基于自由定标的激光诱导击穿光谱技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光诱导击穿光谱技术作为一种有效的物质成分分析技术,在很多领域都体现了应用潜力,如环境污染检测、工业工程监测、生物研究、安检、太空探索和艺术品古董检测等。而采用定标方法进行测量时,由于基体效应的影响容易造成测量误差,因此1999年A.CIUCCI提出了一种基于自由定标的激光诱导击穿光谱技术(CF-LIBS),这种方法不仅能够避免基体效应并且无需标准样品进行定标。到目前为止这种方法在很多领域都有相应的应用研究,但是由于这项技术的复杂性,还存在很多问题值得研究。
     CF-LIBS的主要优点是无需标准样品进行定标并且能够避免基体效应的影响,但对等离子体的探测条件要求比较高,需要选择合适的光谱采集窗口才能得到准确的测量结果。另外由于CF-LIBS是基于全谱的分析技术,所以对光谱的数据处理要求非常高。基于以上考虑,本文的主要研究内容包括:为了实现快速测量,编写了一个能够实现自动检峰、自动光谱干扰校正、自动元素归属确定和自由定标定量分析等功能的智能化分析程序,另外根据测量到的激光诱导等离子体的温度、电子密度的时间演化特性,研究了激光诱导等离子体的局部热平衡条件以及影响CF-LIBS测量结果的因素。
     第一章介绍了激光诱导击穿光谱技术的发展现状,激光诱导等离子体的基本概念和理论,包括等离子体的基本性质、诊断等离子体电子密度和电子温度的常用手段、等离子体发射光谱的加宽机制。
     第二章首先简要介绍了CF-LIBS的发展现状,然后详细的介绍了自由定标方法的原理和影响因素。
     第三章介绍了本文所用的LIBS实验装置,主要包括激光器,光谱测量系统。构建了自动、实用有效的LIBS光谱数据处理模型。通过协方差法和二阶求导法实现了光谱峰位的自动检测;针对谱线重叠干扰问题,采用谱线拟合法结合遗传算法对重叠干扰峰进行了有效的分解;最后对特征光谱所对应的元素标定原理与准则进行了归纳总结。
     第四章首先构建了等离子体电子密度和电子温度的计算模型,利用Stark展宽计算等离子体的电子密度,采用saha-boltzmann平面法获取等离子体的温度。通过时间分辨光谱研究了激光诱导等离子体的电子密度和电子温度的时间演化特性,在此基础上明确了等离子体局部热平衡条件,结果表明在500ns-1500ns的演化时间内土壤等离子体是满足局部热平衡条件的;构建了基于自由定标的定量分析系统,对国家标准物质(土壤GBW7429)中的Ca和Mg元素进行定量检测并探讨了在不同的延迟时间下的测量准确度,结果显示当延迟时间为500ns-1000ns时准确度最高,这与局部热平衡条件相符合;另外初步研究了光谱采集窗口和自吸收效应对测量结果的影响。
     最后,总结全文,并对进一步的研究工作提出了一些建议。
Laser-Induced-Breakdown Spectroscopy (LIBS) is a recognized laser detection technique for sensing the chemical composition of a wide range of materials including environmental monitoring, industrial processing, Biomedical studies, military and safety needs, space exploration, and art works analysis. However the concentration of major components is difficult to measure by this method because of the so called "matrix effect". Fortunately, Calibration-Free laser-induced break down spectroscopy (CF-LIBS) which can correct the matrix effect was put forward by A.CIUCCI in 1999. It is a promising approach for quantitative analysis without using certified samples and calibration curves. So from then on, many researchers committed their efforts to this field and applied it to several other fields; however, much work is needed in the future study.
     CF-LIBS has advantages of eliminating the use of calibration curve and avoiding the matrix effect. It is a potential technique for analysis in many fields; however, it must find a suitbale observation winddow and a complex procedure is needed. So in this article, the main goal is to establish a spectrum data processing procedure which can intelligently fulfill the peek-seeking, overlapped spectral-correcting and qualitative analysis. Then study on the LTE condition and its effect on the accuracy of CF-LIBS.
     In chapter one, the basic concept, characteristic, diagnostic techniques, and the application of the laser-induced plasma are introduced briefly. Broadening of the spectral lines and two important characters of the emission spectral and the method to measure the electron temperature are presented.
     In the second chapter, a brief introduction of the CF-LIBS is presented. Then the theory of the CF-LIBS is introduced in detail. Finally it lists some factor that will affect the accuracy of CF-LIBS.
     In chapter three, the experimental setup and method are introduced in detail with the description of the ablation laser and spectrum detection system. An intelligent data preprocessing models was founded in this work. The automatic peak-seeking algorithm was based on the covariance and second derivative. For the resolution of overlapped spectral lines, a model based on the line-fitting and genetic algorithm was established and tested. The qualitative analysis rule was founded for automatic spectral line identification.
     In chapter four, the model for calculating the electron density and electron temperature of the plasma was founded. The electron density is gotten from the Stark-broadening of line at 422.67 nm, the electron density is gotten from the Saha-boltzmann plot. The temporal history of the plasma is obtained by recording the emission features at predetermined delays and at a fixed gate width (500ns). For each spectrum both electron density and excitation temperature are calculated for each delay time, the LTE condition is studied in shown that the LTE condition is validated when the delay time ranged from 1000ns to 1500ns. Then based on the principle of CF-LIBS, a procedure for elemental analysis is proposed. With help of the procedure, we studied the factors that affect the accuracy of the analysis results.
     Finally, the results of the whole research work are summarized and the directions for the further studies suggested.
引文
[1]. Brech F, Cross L. Appl.Spectrosc.,1962,16:59.
    [2].陆同兴,赵献章,崔执凤等.用发射光谱测量激光等离子体的电子温度和电子密度[J].原子与分子物理学报,1994,11(2):120-127.
    [3].陆同兴,崔执凤,赵献章.激光等离子体镁光谱线展宽的测量与计算[J].中国激光,1994,21(2):114-119.
    [4].崔执凤,凤尔银,黄时中等.外加静电场下激光诱导等离子体特性的实验研究[J].原子与分子物理学报,1996,13(2):181-187.
    [5].崔执凤,,凤尔银,赵献章等.准分子激光诱导铅等离子体中谱线展宽时空特性研究[J].原子与分子物理学报,1999,16(3):307-311
    [6].袁平,张雪珍,刘站稳等.激光产生等离子体的研究[J].核剧变与等离子体物理,1995,15(2):47-49.
    [7].王公堂,王象泰,满宝元等.激光烧蚀靶生成空气等离子体的机理[J].原子与分子物理学报,1996,13(2):163-169.
    [8].王公堂,王象泰,张择慈等.激光烧蚀硅所产生的等离子体发射光谱特性[J].中国激光,1996,23(1):64-68.
    [9].董全力,王军,于衍宏.等激光等离子体产生条件的实验研究[J].光电子激光,1999,10(5):469-472.
    [10].张树东,冯旺军,陈冠英等.激光诱导Al等离子体的时间分辨光谱[J].应用激光,2000,20(4):155-158.
    [11].陈金忠,史金超,张晓萍.激光等离子体光谱法定量分析土壤中元素Fe和Ti[J].应用激光,2007,27,(1):33-36.
    [12].许洪光,管士成,傅院霞等.土壤中微量重金属元素的激光诱导击穿谱[J].中国激光,2007,23(4):577-581.
    [13].郭庆林,周玉龙,张秋琳等.激光微等离子体光谱分析法测定土壤中的铝钙[J].光谱学与光谱分析.2008,28(1):200-202.
    [14].王建伟,张娜珍,侯可勇等.LIBS技术在土壤重金属污染快速测量中的应用[J].化学进展,2008,20(7),1165-1171.
    [15].卢渊,吴江来,李颖等.基于激光诱导击穿光谱技术的土壤泥浆中Pb元素检测[J].光谱学与光谱分析,2009,29(11),3121-3125.
    [16].黄基松,周卫东,陈巧玲.激光诱导击穿光谱技术分析土壤中的Cr和Sr[J].光谱学与光谱分析,2009,29(11),3126-3129.
    [17].李静,张仕定,孟祥儒.激光诱导等离子体光谱法测定水溶液中镁、钠、钾含量.实验力学,2007,22(3-4):447-450.
    [18].王传辉,戴琳,张先等.Alcl3水溶液的激光诱导击穿光谱研究[J].中国激光,2006,33(9),1190-1194.
    [19].张文艳,林兆祥,宋述燕等.激光击穿光谱检测葡萄糖溶液的实验研究[J].光谱学与光谱分析,2008,28(5),1003-1006.
    [20].吴江来,傅院霞,李颖等.水溶液中金属元素的激光诱导击穿光谱的检测分析[J].光谱学与光谱分析,2008,28(9),1979-1982.
    [21].王智宏,汪家升.激光诱导击穿光谱一LIBS一技术在矿物元素成份分析中的应用研究[D].北京交通大学,2007年5月.
    [22].马德敏,舒嵘,亓洪兴.一种用于激光诱导离解光谱的时间分辨探测技术.光电技术与应用,2007,28(1):124-126.
    [23].姚宁娟,陈吉文,杨志军等.一种用于冶金炉前快速分析的新仪器—激光诱导击穿光谱仪[J].光谱学与光谱分析.2007,27(7):1452-1454.
    [24]. J.E.Carranza, B.T.Fisher, and et al. On-line analysisi of ambient air aerosols using laser-induced breakdown spectroscopy. Spectrochimica Acta Part B,2001,56(2):851-856.
    [25]. R.L.Nordstrom. Study of laser-induced plasma emission spectra of N2, O2, and ambient air in the region 350nm to 950nm. Applied Spectroscopy,1995,49(10):1490-1499.
    [26]. Arca G, Giucci A, Palleschi V, et al. Detection of pollutants in liquids by laser induced breakdown spectroscopy technique[J]. Geoscience and Remote Sensing Symposium,1996, 1(5):520-522.
    [27]. G.ARCA, A.CIUCCI, V.PALLESCHI, et al. Trace Element Analysisi in Water by the Laser-Induced Breakdown Spectroscopy Technique[J], Applied Spectroscopy,1997, 51(5):102-1105.
    [28]. Capitelli F, Colao F, Provenzano M.R, et al. Determination of heavy metals in soils by Laser Induced Breakdown Spectroscopy. Geoderma,2002,106(1):45-62.
    [29]. F.Colao, M.R.Provenzano, R.Fantonib, et al. Determination of heavy metals in soils by Laser Induced Breakdown Spectroscopy. Geoderma,2002,106(1):45-62.
    [30]. M.A.Gondal, T.Hussain, Z.H.Yamani, et al. On-line monitoring of remediation process of chromium polluted soil using LIBS[J]. Journal of Hazardous Materials,2009, 163(2009):1265-1271.
    [31]. Q.Sun, M.Tran, B.W.Smith and et al. Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy[J]. Analytica Chimica Acta,2000,413(1):187-195.
    [32]. T.L.Thiem, R.H.Salter. Quantitative simultaneous elemental determinations in alloys using laser-induced breakdown spectroscopy(LIBS) in an ultra-high vacuum[J]. Appl.Spectrosc. 1994,48(1):58-61.
    [33]. D.Body, and B.L.Chadwick. A new technology for coal quality monitoring. Proceedings of the Australia-China Joint Workshop on Clean Power from Coal, Taiyuan, China. 2001:133-140.
    [34]. H.Zhang, J.P.Singh. Laser-induced breakdown spectra in a coal-fired MHD facility [J]. Appl, Spectrosc.,1995,49(11):1617-1623.
    [35]. Q.Sun, M.Tran, B.W.Smith and J.D.Winefordner et al. Zinc analysis in human skin by laser induced-breakdown spectroscopy. Talanta,2000,52(1):293-300.
    [36]. Y.Yoon, T.Kim, M.Yang and et al. Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy. Microchemical Journal,2001,68(1):251-256.
    [37]. R.Samek, D.C.S.Beddows, H.H.Telle and et al. Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples. Spectrochimica Acta Part B,2001,56(2):865-875.
    [38].项志遴,俞昌旋.高温等离子体诊断技术[M].上海,上海科学技术出版社,1982:61-62
    [39]. LI Hong-kun, LIU Ming, CHEN Zhi-jiang, et al. Quantitative analysis of impurities in aluminum alloys by laser-induced breakdown spectroscopy without internal calibration[J]. Trans. Nonferrous Met.Soc.China 18(2008) 222-226.
    [40].B.Salle, J.-L.Lacour, P.Mauchien, P.Fichet, etal.Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atomosphere[J]. Spectrochimica Acta Part B 61 (2006) 301-313
    [41]. Mohamad Sabsabi and Pailo Cielo. Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization[J]. Appl. Spectrosc, 49(1995) 499.
    [42]. H.R.Griem, Plasma Spectroscopy(McGraw Hill, New York,1989).
    [43].冉俊霞,董丽芳,张少朋等.仪器展宽对大气压等离子体电子密度测量的影响[J].原子与分子物理学报。2008,25(3):651-655.
    [44]. A.CIUCCI, M.CORSI, V.PALLESCHI, et al. New Procedure for Quantitative Elemental Analysis by Laser-Induced Plasma Spectroscopy[J]. Applied Spectroscopy.1999, 53(8):960-964
    [45]. Ilaria Borgia, Lucia M.F. Burgio, Michela Corsi, et al. Self-calibrated quantitative elemental analysis by laser-induced plasma spectroscopy:application to pigment analysis[J]. J.Cult.Heritage 1(2000) S281-S286.
    [46]. L.Bolognesi, M.Corsi, V.Palleschi, et al. Calibration-Free Laser Induced plasma Spectroscopy for Cultural Heritage Conservation and Analysis. Proceedings of the Second Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin,2000,431-436.
    [47]. M.Corsi, G.Cristoforetti, V.Palleschi, et al. A fast and accurate method for the determination of precious alloys caratage by Laser Induced Plasma Spectroscopy [J]. Eur. Phys. J.D 13,373-377(2001).
    [48]. D.Bulajic, M.Corsi, G.Cristoforetti, et al. A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy[J]. Spectrochim. Acta Part B 57(2002) 339-353.
    [49]. F.Capitelli, F.Colao, M.R.Provenzano, et al. Determination of heavy metals in soils by laser induced breakdown spectroscopy [J]. Geoderma,106(2002)45-62.
    [50]. Michela Corsi, Gabriele Cristoforetti, Montserrat Hidalgo, et al. Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis [J]. Applied Optics,2003,42(30):6133-6137.
    [51]. V.S. Burakov, V.V. Kiris, P.A. Naumenkov, S.N. Raikov. Calibration-free laser spectral analysis of glasses and copper alloys, J. Appl.Spectrosc.71 (2004) 740-746.
    [52]. Yu Liangying, Lu Jidong, Chen Wen. Analysis of Pulverized Coal by Laser-Induced Breakdown Spectroscopy[J]. Plasma Science & Technology,7(2005) 3041
    [53]. M.V. Bel'kov, V.S. Burakov, V.V. Kiris, N.M. Kozhukh, S.N. Raikov, Spectral standard-free laser microananlysis of gold alloys, J. Appl. Spectrosc.72 (2005) 376-381.
    [54]. L. Fornarini, F. Colao, R. Fantoni, V. Lazic, V. Spizzicchino, Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy:a theoretical and experimental approach, Spectrochim. Acta Part B 60 (2005) 1186-1201.
    [55]. Michela Corsi, Gabriele Cristoforetti, Montserrat Hidalgo, et al. Double pulse, Calibration-free laser-induced breakdown spectroscopy:A new technique for in situ standard-less analysis of polluted soils[J]. Applied Geochemistry 21 (2006) 748-755.
    [56]. E.Tognoni, G.Cristoforetti, S.Legnaioli, et al. A number study of expected accuracy and precision in CF-LIBS in the assumption of ideal analytical plasma[J]. Spectrochim. Acta Part B 62(2007) 1287-1298.
    [57]. A. De Giacomo, M. Dell'aglio, O. De Pascale, S. Longo, M. Capitelli, Laser induced breakdown spectroscopy on meteorites, Spectrochim. Acta Part B 62 (2007)1606-1611.
    [58]. V.S.Burakov, S.N.Raikov. Quantitative analysis of alloys and glasses by a calibration-free method using laser-induced breakdown spectroscopy [J]. Spectrochimica Acta Part B 62(2007)217-223.
    [59]. S.Pandhija·A.K.Rai. In situ multielemental monitoring in coral skeleton by CF-LIBS[J]. Appl Phys B(2009)94:545-552
    [60]. Lanxiang Sun, Haibin Yu. Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method[J]. Talanta 79(2009)288-395
    [61]. J.A.Aguilera, C. Aragon, G.Cristoforetti, et al. Application of calibration-free laser-induced breakdown spectroscopy to radially resolved spectra from a copper-based alloy laser-induced plasma[J]. Spectrochimica Acta Part B 64(2009) 685-689.
    [62]. K. Herrera, E. Tognoni, N. Omenetto, I.B. Gornushkin, B.W. Smith, J.D.Winefordner, Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions, J. Anal. At. Spectrom.24 (2009) 426-438.
    [63]. http://physics.nist.gov/PhysRefData/ASD/lines form.html.
    [64]. McWhirter. R.W.P. Plasma Diagnostic Techniques[M]. New York, Academic Press,1965, p201.
    [65]. Leon J. Radzimeski, From LASER to LIBS, the path of technology development[J], Spectrochimica Acta Part B,57(2002):1109-1113.
    [66]. Hughes, T.P., Plasma and laser light, Wiley, New York(1975)
    [67]. G.Bekefi, in Principles of Laser Plasmas, G.Bekefi, Ed (Wiley Interscience, New York, 1976), Chap.13,P.549
    [68].徐啸,郭应祥,黄文学等.基于微机的γ谱数据分析程序GSA.核电子学与探测技术,2001,21(1):40-44
    [69].蔡顺燕,度先国,高篙.基于LABVIEW和数字多道脉冲幅度分析器的γ能谱分析软件的开发.核电子学与探测技术,2007,27(5):936-939.
    [70]. R. Redon, B. Fermat, J. Richou. A reconvolution spectroscopic method. J. Quant. Spectrosc. Radiat. Transf.1997,58(2):151-170.
    [71].李全臣,将月娟.光谱仪器原理.北京,北京理工大学出版社,1999.
    [72]. W.Huang, T.L.E.Henderson, A.M.Bond, et al. Curve fitting to resolve overlapping voltammetgic peaks.Analytical Chimica Acta,1995,304:1-15
    [73]. Zou Xiaoyong, Mo Jinyuan. Spline wavelet analysisi for voltammetric signals. Anal Chim Acta,1997,340:115-121.
    [74]. J. K. Kauppinen, D. J. Moffatt, D. G. Cameron, et al. Noise in Fourier self-deconvolution. Applied Optics,1981,20(1.0):1866-1879.
    [75].R. G. Stuart, P. F. Steven, M. G. Steven. Deconvolution of overlapping chromatographic peaks using a cerebellar model arithmetic computer neural network. Chemometrics and Intelligent Laboratory System,1993,18:41-67
    [76].沈兰荪.ICP-AES光谱干扰校正方法的研究[M].1997,北京,北京工业大学出版社.
    [77]. Holland J H.A daptation in Natural and Artificial Systems. Ann Arbor, MI:University of Michigan Press, Ann Arbor, MI,1975
    [78]. D. Body, B.L. Chadwick. Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system. Spectrochimica Acta Part B,56(2001):725-736.
    [79].黄基松,陈巧玲,周卫东.激光诱导击穿光谱技术分析土壤中的Cr和Sr[J].光谱学与光谱分析.2009,29(11):3126-3129.
    [80]. V.Lazic, R.Barbini, F.Colao* etal. Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments[J]. Spectrochimica Acta Part B 56(2001)807-820.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700