电压源型PWM变换器控制与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力的生产和消耗是电力系统中的两大关键环节,电能的高效利用和安全生产对于电力事业的发展至关重要。当今能源日益紧缺,电力联网规模日趋宏大,稳定高效一直是电力系统行业关注的焦点。
     电动机作为电力系统中的用电大户,消耗了整个系统大部分电能。采用传统变频器拖动的电动机产生了大量的再生电能,而这部分能量白白的消耗在了制动单元上,这不符合国家提出的提倡建设节约型社会、倡导节能减排的思想。另一方面,随着西电东送工程的建设和区域电网联网,阻尼不足及低频振荡问题严重影响系统的稳定,研究新型励磁系统提高系统稳定性具有实际意义。
     电压源型变换器因其良好的控制特性及灵活的结构,在电力系统中得到了越来越广泛的应用。本文研究电压源型PWM变换器在电梯节能、抽油机节能以及全控器件励磁系统中的控制与应用,主要有以下几个方面的内容:
     首先研究了基于电压源型数字式能量回馈装置的基本原理,详细阐述了电压源型数字式能量回馈装置的设计与实现过程,包括主回路设计,器件参数选型,控制电路及外围电路设计,控制程序设计等。实验表明,装置能够良好的适应网侧电压的较大范围变化,并保持接近单位功率因数运行;直流侧回馈点电压上下限能够灵活调节;通过现场长时间运行,表明装置运行可靠,不会对原有系统造成不利影响,通过长时间数据记录,显示电梯在使用数字式能量回馈单元后,具有明显的节电效果。
     紧接着,本文在分析了游梁式抽油机的运行规律基础上,设计开发了应用于抽油机的双PWM变频器装置,给出了主回路、控制及外设电路、控制程序的具体设计过程。通过实际现场应用,表明装置具有良好的运行性能:接近单位功率因数,无功功率接近零,同时线路压降降低;灵活调节电动机运行速度,在不影响单位时间产油量的同时,降低了有功消耗;通过相关专业监测,表明双PWM变频器在应用于抽油机后,能够极大的提高系统节电率。
     随后,本文将电压源型PWM变换器应用于励磁系统,分析了全控器件励磁系统的基本运行原理,研究了机端注入无功电流对发电机系统等效阻尼系数的影响,并提出了基于电压源型PWM变换器串联DC/DC斩波器的全控励磁系统的控制策略。通过仿真分析,表明全控器件励磁能够有效的提高系统阻尼,随着补偿容量的提高,效果更加明显,并具有提高发电机的动稳极限,提高系统稳定运行的能力。
     最后,本文建立了基于三阶同步发电机模型的全控器件励磁系统等效模型,并依据此模型,提出了两输入、两输出的状态变量反馈线性化控制策略,通过仿真分析,将这种非线性控制与传统的线性控制AVR+PSS)做了比较,结果表明,基于状态变量反馈线性化的控制能够有效的提高系统阻尼,并且随补偿容量的增大,阻尼效果越明显;相对于线性控制,非线性控制方法具有更好的适应性。
The production and consumption of electricity are two main key points in power system, and its efficiency and safety is very important in the development of power engineering. In nowadays, as the short of energy and the expansion of the power grid, stability and efficiency are always the focus in power system research.
     Inductive motor is the main consumer of power in the power system. Under the drive of frequency converter, it can produce huge regenerative energy which was always wasted through the break unit. This way is not cooperate with the strategy of construct energy saving society and reduce exhaust. And another aspect, with the construction of'west to east power transmission'and the connection of area grid, the problem of lack damping and low frequency oscillation became a serious problem. So the research on a new excitation system has its practical significance.
     The PWM converter of voltage source has been used more and more in power system because of its good controllability and flexible structure. This dissertation mainly studies on the usage of this kind converter in energy saving field:lift, oil pump unit and the excitation system as follows:
     First is the research on the basic theory of digital energy feedback device based on the voltage source converter, and talked about its process of design and implementation in details, include the design of main circuit, the calculation of component parameters, and the design of control circuit, peripheral circuit and control program. The experiment results indicated that, the device can adapt to the voltage's big deviation and keep unit power factor; the voltage of feedback point can be adjust in a certain range. Through a long time operation in the lift field, the device worked well, and has no passive impact to the frequency converter. And its record indicated that after the installation of the energy feedback device, the lift has a remarkable energy saving effect
     Then this dissertation analyzed the beam pumping unit's motion low in petroleum exploitation, and designed a dual PWM frequency converter; include the main circuit, control circuit, peripheral circuit and the control program. After the field operation, the device worked well with perfect performance:nearly unit power factor, zero reactive power, reduced line voltage drop, flexible speed adjusting. It can reduce much consumption of active power with no impact to the oil production. Through the professional testing, after the installation of the dual PWM frequency converter, the beam pump unit has a remarkable energy saving effect.
     Then the voltage source PWM converter was used in the excitation system:analyzed the principle of how the injected reactive current affects the electric power of generator compensates proper current will increase the damping of generator. And a control strategy of voltage source converter excitation system based on full controlled devices was designed, that using three phase full bridge PWM converter as exciter. The simulation results show that, this kind of voltage source converter excitation system can supply more damping to system through another way, and also increase the dynamic stability of the generator. The larger capacity of the compensation system, the more damping there will be.
     At last, this dissertation deduced a third-order model of this kind of excitation system. And with the main goal of controlling the rotor angle as well as the terminal voltage, a MIMO nonlinear control strategy was designed through this model. The simulation results show that, comparing to the linear control scheme (AVR+PSS), this nonlinear scheme has better effect in enhancing the system's damping, with the compensation capacity increase, and better effect can be achieved; when system parameters changed, still has a good performance and better suitability.
引文
[1]刘振亚.中国电力与能源[M].北京:中国电力出版社,2012.
    [2]江哲生.我国电力发展的未来[J].发电设备,2006,20(1):1-5.
    [3]钱伯章.可再生能源发电综述[M].北京:科学出版社,2010.
    [4]吴敬儒,陈剑波.我国电力工业发展规划问题[J].中国电力,2005,38(9):11-14.
    [5]赵遵廉.中国电网的发展与展望[J].2004,37(1):1-6.
    [6]郑宝森,郭日彩.中国互联电网的发展[J].电网技术,2003,27(2):1-3.
    [7]陈建业,蒋晓华,于歆杰,等.电力电子技术在电力系统中的应用[M].北京:机械工业出版社,2007.
    [8]邓集祥,贺建明,姚天亮,等.大区域联网条件下四川电网低频振荡分析[J].电网技术,2008,32(17):78-82.
    [9]朱方,汤涌,张东霞,等.我国交流互联电网动态稳定性的研究及解决策略[J].电网技术,2004,28(15):1-5.
    [10]Pans C. K., Dong Z. Y., Zhang P., et al. Probabilistic analysis of power system small signal stability region [C]. Control and Automation international Conference,2005, vol.1, pp.503-509.
    [11]李啸骢,程时杰,韦化,等.一种高性能的非线性励磁控制[J].中国电机工程学报,2003,23(12):37-42.
    [12]N. Mithulananthan, C. A. Canizares, J. Reeve, el al. Comparison of PSS, SVC, and STATCOM controllers for damping power system oscillations [J]. IEEE Trans. on Power Systems,2003,18(2):786-792.
    [13]I. D. Lasseter, S. G. Jalali.. Dynamic Response of Power Conditioning Systems for Super-conductive Magnetic Energy Storage [J]. IEEE Trans on Energy Conversion, 1991,16(3):388-393.
    [14]程时杰,余文辉,文劲宇,等.储能技术及其在电力系统稳定控制中的应用[J].电网技术,2007,31(20):97-100.
    [15]Jisung Lee, Sangkwon jeong, Young Hee Han, et al. Concept of cold energy storage for superconducting flywheel energy storage system [J]. IEEE Transactions on Applied Superconductivity,2011,21(3):2221-2224.
    [16]王青,闵勇,张毅威.超低频区间振荡现象的机理分析[J].继电器,2006,34(12):63-68.
    [17]孙景强,陈志刚,曹华珍.南方电网2010年低频振荡问题[J].电网技术,2007,31(2):93-96.
    [18]钱照明,汪槱生,徐德洪,等.中国电气工程大典第2卷电力电子技术[M].北京:中国电力出版社,2009.
    [19]Xuzheng Chai, Xidong Liang, rong Zeng. Flexible compact AC transmission system-a new mode for large-capacity and long-distance power transmission [C]. Power Engineering Society general Meeting,2006, pp.1-6.
    [20]何大愚.电力电子技术的进步与柔性交流输电技术的换代发展[J].电网技术,1999,23(10):1-5.
    [21]Han Yingduo, Chen Jianye, Jiang Qirong, et al. Study of FACTS and DFACTS in China [C]. Power Electronics and Motion Control Conference,2000, vol. (1), pp. 39-45.
    [22]陈坚.电力电子学[M].北京:高等教育出版社,2002.
    [23]Mahdad, B., Bouktir T. Srairi K.. Strategy of location and control of FACTS devices for enhancing power quality [J]. Electrotechnical Conference,2006, pp.1068-1072.
    [24]何大愚.柔性交流输电技术和用户电力技术的新进展[J].电力系统自动化,1999,23(6):8-13.
    [25]Chengyong Zhao, Ymg Sun. study on control strategies to improve the stability of multi-infeed HVDC systems applying VSC-HVDC [C]. Electrical and Computer Engineering Canadian Conference,2006, pp.2253-2257.
    [26]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004.
    [27]Ram Adapa. FACTS system studies [J]. IEEE Power Engineering Review,2002, 22(12):17-22.
    [28]Task force of the FACTS working group. Proposed terms and definitions for flexible AC transmission system (FACTS) [J]. IEEE Transactions on Power Delivery,12(4): 1848-1853.
    [29]王久和.电压型PWM整流器的非线性控制[M].北京:机械工业出版社,2008.
    [30]张崇巍,张兴.PWM整流器及其控制.北京:机械工业出版社,2003.
    [31]Lindgren M.B.. Analysis and simulation of digitally-controlled grid-connecteed PW M-converters using the spacevector average approximation [C]. Computers in Power Electrnics International Conference,1996, pp.85-89.
    [32]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2000.
    [33]Jiahu Guo, Luhua Zhang, Fujing Deng. Decoupled Control of the Active and Reactive Power in Three-phase PWM Converter Based on Inverse System Theory [C]. Automation and Logistics,2007 IEEE International Conference on,2007, pp. 714-718.
    [34]毛承雄,范澍,王丹,等.电力电子变压器的理论及其应用(Ⅰ)[J].高电压技术,2003,29(10):4-6.
    [35]毛承雄,范澍,黄贻煜,等.电力电子变压器的理论及其应用(Ⅱ)[J].高电压技术,2003,29(12):1-3.
    [36]曹解围,毛承雄,陆继明,范澍.电力电子变压器在改善电力系统动态特性中的应用[J].电力系统自动化设备,2005,25(4):65-68.
    [37]S. Fan, C. Mao, L. Chen. Optimal coordinated PET and generator excitation control for power systems [J]. International Journal of Electrical Power & Energy Systems, 2006,28(3):158-165.
    [38]毛承雄,陆继明,范澍,等.电力电子变压器.中国,发明专利,ZL 02 139030.4,2002.
    [39]王丹.配电系统电子电力变压器[博士论文].武汉:华中科技大学图书馆,2006.
    [40]L.Y. Yang, T.F. Zhao, J. Wang, et al. Design and Analysis of a 270kW Five-level DC/DC Converter for Solid State Transformer Using lOkV SiC Power Devices [C]. Proceedings of the 2007 IEEE Power Electronics Specialists Conference.2007, pp.245-251.
    [41]D. Wang, C.X. Mao, J.M. Lu, et al. Theory and application of distribution electric power transformer [J]. Electric Power Systems Research,2007,77(3):219-226.
    [42]D. Wang, C.X. Mao, J.M. Lu. Coordinated control of EPT and generator excitation system for multidouble-circuit transmission-lines system [J]. IEEE Transactions on Power Delivery,2008,23(1):371-379.
    [43]范澍,毛承雄,陈洛南.同步发电机—电力电子变压器组的最优协调控制[J].电网技术,2005,29(2):14-18.
    [44]王丹,毛承雄,陆继明.自平衡电子电力变压器[J].中国电机工程学报,2007,27(6):77-83.
    [45]D. Wang, C.X. Mao, J.M. Lu. Model of electronic power transformer and its application to power system [J]. IET Generation, Transmission & Distribution,2007, 1(6):887-895.
    [46]Dan Wang, Chengxiong Mao, Jiming Lu, et al. Auto-balancing transformer based on power electronics [J]. Electric Power System research,2010,80(1):28-36.
    [47]黄贻煜,毛承雄,陆继明,等.电力电子变压器在输电系统中的控制策略研究[J].继电器,2004,32(6):35-39.
    [48]K. Sundareswaran. An improved energy-saving scheme for capacitor run induction motor [J]. IEEE Trans. Ind. Electro.,2002, vol.48, pp.238-240.
    [49]J. C. Rosas-Caro, Peng fangzheng, Cha Honnyong, et al. Z-source converter based energy recycling zero-voltage electronic loads [J]. IEEE Trans. Ind. Electro.,2009, vol.56, pp.4894-4902.
    [50]P.J. Grbovic, Philippe Le Moigne, Patrick Bartholomeus. A bidirectional three-level DC-DC converter for the ultracapacitor applications [J]. IEEE Trans. Ind. Electro., 2010, vol.57, pp.3415-3430.
    [51]W. Lhomme, P. Delarue, P. Barrade, et al. Design and control of a supercapacitor storage system for traction applications [C]. The 40th Ind. Appl. Conf.,2005, vol.3, pp.2013-2020.
    [52]Sang-Min Kim, Seung-Ki Sul. Control of rubber tyred gantry crane with energy storage based on supercapacitor bank [J]. IEEE Trans. Power Electron.,2006, vol.21, no.5.
    [53]C. Attaianese, V. Nardi, G. Tomasso. High performances supercapacitor recovery system for industrial drive applications [C]. The 19th IEEE Appl. Power Electron. Conf.,2004, vol.3.pp.1635-1641.
    [54]Wei Li, Geza Joos, Chad Abbey. A parallel topology for the bidirectional IGBT buck/boost converter and a power-tracking control scheme for battery and supercapacitor energy storage system in high power wind energy applications [C]. The 42 IEEE Ind. Appl. Conf.,2004, pp.179-185.
    [55]S. Tominaga, I. Suga, I. Araki, et al. Development of energy-saving elevator using regenerated power storage system [J]. Japan Society for Power Electronics,2001, vol.27, JSPE-27-5.
    [56]Siyoung Kim, Seung-Ki Sul, Thomas A. Lipo. AC/AC power conversion based on matrix converter topology with unidirectional switches [J]. IEEE Trans.Ind. Appl., 2000, vol.36, no.l, pp.139-144.
    [57]I. Etexberria-otadui, U. Viscarret, M.Caballero, et al. New optimized PWM VSC control structures and strategies under unbalanced voltage transients [J] IEEE Trans. Ind. Electro.,2007, vol.54, pp.2902-2914.
    [58]H. Abu-Rub, J. Holtz, J. Rodriguez, et al. Medium-voltage multilevel converters state of art, challenges, and requirements in industrial applications [J]. IEEE Trans. Ind. Electro.,2010, vol.57, pp.2581-2596.
    [59]S. Fukuda, Y. Iwaji, H. Hasegawa. PWM technique for inverter with sinusoidal output current [J]. IEEE Trans. Power Electron.1990, vol.5, No.1, pp.54-64.
    [60]Rusong Wu, Shashi B. Dewan, Gordon R. Slemon. Analysis of an ac-to-dc voltage source converter using PWM with phase and amplitude control [J]. IEEE Trans. Industry Application,1999, vol.27, No.2, pp.355-364.
    [61]冯宝成.油田抽油机的现状及节能方式综述[J].内蒙古石油化工,2008,24,31-33.
    [62]崔旭明,栾庆德,韩道权,等.渐开线节能抽油机的节能效果分析[J].大庆石油学院学报,2003,27(2):102-104.
    [63]王全宾,肖文生.直线电机抽油机与游梁式抽油机工作性能对比[J].石油矿场机械,2009,38(12):27-30.
    [64]孙世明,蔡利,张志超.高转差率电机驱动抽油机系统的耗能分析[J].大庆石油学院学报,1989,13(3):34-40.
    [65]姚春冬,孙世明,杨敏嘉.超高转差电动机驱动游梁式抽油机的动力性能分析[J].油田地面工程,1991,10(2):55-58.
    [66]冷雪梅,刘华涛.抽油机用高效高起动转矩永磁同步电动机设计[J].电机技术,2007,5-7.
    [67]Wu Yuguo, Wang Weimin, Shen Longshe, et al. The application of frequency converter power saving at oil pump station [C]. Energy and Enviroment Technology Interational Conference,2009, pp.392-394.
    [68]Yingbal Zhao, Xue Lingsong, Chaoying Liu, et al. Whole process electromagentic heating system design for extracting crude oil with frequency converter [C]. Knowledge Acquisition and Modeling International Symposium,2008, pp.393-397.
    [69]牟淑杰.APE变频器在抽油机中的应用[J].电气应用,2008,27(14):27-29
    [70]周加胜.抽油机变频器的改进[J].变频器世界,2007,1561(0330):70-72
    [71]张选正,张金远.变频器应用技术与实践[M].北京,中国电力出版社,2009
    [72]刘作鹏.抽油机井杆柱力学仿真计数研究[D].山东东营,中国石油大学(华东).
    [73]李颖川.采油工程[M].北京,石油工业出版社,2002
    [74]陈宪侃,叶利平,谷玉洪.抽油机采油技术[M].北京,石油工业出版社,2004.
    [75]刘取.电力系统稳定性及发电机励磁控制[M].北京:中国电力出版社,2007.
    [76]陆继明,毛承雄,范澍,等.同步发电机微机励磁控制[M].北京:中国电力出版社,2006.
    [77]Milanovic JV. Damping of the low-frequency oscillationsof the gen-erator:dynamic interactions and the effectiveness of the controllers [J]. IEE Proceeding of Generation,Transmission and Distribution.2002,6(149):753-759.
    [78]Noroozian N, Andersson G. Damping of inter-area and local modes by use of controllable components [J]. IEEE Transactions on Power Delivery,1995,10(4): 2007-2012.
    [79]朱方,赵红光,刘增煌,寇惠珍.大区电网互联对电力系统动态稳定性的影响[J]. 中国电机工程学报,2007,27(1):1-7.
    [80]余贻鑫,李鹏.大区电网弱互联对互联系统阻尼和动态稳定性的影响[J].中国电机工程学报,2005,25(11):6-11.
    [81]J. V. Milanovic. Damping of the low-frequency oscillations of the generator: dynamic interactions and the effectiveness of the controllers [J]. IEE Proc-Gener. Transm Distrib,2002,6(149):753-759.
    [82]Noroozian N, Andersson G. Damping of inter-area and local modes by use of controllable components [C]. IEEE/PES Winter Meeting paper,1995,10(4): 2007-2012.
    [83]毛承雄,吴建东,娄慧波,等.基于电流源型变换器的大型同步发电机励磁[J].水电能源科学,2008,26(3):172-175.
    [84]吴建东,何丽娜,毛承雄.同步发电机的新型励磁系统[J].电力科学与技术学报,2009,24(1):12-18.
    [85]何丽娜,毛承雄,陆继明,等.采用大功率电力电子全控器件的新型励磁系统[J].高电压技术,2009,35(7):1711-1717.
    [86]Konishi Y., nakaoka M.. Current-fed three-phase and voltage-fed three-phase active converters with optimum PWM pattern scheme and their performance evaluations [J]. IEEE Trans. On Industrial Electronics,2006, (46)2:279-287.
    [87]Rossetto L., Buso S.. Digitally-controlled single-phase single-stage AC/DC PWM converter [J]. IEEE Trans. on Power Electronics,2003, (18)1:326-333.
    [88]陈瑶,金新民,童亦斌.三相四线系统中三相电压型PWM整流器控制策略[J].电工技术学报,2007,22(7):64-68.
    [89]Noroozian M., Adersson G.. Damping of power system oscillations by use of controllable components [J]. IEEE trans. on Power delivery,1994,9(4):2046-2054.
    [90]Wang H. F., Swift F. J.. Capability of the static Var Compensator in damping power system oscillations [J]. Generation Transmission and Distribution,1996, 143(4):353-358.
    [91]邓集祥,纪晶,邓斌.基于复合模式的电力系统超低频振荡产生机理[J].电工技术学报,2007,22(8):84-89.
    [92]G. Rogers. Power System Oscillations [M]. Kluwer Academic Publishers, USA, 2000.
    [93]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2003.
    [94]徐衍会,贺仁睦,韩智勇.电力系统共振机理低频振荡扰动源分析[J].中国电机工程学报,2007,27(17):83-87.
    [95]毛承雄,陆继明,樊俊.大型水轮发电机多微机最优励磁控制[J].华中理工大学学报,1994,22(4):20-24.
    [96]Sugihara T., Yokoyama A., Izenab A.. Adaptive PSS designed based on low-order linear model for large-scale power system [C]. Power System Technology International Conference,2006, pp:1-7.
    [97]Du W., Wang H. F., Dunn R.. Power system oscillation stability and control by FACTS and ESS-a survey [C]. Sustainalbe Power Generation and Supply International Conference,2009, pp.1-13.
    [98]方思立,刘增煌.带电力系统稳定器(PSS)的励磁调节器与最优励磁控制器(EOC)的比较[J].电网技术,1997,21(8):1-12.
    [99]何金平,毛承雄,陆继明,等.电压源型全控器件励磁控制策略[J].电工技术学报,已接收.
    [100]王久和,杨薇,李华德.功率前馈电压型PWM整流器直接功率解耦控制[J].辽宁工程技术大学学报,2007,26(2),238-241.
    [101]Jose R. Espinoza, Geza Joos, Luis Moran. Decoupled control of the active and reactive power in three-phase PWM rectifiers based on non-linear control strategies [C]. PESC 30th Annual IEEE, Aug.1999, vol.1,131-136.
    [102]卢强,孙元章.电力系统非线性控制[M].北京:科学出版社,1993.
    [103]程代展.应用非线性控制[M].北京:机械工业出版社,2009.
    [104]杨嘉伟.全控器件励磁系统主回路及控制策略[D].武汉:华中科技大学,2010.
    [105]何丽娜.基于全控器件的新型励磁系统[D].武汉:华中科技大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700