-1186.
    [43]D.Nishijima, U. Wenzel, M. Motoyama, N.Ohno, S. Takamura, and S. I. Krasheninnikno, Evaluation of electron temperature in detached recombining plasmas, Journal of Nuclear Materials,2001, 290-293,688-691.
    [44]N. Masoud, K. Martus, M. Figus, and K. Becker, Rotational and Vibrational Temperature Measurements in a High-Pressure Cylindrical Dielectric Barrier Discharge (C-DBD), Contrib. Plasma Phys.,2005,45(1),30-37.
    [45]G. Nersisyan and W. G. Graham, Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium, Plasma Sources Sci. Technol.,2004,13,582-587.
    [46]K. Kozlov, O. Shepeliuk, A.Monyakin, V. Dobryakov and V. Samoilovich, Experimental study of statistical behaviour of separate microdischarges in air-fed ozonizer, Proc. Annual Congress of the Polish Chemistry Society,1995 (Lublin, Poland) 79-83.
    [47]K. V. Kozlov, H-EWagner, R.Brandenburg and P. Michel, Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure,2001,34,3164-3176.
    [48]L.F. Dong, J.X. Ran, and Z.G. Mao, Direct measurement of electron density in microdischarge at atmospheric pressure by Stark broadening, Appl. Phys. Lett.,2005,86,161501.
    [49]W. L. Wiese, J W Brault, K. D.Anzmann, Unified set of atomic transition probabilities for neutral argon, Phys Rev A,1989,39(5),2461-2471.
    [50]B. Y. Man, Particle velocity, electron temperature, and density profiles of pulsed laser-induced plasmas
    in air at different ambient pressures, Appl. Phys. B,1998,67,241-245.
    [51]G.赫兹堡,分子光谱与分子结构(第一卷双原子分子光谱),科学出版社,1983年8月第1版,15和155-156.
    [52]D. E. Shemansky, A. L. Broadfoot, Excitation of N2 and N2+ systems by electrons absolute transition probabilities, J. Quant. Spectrosc. Radiat. Transfer,1971,11,1385-1400.
    [53]D. Nikolic, S. Djurovic, Z. Mijatovic, R. Kobilarov, B. Vujicic, and M. Cirisan, Determination of ion-broadening parameter for some Ar I spectral lines, J.Quant.Spectrosc. Radiat.Transf.2004,86 285-298.
    [54]A. Y. Potekhin, G.Chabrier, and D. Gilles, Electric microfield distributions in electron-ion plasmas Phys. Rev. E.2002.65 1-12.
    [55]L. F. Dong, W. L. Fan, Y. F. He., F. C. Liu, R. L. Gao, and L. Wang, Square superlattice pattern in dielectric barrier discharge Phys. Rev. E.2006.73 066206.
    [56]L. F. Dong, Y. F. He, W. L. Liu, R. L. Gao, and H. T. Zhao, Hexagon and square patterned air discharges Appl. Phys. Lett.,2007,90,031504.
    [57]L.f. Dong, Y.Y.Qi, Z.C.Zhao, and Y.H. Li, Measurement of gas temperature in a dielectric barrier discharge by argon atomic spectral line, Plasma Sources Sci. Technol.,2008,17,015015
    [58]齐玉妍,董丽芳,赵增超,介质阻挡放电中不同斑图的微放电通道中分子振动温度研究,河北大学学报,2007,27,204-207.
    [59]C.W. Allen, Astrophysical Qqantieies, The Athlone Press, London,1964,87.
    [60]董丽芳,齐玉妍,李立春,郝雅娟,高瑞玲,赵增超,李雪辰,压强对空气/氩气介质阻挡放电中等离子体温度的影响,光谱学与光谱分析,2008,28(1),21-23.
    [61]J. H. Choi, T. Lee, I. Han, and H.K. Baik, Investigation of the transition between glow and streamer discharges in atmospheric air, Plasma Sources Sci. Technol.,2006,15,415-420.
    [62]A. Qayyum., Z.Shaista, M. A, Naveed, S. A.Ghauri, and M. Zakaullah, Diagnostics of nitrogen plasma by trace rare-gas-optical emission spectroscopy, J. Appl. Phys,2005,98,103303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700