多孔硅微结构与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔硅由于其原料储备大,制作工艺简单,是一种很有潜力的材料。硅用作场发射阴极的材料,属于第一类冷阴极材料,它的最大优点是可以与控制电路集成在一起,体积小,重量轻;另外,由于其孔隙率高、比表面积大等优点,有利于它对气体的吸收和感应,是一种较为理想的薄膜生长载体。
     本文采用双槽电化学腐蚀法及表面处理技术获得性能稳定的多孔硅。主要对制得的不同多孔硅样品进行结构表征:实验中采用原子力显微镜和扫描电子显微镜表征了多孔硅样品的表面形貌及多孔硅横截面的表面形貌。分析了不同腐蚀时间下多孔硅样品表面粗糙程度、孔径大小和薄膜厚度等微结构性能;同时,观测了经过Pd2+金属溶液沉浸的多孔硅样品表面形貌。
     研究了腐蚀时间对多孔硅场发射性能的影响。另外,为了更好提高多孔硅薄膜的场发射特性,对其表面进行Ar离子处理。经过等离子处理后,开启场强变得更小,电流密度变大,场发射性能得到了很好改善。在外加电场为15V·μm-1时,电流密度可达到125μA·cm-2,是未经等离子处理样品的3倍多。我们还成功的设计和制作了以多孔硅为阴极的10×10场发射发光二极管阵列器件。
     对经过Pd2+溶液沉浸后的多孔硅进行了性能测试。采用了激光诱导击穿光谱技术分析了多孔硅的特征谱线。经过Pd2+溶液沉浸后的多孔硅特征有明显的特征谱线,没有出现有金属盐特征谱线。采用X射线能谱仪对样品进行元素含量分析,Pd含量随着沉浸时间而逐渐增加,随后基本稳定在12.5%附近。采用四探针测试仪测试样品的电阻率,未经过沉浸的多孔硅样品电阻率较大,经过Pd2+离子沉浸样品表面和底层曲线斜率基本相当,都远小于未经沉浸的多孔硅样品。说明了多孔硅样品经过Pd2+离子沉浸电阻率降低得到了明显的下降。
Porous silicon(PS) is one of promising materials because of its Simple technology and large reserves of raw materials.PS as field emission cathode is the first type cold cathode material. Its biggest advantage are integrated with control circuitry,small size and light weight. In addition, due to its high porosity and large specific surface area,and conducived to gas sensing, is considered an ideal carrier of thin film growth.
     PS films were fabricated by anode oxidation and cathode deoxidize surface dispose technology. The surface morphology of the PS films were characterized by atomic force microscopy(AFM),and the cross-section of the PS films were characterized by scanning electron microscopy(SEM). Surface roughness,hole diameter and film thickness were studied under different etching time. Studied the etching time on the porous silicon field emission properties of impact. In order to improve PS films field emission properties, Plasma treatment was used.And Plasma treatment can effctively improve field emission properties. chen the applied electric field for the 15 V·μm-1,the current density can be achieved 125μA·cm-2, more than 3 times of before plasma treatment. We have also designed one kind of porous silicon field-emission light emitting diodes array,and conducted performance test.
     Laser-induced breakdown spectroscopy Technology was used to detect characteri-stic spectral lines. The spectrum of palladium was observed from the PS after immersion without the spectrum of chlorine. Element content of the samples was measured via X-ray spectrometer.Pd element content increased gradually with the immersion time, and then stabilized at around 12.5%. Resistivity of the sample was measured via four-point probe. The resistivity of the sample before immersion higher
引文
[1]盛少定,王迅.硅中掺铒发光的研究现状和前景[J].物理,1995,14(7):402—408.
    [2]王启明.提高Si基材料高效率发光途径的探索[J].物理学进展,1996,16(1):75—88.
    [3]鲍稀茂.多孔硅及硅基发光材料[J].中国科学基金,1998,2(3):162—166.
    [4]Collins R T, Fauchet P M, Teschler M A. Prous Silicon:From luminescence to LEDs[J]. Physics Today,1997,50(1):24-31.
    [5]Brennam, Kevin F. The physics of semiconductors with optoelectronic devices[m]. Uk:Cambridge Unigersity press,1999.
    [6]叶好华,叶志镇,黄靖云.硅发光研究[J].半导体光电,2002,23(1):4—7.
    [7]Lockwood D J, Lu Z H, and Baribeau J M. Quantum confined luminescence in Si/SiO2 sup- erlattices[J]. Phys Rev Lett,1996,76:539-541.
    [8]Tsybeskov L, Grom G F, Fauchet P M, et al. Phonon-assisted tunneling and interface quality in nanocrystalline Si/amorphous SiO2 superlatices[J]. Appl Phys Lett,1999,75:2265-2267.
    [9]Zacharias M, Blasing J, Veit P, et al. Thermal crystallization of amorphous Si/SiO2 superlattices[J]. Appl Phys Lett,1999,74:2614-2616.
    [10]Shin J H, Lee W H, Han H S.1.5/μm photoluminescent properties of erbium-doped Si/SiO2 superlattices[J]. Appl Phys Lett,1999,74:1573-1575.
    [11]Katona T M, Speck J S, and DenBaars S P. Control of crystallographic tilt in GaN grown on si (111) by cantilevere pitaxy[J]. Appl Phys Lett, 2002,81:3558-3560.
    [12]Yu G, Ebisu H, Mosaddeq R M, et al. Structual Comparison between Ge and GaAs films grown by molecular beam epitaxy on si substrate[J]. J Appl Phys,2002,41:579-580.
    [13]Fu X A, Zorman C A, Mehregany M. Chemical mechanical polishing of cubic silicon carbide films grown on si (100) wafers [J]. J Electrochem Soc, 2002,149(12):G643-G647.
    [14]Uhlir A J R. Electrolytic Shaping of Germanium and Silicon[J]. The Bell Systrm Technical Jounal,1956,35:33-347.
    [15]Pickering C, Beale M I J, Robbins D J, et al. Optical studies of the structure of porous silicon films formed in p-type degenerate and non-degenerate silicon[J]. Solid State Phys,1984, C17:6535.
    [16]Canham L T. Silicon quantum wire array fabrication by electrochenical and chemical dissolution of wafers[J]. Appl Phys Lett,1990,57: 1046-1048.
    [17]Cullis A G, Canham L T, and Calcott P D J. The structural and luminescence propertier of porous silicon[J]. J Appl Phys,1997, 82:909-956.
    [18]Beal M I J,Benjamin J M,Uren M J,et al.An experimental and theoretical study of the formation and microstructure of porous silicon[J]. J Gryst Growth,1985,73:622-625.
    [19]Witten T A, L M Sander. Diffusion-limited aggregation[J]. Phys Rev B,1983,27:5686-5679.
    [20]Lehman V, Gosele U. Porous silicon formation:a quantum wire effct[J]. Appl Phys Lett,1991,58(8):856-858.
    [21]任清褒.多孔硅制备方法进展[J].丽水师范专科学校学报,1999,21(5):16—19.
    [22]陈乾旺,李新建,朱警生.多孔硅研究的新进展[J.电子显微学报,1997,16(4):493—496.
    [23]Chen Q W, Qian Y T, Chen Z Y, et al. Hydrothermal epitaxy of highly oriented TiO2 thin films on silicon[J]. Appl Phys Lett,1995,66(13): 1608-1610.
    [24]李谷波.获得多孔硅蓝绿光发射的新方法[J].四川工业学院学报,2000,19(2):132—135
    [25]Hummel R E. Chang Sungsik. Novel technique for preparing porous silicon[J].. Appl Phys Lett.1961(16):1965-1967.
    [26]O. Bisi, S. Ossicini and L. Pavesi. Porous silicon:a quantum sponge structure for silicon based optoelectronics[J]. Surface Science Reports,2000,38:1-4.
    [27]徐东升,郭国霖,桂琳琳等.超临界干燥和普通干燥法对多孔硅的结构及性质的影响[J].科学通报.1999,44(1):2272—2276.
    [28]虞献文,陈燕艳,应桃开等.多孔硅新的表面处理技术[J].半导体学报.2005,26(2):406-409.
    [29]虞献文,朱荣锦,朱自强等.多孔硅的干燥方法研究[J].半导体学报.2003,24(6):663—665.
    [30]Baoqing Zeng, Guangyong Xiong, Shuo Chen, et al. Field emission of silicon nanowires grown on carbon cloth[J]. Appl. Phys. Lett,2007, 90,033112.
    [31]房振乾,胡明,李海燕等.碳纳米管冷阴极材料制备及其场发射性能研究[J].压电与声光.2006,28(6):175-178.
    [32]张勇,唐元洪,裴立宅等.纳米碳材料场发射特性研究进展[J].压电与声光.2006,28(2):191-195.
    [33]J. J. Li, Q. Wang and C. Z. Gu. Growth and field emission properties of tubular carbon cones[J]. Ultramicroscopy,2007,107(9):861-864.
    [34]S. Z. Deng, Z. B. Li, W. L. Wang, et al. Field emission stu- dy of SiC nanowires/nanorods directly grown on SiC cera- micsubst rate[J] Appl. Phys. Lett.2006,89,023118.
    [35]Z. Z. Ye, F. Yang, Y. F. Lu, et al. ZnO nanorods with different morphologies and their field emission properti- es[J]. Solid State Communications,2007,142(8):425-428.
    [36]陈红升,齐俊杰,张跃等.四针状纳米ZnO场发射性能及H2热处理效应[J]. 科学通报.2007,52(7):763-765
    [37]A. A. Talin, K. A. Dean, J. E. Jaskie. Field emission di- splays:a critical review[J]. Solid-State Electronics,2001,45 (6):963-976.
    [38]李兴辉,冯进军,白国栋等.提高钼尖锥场致发射阵列阴极发射性能的研究[J].液晶与示,2004,19(5):343-348.
    [39]S. A. Nepijko, D. N. Ievlev, D. B. Dan'ko, et al. Electr- olum inescence spectra of porous silicon as a function of the applied voltage[J]. Physical B:Condensed Matter,2001,299(2):32-35.
    [40]V. Baranauskas,M. Fontana, ZhaoJingGuo, etal. Field-emis- sion properties of macroporous silicon grown at high ano- dization voltages [J]. J. Appl. Phys.2005,97,014912.
    [41]张传萍.场发射显示器件制备中的几个关键问题的研究.吉林大学硕士学位论文.
    [42]蔡让歧.微波等离子体CVD纳米金刚石场致电子发射研究.兰州大学博士学位论文.2002
    [43]薛增泉.吴全德编著.电子发射与电子能谱.北京.北京大学出版1993.3.
    [44]刘学澎.阴极电子学.北京.科学出版社.1980.
    [45]C. A. Spindt, I.Brodie, L.Humphrey, et al. Physical properties of thin-film field emission cathodes with molybdenum cones [J]. J. Appl. P hys.1976,12(47):5248-5263.
    [46]Mao D S, Li W, Wang X, et al. Diamond-like carbon films prepared by filtered arc deposition for electronfield emission application [J].Surf&Coat Technol,2001,137:1-5.
    [47]Ma X, Wang E G, Zhou W Z, et al. Polymerized carbon nanobells and their field- emission properties [J]. Appl Phys Lett,1999,75:3105-3107.
    [48]Yung J J, Swastik K, Saikat T,, et al. Aligned carbon nanotube-polymer hybrid architecturts for diverse flexible electronic application [J]. Appl Phys Lett,2006,6(3):413.
    [49]Jo H, Tu Y, Huang D P, et al. Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties [J]. Appl Phys Lett.2003,82(20):3520.
    [50]P. R. Schwoebel, C. A. Spindt. Field-emitter array performance enhancement using hydrogen glow discharge [J]. Appl. Phys. Lett.1993, 63(1):33-35.
    [51]Coulthard I, Sham Tk. Novel Preparation of Noble Metal Nanostructures Utilizing Porous silicon[J].Solid State Commun.1998,105:751-754.
    [52]Pap A E, Kord asK, PeuraR, etal. Simultaneous Chemical Silverand Palladium Depositionon' Porous Silicon:FESEM, TEM, EDX and XRD Investigation[J].Appl.Surf.Sci.2002,201:56260.
    [53]A. N. Parbukov, V. I. Beklemyshev, V. M. Gontar, et al. The production of a novel stainetched porous silicon, metallization of the porous surface and application in hydrocarbon sensors[J]. Mater. Sci. Eng:C. 2001(15):121-123.
    [54]S. Green, P. Kathirgamanathan. Effect of oxygen on the surface conductance of porous silicon:towards room temperature sensor applications[J]. Materials Letters.2002,52:106-113.
    [55]I. Schechter, M.Ben-Chorin, A. Kux, Sensing properties of porous silicon [J]. Anal. Chem.1995,67 (20):3727-3732.
    [56]S. Zangooie, R.Bjorklund, H. Arwin, Vapour sensitivity of thin porous silicon layers, Sens[J]. Actuators:B.1997,43:168-174.
    [57]M. Jeske, J. W. Schultze, M. Thonissen, H. Munder, Electrodeposition of metals into porous silicon[J].Thin Solid Films 1995,255:63-66.
    [58]Tsuboi T, Sakka T, Ogata Y H. Metal Deposition into a Porous Silicon Layer by Immersion Plating:Influence of Halogen Ions[J]. J. App. Phys.1998,83:450124506.
    [59]F. Rahimi, A. Iraji zad, F. Razi, Characterization of porous poly-silicon impregnated with Pd as a hydrogen sensor, J. Phys. D: Appl. Phys.2005,38:36-40.
    [60]Morinaga H, Suyama M,Ohmi T. Mechanism of metallic particles growth and metal induced pitting on Si wafer surface in wet chemical processing. J. Electrochem. soc.1994,141:2834.
    [61]Wang Jianshe, Deng Xiaozhi, Xi Jingyu, et al. Promoting the current for methanol electrooxi- dation by mixing Pt-based catakysts with CeO2 nanoparticles J Power Sources,2007,170:297.
    [62]C. Baratto, G. Sberveglieri, E. Comini, et al. Gold-catalysed porous silicon for NOx sensing, Sens. Actuators B:Chem.2000,68:74-80.
    [63]Chang Y L, Ye W C, Ma C L, et al. The thermodynamic model of open circuit potential for electroless deposition of Ni on siliconl[J].J. Electrochem. Socl,2006,153(10):677.
    [64]Sumida T, Wada Y, Kitamura T, et al. Construction of stacked opaline films and electrochem- ical deposition of ordered macroporous nickel[J]. Langmuir.2002,18:3886.
    [65]Jing F, Tong H, Kong I, et al. Electroless gold deposition on silicon(100) wafer based on a seed layer of silver[J]. Appl. Phys. A, 2005,80:597.
    [66]Brech F, Cross L. Appl.Spectrosc,1962,16:59.
    [67]陆同兴,赵献章,崔执凤等.用发射光谱测量激光等离子体的电子温度和电子密度[J].原子与分子物理学报,1994,11(2):120-127.
    [68]崔执凤,凤尔银,赵献章等.准分子激光诱导铅等离子体中谱线展宽时空特性研究[J].原子与分子物理学报,1999,16(3):307-311
    [69]黄基松,陈巧玲,周卫东.激光诱导击穿光谱技术分析土壤中的Cr和Sr[J].光谱学与光谱分析,2009,29(11),3126—3129.
    [70]J. E. Carranza, B. T. Fisher, et al.. On-line analysisi of ambient air aerosols using laser-induced breakdown spectroscopy. Spectrochi-mica Acta Part B,,2001,56(2):851-856.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700