电子电力变压器若干关键技术研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统是现代社会不可缺少的重要组成部分,而电力变压器广泛应用于电力系统中,承担着电位隔离、电压变换等功能。近几十年,电力网络的规模日趋扩大、结构日趋复杂、运行方式日趋繁琐,导致电力系统稳定问题日趋明显;大量非线性和非对称负荷接入电网,导致电能质量下降,使电力系统不能为对电能质量敏感的负荷提供高品质供电;21世纪初学者提出了“智能电网”的概念,作为“智能电网”的重要组成部分,交/直流微网的智能化运行方式和灵活电网结构成为研究热点,其需要灵活的交直流变换的电力接口。传统电力设备尤其是传统电力变压器的智能控制手段和交直流电力接口功能非常有限,不能改善系统稳定性问题,不能解决电能品质问题,不能提供智能控制,不能提供灵活交直流电力接口功能。电子电力变压器是一种基于电力电子变流技术的新型电力变压器,不仅可以完成传统电力变压器的功能,还具有完全的可控性、并能提供多种电能形式,所以电子电力变压器具备解决未来电网面临的诸多问题的能力。本文从电力电子技术、电力系统应用需求和高压大功率工程样机等三个主要方面,详细介绍了电子电力变压器的建模、分析、仿真、设计、实现以及相关实验。
     本文首先分析了适合应用于电力系统的高压大功率领域的电子电力变压器的基本拓扑结构。基于此电力电子变换器拓扑结构,本文建立了电子电力变压器内部参数结构模型,详细分析了其内部电气参数的计算方法并给出计算公式,该计算公式描述了电子电力变压器目标参数(原副方直流电压纹波和中频变压器绕组电流)与原副方交流电压和电流相位的关系,最后通过仿真和实验验证该模型和计算方法的正确性。基于此模型及其分析,本文提出了电子电力变压器硬件设计原则与流程,各个元件必须按照其电压和电流可能出现的最大值设计。根据电子电力变压器目标参数与原副方交流电压和电流相位的变化规律,本文提出了原副方交流电压和电流相位优化控制策略,该控制策略可以显著抑制电子电力变压器主要元件的纹波电压和最大电流,进而减小装置体积、降低设计成本。
     电子电力变压器具有较强的谐波抑制能力,原副方交流电压和电流的谐波不能相互影响;通过多电平技术、并联控制技术和开关时刻优化控制技术,可以显著抑制电子电力变压器自身产生的谐波。在开关时刻优化控制的基础上,本文提出优化调整直流电压的控制方法,更进一步抑制电子电力变压器交流侧谐波。最后通过仿真和实验验证优化调整直流电压控制方法的谐波抑制效果。
     针对级联多电平电子电力变压器拓扑结构在解决电力系统三相不对称问题和灵活的并网接口问题的不足,本文提出并分析了基于模块化多电平换流器(MMC)结构的自平衡电子电力变压器(MMC-AEPT)。该拓扑结构可以有效地隔离副方三相负荷不对称对原方三相电流的影响,并有效地隔离原方三相电源不平衡对三相负荷的影响。同时,MMC-AEPT可以提供高压直流母线和低压直流母线,提供灵活智能的电力网络接口,为交/直流微网等新型电网结构和智能运行方式提供核心的电力设备。
     最后,本文详细介绍了10kV/400V0.5MVA电子电力变压器的研制,详细介绍电子电力变压器关键环节的设计要求和设计原则;同时详细介绍其主要元件的测试实验方法与流程。所述的内容适用于指导各种类似电子电力变压器拓扑的装置的设计与实验。
The power system is one of the most important parts in the modern society, and powertransformers are widely used in that as the extremely important electrical components,which realize the voltage level change and the galvanic isolation. During the past severaldecades, power system is larger in the scale, more complicated in the network structure andmore complex in the operation mode, so that the stability problem becomes more serious.And larger unbalanced non-linear loads are connected to the grid which would generatenon-sinusoidal currents and deteriorate the grid voltage, so that it affects the power qualityseriously and even affects the reliability of power supply for those loads which are sensitiveto power quality. Recent year, the concept of “Smart-Grid” is expounded in some papers,and the network structures and the smart operation modes of “AC&DC Micro-grids” havebeen a hot topic. However, the traditional power transformers cannot resolve the stabilityproblem, cannot improve power quality, and cannot provide flexible operation modes andpower grid interfaces for “Micro-grids”.
     Electronic power transformer (EPT) is an entirely new type of power transformer.Based on power electronics technology, EPT retains the basic functions of traditional powertransformer and extends additional functions, such as the fully controllable of theactive/reactive power and the flexible DC&AC power grid interfaces. Hence, EPT can meetthe demands of “Smart-Grid”.
     In the dissertation, several topologies of EPT are introduced firstly, and themodularized cascaded multilevel topology of EPT is well suited for the high-voltage andhigh-power applications. Based on the conventional topology, the internal model isestablished for EPT, and the formulas of calculating the electrical parameters are derived.Finally, the experiment is carried out and the experimental results could verify therationality of the model analysis. In succession, the dissertation provides guidance on thedesign and selection of the key elements of EPT for the designers. According to the modelanalysis, the optimal control strategy on the phase angles of AC voltage/current isdeveloped to restrain the electrical parameters in order to reduce the size and cost of EPT.
     EPT provides a new harmonic suppression scheme for power system. Firstly, theharmonic voltage/current from primary/secondary side cannot flow through EPT. Secondary,EPT itself do not produce excess harmonic current by Cascaded Multilevel circuit, byparallel operation and by optimal control strategy. Based on the optimal control strategy, theoptimal regulation of DC-bus voltage can better suppress harmonic current of rectifier ofEPT.
     There are several shortcomings of the Cascaded Multilevel topology of EPT, so that theModular Multilevel topology of EPT (MMC-AEPT) as a novel auto-balancing topologyshall be found, and it has many benefits. It can make one side balance if the other side isnot. In addition, MMC-AEPT can provide DC-voltage power grid interfaces for other grids,and becomes the key component of “Smart-Grid”. The simulation results show thatMMC-AEPT can keep the system auto-balancing.
     Finally, the hardware of10kV/400V0.5MVA EPT is proposed in detail. The designmethods and the design principles of each component are proposed in the dissertation, andthey can also be used in the other similar devices.
引文
[1] Jeszenszky S. History of Transformers[J]. Power Engineering Review, IEEE.1996,16(12):9.
    [2] Krause C. Power transformer insulation-history, technology and design[J].Dielectrics and Electrical Insulation, IEEE Transactions on.2012,19(6):1941-1947.
    [3]毛承雄,王丹,范澍,等.电子电力变压器[M].北京:中国电力出版社,2010.
    [4] Fauri M. Harmonic modelling of non-linear load by means of crossed frequencyadmittance matrix[J]. Power Systems, IEEE Transactions on.1997,12(4):1632-1638.
    [5]邢颖,李宝树.非线性负荷对电网电压和电流的影响[J].电气应用.2007,26(08):25-28.
    [6]李杰聪.智能电网技术发展综述[J].广东科技.2009,33(18):249-250.
    [7]赵宇海.我国智能电网技术体系探讨[J].科技传播.2012,33(11):203-204.
    [8]李亚楼,周孝信,林集明,等.2008年IEEE PES学术会议新能源发电部分综述[J].电网技术.2008,32(20):1-7.
    [9]胡学浩.智能电网——未来电网的发展态势[J].电网技术.2009,33(14):1-5.
    [10]肖世杰.构建中国智能电网技术思考[J].电力系统自动化.2009,33(9):1-4.
    [11]王成山,高菲,李鹏,等.低压微网控制策略研究[J].中国电机工程学报.2012,32(25):2-8.
    [12]吴卫民,何远彬,耿攀,等.直流微网研究中的关键技术[J].电工技术学报.2012,27(01):98-106.
    [13]丁明,张颖媛,茆美琴.微网研究中的关键技术[J].电网技术.2009,33(11):6-11.
    [14] Rocabert J, Luna A, Blaabjerg F, et al. Control of Power Converters in ACMicrogrids[J]. Power Electronics, IEEE Transactions on.2012,27(11):4734-4749.
    [15] Guerrero J M, Poh C L, Tzung-Lin L, et al. Advanced Control Architectures forIntelligent Microgrids-Part II: Power Quality, Energy Storage, and AC/DCMicrogrids[J]. Industrial Electronics, IEEE Transactions on.2013,60(4):1263-1270.
    [16]彭克,王成山,李琰,等.典型中低压微电网算例系统设计[J].电力系统自动化.2011,35(18):31-35.
    [17]丁涛,张承学,孙元博.基于本地信号的VSC-MTDC输电系统控制策略[J].电力系统自动化.2010,34(9):44-48,86.
    [18]江道灼,郑欢.直流配电网研究现状与展望[J].电力系统自动化.2012,36(8):98-104.
    [19]杨冬,刘玉田.中国未来输电网架结构初探[J].电力自动化设备.2010,30(8):1-5.
    [20]张文亮,汤涌,曾南超.多端高压直流输电技术及应用前景[J].电网技术.2010,34(9):1-6.
    [21] Mcmurra W. Power converter circuits having a high-frequency link[P]. US Patent3517300.1970.
    [22] Brooks J L. Solid state transformer concept development [J]. Naval MaterialCommand, Civil Engineering Laboratory, Naval Construction Battalion Ctr. PortHueneme, CA.1980.
    [23] Harada K, Sakamoto H, Skoyama H. Phase-Controlled DC-AC converter withhigh-frequency switching[J]. Power Electronics, IEEE Transactions on.1988,3(4).
    [24] Epri R. Proof of the principle of the solid-state transformer the AC/AC switch moderegulator[J]. EPRO TR-105067, Research Project8001-13, Final Report.1995.
    [25] Kang M, Enjeti P N, Pitel I J. Analysis and design of electronic transformers forelectric power distribution system[J]. Power Electronics, IEEE Transactions on.1999,14(6):1133-1141.
    [26] Kang M, Woo B O, Enjeti P, et al. Autoconnected-electronic-transformer-basedmultipulse rectifiers for utility interface of power electronic systems[J]. IndustryApplications, IEEE Transactions on.1999,35(3):646-656.
    [27] Manjrekar M D, Kieferndorf R, Venkataramanan G. Power electronic transformersfor utility applications[C]. Industry Applications Conference,2000. ConferenceRecord of the2000IEEE,2000:2496-2502.
    [28] Qin H, Kimball J W. Solid-State Transformer Architecture Using AC/ACDual-Active-Bridge Converter[J]. Industrial Electronics, IEEE Transactions on.2013,60(9):3720-3730.
    [29] Ronan E R, Sudhoff S D, Glover S F, et al. A power electronic-based distributiontransformer[J]. Power Delivery, IEEE Transactions on.2002,17(2):537-543.
    [30] Kieferndorf R, Venkataramanan G, Manjrekar M D. A power electronic transformer(PET) fed nine-level H-bridge inverter for large induction motor drives[C]. IndustryApplications Conference,2000. Conference Record of the2000IEEE,2000:2489-2495.
    [31] Haifeng F, Hui L. High frequency high efficiency bidirectional dc-dc convertermodule design for10kVA solid state transformer[C]. Applied Power ElectronicsConference and Exposition (APEC),2010Twenty-Fifth Annual IEEE,2010:210-215.
    [32] Peng F Z, Hui L, Gui-Jia S, et al. A new ZVS bidirectional DC-DC converter for fuelcell and battery application[J]. Power Electronics, IEEE Transactions on.2004,19(1):54-65.
    [33] Iman-Eini H, Farhangi S. Analysis and Design of Power Electronic Transformer forMedium Voltage Levels[C]. Power Electronics Specialists Conference,2006. PESC'06.37th IEEE,2006:1-5.
    [34] Iman-Eini H, Farhangi S, Schanen J, et al. Design of Power Electronic Transformerbased on Cascaded H-bridge Multilevel Converter[C]. Industrial Electronics,2007.ISIE2007. IEEE International Symposium on,2007:877-882.
    [35] Van Der Merwe J W, du T. Mouton H. The solid-state transformer concept: A newera in power distribution[C]. AFRICON,2009. AFRICON '09.,2009:1-6.
    [36]王丹,毛承雄,陆继明.自平衡电子电力变压器[J].中国电机工程学报.2007,27(6):77-83.
    [37] Wang D, Mao C, Lua J, et al. Auto-balancing transformer based on powerelectronics[J]. Electric Power Systems Research.2010(80):28-36.
    [38]王丹,毛承雄,陆继明,等.配电系统电子电力变压器不对称负载仿真[J].中国电力.2005,38(11):21-26.
    [39]毛承雄,陆继明,范澍.电力电子变压器[P].中国,发明专利,ZL02139030.4.2002.
    [40]方华亮,黄贻煜,范澍,等.配电系统电力电子变压器的研究[J].电力系统及其自动化学报.2003,15(4):27-31.
    [41]毛承雄,范澍,王丹,等.电力电子变压器的理论及其应用(I)[J].高电压技术.2003,29(10):4-6.
    [42]毛承雄,范澍,黄贻煜,等.电力电子变压器的理论及其应用(II)[J].高电压技术.2003,29(12):1-3.
    [43] Wang D, Mao C, Lu J. Modelling of electronic power transformer and its applicationto power system[J]. Generation, Transmission&Distribution, IET.2007,1(6):887-895.
    [44] Dan W, Chengxiong M, Jiming L. Coordinated Control of EPT and GeneratorExcitation System for Multidouble-Circuit Transmission-Lines System[J]. PowerDelivery, IEEE Transactions on.2008,23(1):371-379.
    [45] Dan W, Chengxiong M, Jiming L. Operation and control mode of electronic powertransformer[C]. Sustainable Alternative Energy (SAE),2009IEEE PES/IASConference on,2009:1-5.
    [46] Dan W, Chengxiong M, Jiming L. Coordinated Control of EPT and GeneratorExcitation System for Multidouble-Circuit Transmission-Lines System[J]. PowerDelivery, IEEE Transactions on.2008,23(1):371-379.
    [47] Haibo L, Chengxiong M, Jiming L, et al. Parallel operation of electronic powertransformer based on distributed logic control[C]. Universities Power EngineeringConference,2007. UPEC2007.42nd International,2007:93-101.
    [48]刘海波,毛承雄,陆继明,等.基于分散逻辑的电子电力变压器并联控制技术[J].高电压技术.2007,33(4):151-156.
    [49]王丹,毛承雄,陆继明.电子电力变压器的并联运行[J].电力系统自动化.2005,29(16):66-71.
    [50]王丹,毛承雄,陆继明,等.基于电子电力变压器的电能质量调节方法[J].高电压技术.2005,31(8):63-65,82.
    [51] Dan W, Chengxiong M, Jiming L. Coordinated Control of EPT and GeneratorExcitation System for Multidouble-Circuit Transmission-Lines System[J]. PowerDelivery, IEEE Transactions on.2008,23(1):371-379.
    [52]范澍,毛承雄,陈洛南.同步发电机-电力电子变压器组的最优协调控制[J].电网技术.2005,29(2):14-18.
    [53]黄贻煜,毛承雄,陆继明,等.电力电子变压器在输电系统中的控制策略研究[J].继电器.2004,32(6):35-39.
    [54]崔艳艳.基于电子电力变压器的配电网无功电压优化控制[D].华中科技大学,2006.
    [55]曹解围,毛承雄,陆继明,等.电力电子变压器在改善电力系统动态特性中的应用[J].电力自动化设备.2005,25(4):65-68.
    [56] Huang A Q, Baliga J. FREEDM System: Role of power electronics and powersemiconductors in developing an energy internet[C]. Power Semiconductor Devices&IC's,2009. ISPSD2009.21st International Symposium on,2009:9-12.
    [57] Hosseini S H, Sharifian M B B, Sabahi M, et al. A Tri-directional power electronictransformer for photo voltaic based distributed generation application[C]. Power&Energy Society General Meeting,2009. PES '09. IEEE,2009:1-5.
    [58] Akagi H, Kitada R. Control and Design of a Modular Multilevel Cascade BTBSystem Using Bidirectional Isolated DC/DC Converters[J]. Power Electronics, IEEETransactions on.2011,26(9):2457-2464.
    [59] Huang A Q, Baliga J. FREEDM System: Role of power electronics and powersemiconductors in developing an energy internet[C]. Power Semiconductor Devices&IC's,2009. ISPSD2009.21st International Symposium on,2009:9-12.
    [60] Tiefu Z, Gangyao W, Jie Z, et al. Voltage and power balance control for a cascadedmultilevel solid state transformer[C]. Applied Power Electronics Conference andExposition (APEC),2010Twenty-Fifth Annual IEEE,2010:761-767.
    [61] Tiefu Z, Liyu Y, Jun W, et al.270kVA Solid State Transformer Based on10kV SiCPower Devices[C]. Electric Ship Technologies Symposium,2007. ESTS '07. IEEE,2007:145-149.
    [62] Jianjiang S, Wei G, Hao Y, et al. Research on Voltage and Power Balance Control forCascaded Modular Solid-State Transformer[J]. Power Electronics, IEEE Transactionson.2011,26(4):1154-1166.
    [63] Zhao T, Wang G, Bhattacharya S, et al. Voltage and Power Balance Control for aCascaded H-Bridge Converter-Based Solid-State Transformer[J]. Power Electronics,IEEE Transactions on.2013,28(4):1523-1532.
    [64] Reznikov B, Ruderman A. Four-level single-leg flying capacitor converter voltagebalance dynamics analysis[C]. Power Electronics and Applications,2009. EPE '09.13th European Conference on,2009:1-10.
    [65] Jih-Sheng L, Fang Z P. Multilevel converters-a new breed of power converters[J].Industry Applications, IEEE Transactions on.1996,32(3):509-517.
    [66]丁冠军,汤广福,丁明,等.新型多电平电压源换流器模块的拓扑机制与调制策略[J].中国电机工程学报.2009,29(36):1-8.
    [67] Fang Z P, Jih-Sheng L, Mckeever J W, et al. A multilevel voltage-source inverterwith separate DC sources for static VAr generation[J]. Industry Applications, IEEETransactions on.1996,32(5):1130-1138.
    [68]庄凯,阮新波.输入串联输出并联变换器的输入均压稳定性分析[J].中国电机工程学报.2009,29(6):15-20.
    [69]陈武,阮新波,庄凯.输入串联输出并联DC/AC逆变器系统的控制策略[J].中国电机工程学报.2010,30(15):16-23.
    [70]陈嫦娥.特种电子电力变压器[D].华中科技大学,2007.
    [71] Wang J, Reinhard M, Peng F Z, et al. Design guideline of the isolated DC-DCconverter in green power applications[C]. Power Electronics and Motion ControlConference,2004. IPEMC2004. The4th International,2004:1756-1761.
    [72]程璐璐.输入串联输出并联组合变换器控制策略的研究[D].南京航空航天大学,2007.
    [73]马学军,牛金红,康勇.输入串联输出并联的双全桥变换器输入电容均压问题的研究[J].中国电机工程学报.2006,26(16):86-91.
    [74]颜红,阮新波,陈武.极端条件下输入串联输出并联直流变换器均压控制策略[J].电工技术学报.2009,24(12):88-94.
    [75] Ayyanar R, Giri R, Mohan N. Active input-voltage and load-current sharing ininput-series and output-parallel connected modular DC-DC converters using dynamicinput-voltage reference scheme[J]. Power Electronics, IEEE Transactions on.2004,19(6):1462-1473.
    [76] Brando G, Dannier A, Rizzo R. Power Electronic Transformer application to gridconnected photovoltaic systems[C]. Clean Electrical Power,2009InternationalConference on,2009:685-690.
    [77] Xu S, Huang A Q, Lukic S, et al. On Integration of Solid-State Transformer WithZonal DC Microgrid[J]. Smart Grid, IEEE Transactions on.2012,3(2):975-985.
    [78] Falcones S, Ayyanar R, Xiaolin M. A DC-DC Multiport-Converter-Based Solid-StateTransformer Integrating Distributed Generation and Storage[J]. Power Electronics,IEEE Transactions on.2013,28(5):2192-2203.
    [79]刘海波,毛承雄,陆继明,等.电子电力变压器与常规电力变压器的并联技术[J].电力系统自动化.2008,32(18):49-54.
    [80] Seon-Hwan H, Xiaohu L, Jang-Mok K, et al. Distributed Digital Control ofModular-Based Solid-State Transformer Using DSP+FPGA[J]. Industrial Electronics,IEEE Transactions on.2013,60(2):670-680.
    [81] Xiaohu L, Hui L, Zhan W. A Start-Up Scheme for a Three-Stage Solid-StateTransformer With Minimized Transformer Current Response[J]. Power Electronics,IEEE Transactions on.2012,27(12):4832-4836.
    [82] Zhang B, Nie Z, Li B, et al. Analysis of the DC-link capacitor voltage spectrum in thecascaded multilevel STATCOM[C]. Industrial Technology,2008. ICIT2008. IEEEInternational Conference on,2008:1-5.
    [83]聂子玲,张波涛,孙驰,等.级联H桥SVG直流侧电容电压的二次谐波计算[J].电工技术学报.2006,21(4):111-116.
    [84] Park Y, Ryu H, Lee H, et al. Design of a Cascaded H-Bridge Multilevel InverterBased on Power Electronics Building Blocks and Control for High Performance[J].Journal of Power Electronics.2010,10(3):262-269.
    [85] Haifeng F, Hui L. High-Frequency Transformer Isolated Bidirectional DC-DCConverter Modules With High Efficiency Over Wide Load Range for20kVASolid-State Transformer[J]. Power Electronics, IEEE Transactions on.2011,26(12):3599-3608.
    [86] William M F. Handbook_of_transformer_design_applications (2nd ED)[M]. NewYork: McGraw-Hill,1992.
    [87] Villar I, Viscarret U, Etxeberria-Otadui I, et al. Global Loss Evaluation Methods forNonsinusoidally Fed Medium-Frequency Power Transformers[J]. IndustrialElectronics, IEEE Transactions on.2009,56(10):4132-4140.
    [88]李智华,罗恒廉,许尉滇.高频变压器绕组交流电阻和漏感的一维模型[J].电工电能新技术.2005,24(2):55-59.
    [89] Mcgrath B P, Holmes D G. A General Analytical Method for Calculating InverterDC-Link Current Harmonics[J]. Industry Applications, IEEE Transactions on.2009,45(5):1851-1859.
    [90] Akagi H, Kitada R. Control and Design of a Modular Multilevel Cascade BTBSystem Using Bidirectional Isolated DC/DC Converters[J]. Power Electronics, IEEETransactions on.2011,26(9):2457-2464.
    [91] Hui L, Fang Z P, Lawler J S. A natural ZVS medium-power bidirectional DC-DCconverter with minimum number of devices[J]. Industry Applications, IEEETransactions on.2003,39(2):525-535.
    [92] Jin W, Peng F Z, Anderson J, et al. Low cost fuel cell converter system for residentialpower generation[J]. Power Electronics, IEEE Transactions on.2004,19(5):1315-1322.
    [93] Inoue S, Akagi H. A Bidirectional DC-DC Converter for an Energy Storage SystemWith Galvanic Isolation[J]. Power Electronics, IEEE Transactions on.2007,22(6):2299-2306.
    [94]黄蕾.并联逆变器控制技术的研究[D].南京航空航天大学,2004.
    [95]娄慧波,毛承雄,陆继明,等.基于微粒群算法的三电平正弦脉冲宽度调制开关时刻优化[J].中国电机工程学报.2007,27(33):108-112.
    [96] Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]. MicroMachine and Human Science,1995. MHS '95., Proceedings of the Sixth InternationalSymposium on,1995:39-43.
    [97]娄慧波.大功率三相PWM变换器的谐波优化[D].华中科技大学,2009.
    [98] Shindo T, Kurihara T, Taguchi H, et al. Particle swarm optimization for single phasePWM inverters[C]. Evolutionary Computation (CEC),2011IEEE Congress on,2011:2501-2505.
    [99] Sun J, Beineke S, Grotstollen H. DSP-based real-time harmonic elimination of PWMinverters[C]. Power Electronics Specialists Conference, PESC '94Record.,25thAnnual IEEE,1994:679-685.
    [100] Jian S, Beineke S, Grotstollen H. Optimal PWM based on real-time solution ofharmonic elimination equations[J]. Power Electronics, IEEE Transactions on.1996,11(4):612-621.
    [101]刘宏达,马忠丽.均匀粒子群算法[J].智能系统学报.2010,05(4):336-341.
    [102]李晓爱,张素玲,庞善起.基于粒子群算法的均匀设计表设计[J].统计与决策.2007(15):132-133.
    [103]张铃,张钹.佳点集遗传算法[J].计算机学报.2001,24(9):917-922.
    [104]黄永青,梁昌勇,张祥德.基于均匀设计的蚁群算法参数设定[J].控制与决策.2006,21(01):93-96.
    [105] Ben-Sheng C, Yuan-Yih H. A Minimal Harmonic Controller for a STATCOM[J].Industrial Electronics, IEEE Transactions on.2008,55(2):655-664.
    [106] Ben-Sheng C, Yuan-Yih H. An Analytical Approach to Harmonic Analysis andController Design of a STATCOM[J]. Power Delivery, IEEE Transactions on.2007,22(1):423-432.
    [107] Bhattacharya S, Tiefu Z, Gangyao W, et al. Design and development of Generation-Isilicon based Solid State Transformer[C]. Applied Power Electronics Conference andExposition (APEC),2010Twenty-Fifth Annual IEEE,2010:1666-1673.
    [108] Xu S, Burgos R, Gangyao W, et al. Review of solid state transformer in thedistribution system: From components to field application[C]. Energy ConversionCongress and Exposition (ECCE),2012IEEE,2012:4077-4084.
    [109]林海雪.电力系统的三相不平衡[G].中国电力出版社,1998.
    [110]张兴,季建强,张崇巍,等.基于内模控制的三相电压型PWM整流器不平衡控制策略研究[J].中国电机工程学报.2005,25(13):51-56.
    [111]何金平.自平衡电子电力变压器试验系统的研制[D].华中科技大学,2007.
    [112]栾会,王丹,毛承雄,等.直流配电系统的运行与控制[J].水电能源科学.2012,30(9):161-164.
    [113] Sannino A, Postiglione G, Bollen M H J. Feasibility of a DC network for commercialfacilities[J]. Industry Applications, IEEE Transactions on.2003,39(5):1499-1507.
    [114] Fleischer K, Munnings R S. Power systems analysis for direct current (DC)distribution systems[J]. Industry Applications, IEEE Transactions on.1996,32(5):982-989.
    [115] Nilsson D, Sannino A. Efficiency analysis of low-and medium-voltage DCdistribution systems[C]. Power Engineering Society General Meeting,2004. IEEE,2004:2315-2321.
    [116] Marquardt R. Current Rectification Circuit for Voltage Source Inverters withSeparate Energy Stores Replaces Phase Blocks with Storing Capacitors[P]. GermanDE10103031A1.2002.
    [117] Lesnicar A, Marquardt R. An innovative modular multilevel converter topologysuitable for a wide power range[C]. Power Tech Conference Proceedings,2003IEEEBologna,2003:3-6.
    [118]于凯.基于MMC的直流输电系统控制策略研究[D].北方工业大学,2012.
    [119]杨晓峰.模块组合多电平变换器(MMC)研究[D].北京交通大学,2012.
    [120]廖其艳.基于MMC的轻型直流输电系统控制策略研究[D].安徽理工大学,2012.
    [121]杨晓峰,郑琼林.基于MMC环流模型的通用环流抑制策略[J].中国电机工程学报.2012,32(18):59-65.
    [122]管敏渊,徐政. MMC型VSC-HVDC系统电容电压的优化平衡控制[J].中国电机工程学报.2011,31(12):9-14.
    [123]孙浩.模块组合多电平变换器(MMC)的控制策略研究[D].北京交通大学,2010.
    [124] Peralta J, Saad H, Dennetiere S, et al. Detailed and Averaged Models for a401-LevelMMC-HVDC System[J]. Power Delivery, IEEE Transactions on.2012,27(3):1501-1508.
    [125]赵成勇,许建中,李探.全桥型MMC-MTDC直流故障穿越能力分析[J].中国科学:技术科学.2013,43(1):106-114.
    [126]刘钟淇,宋强,刘文华.新型模块化多电平变流器的控制策略研究[J].电力电子技术.2009,43(10):5-7,18.
    [127] Hagiwara M, Akagi H. Control and Experiment of Pulsewidth-Modulated ModularMultilevel Converters[J]. Power Electronics, IEEE Transactions on.2009,24(7):1737-1746.
    [128]范文宝.基于模块组合多电平变换器(MMC)的STATCOM控制策略研究[D].北京交通大学,2011.
    [129] Yan Z, Xue-Hao H, Guang-Fu T, et al. A study on MMC model and its currentcontrol strategies[C]. Power Electronics for Distributed Generation Systems (PEDG),20102nd IEEE International Symposium on,2010:259-264.
    [130] Minyuan G, Zheng X. Modeling and Control of a Modular MultilevelConverter-Based HVDC System Under Unbalanced Grid Conditions[J]. PowerElectronics, IEEE Transactions on.2012,27(12):4858-4867.
    [131] Zhu H, Li Y, Wang P, et al. Design of Power Electronic Transformer Based onModular Multilevel Converter[C]. Power and Energy Engineering Conference(APPEEC),2012Asia-Pacific,2012:1-4.
    [132]董文杰,张兴,刘芳,等.模块化多电平变流器均压策略研究[J].电力电子技术.2012,46(2):69-71.
    [133] Du S X, Liu J J, Lin J L. Leg-Balancing Control of the DC-link Voltage for ModularMultilevel Converters[J]. Journal of Power Electronics.2012,12(5):739-747.
    [134]庄凯,阮新波.输入串联输出并联逆变器的分布式均压控制策略[J].电工技术学报.2009,24(5):108-113.
    [135]郁春雷.多模块输入串联输出并联组合变换器的研究[D].南京航空航天大学,2009.
    [136] Deshang S, Kai D, Zhiqiang G, et al. Control Strategy forInput-Series-Output-Parallel High-Frequency AC Link Inverters[J]. IndustrialElectronics, IEEE Transactions on.2012,59(11):4101-4111.
    [137] Ramesh G, Raja A, Ledezma E. Input-series and output-series connected modularDC-DC converters with active input voltage and output voltage sharing[C]. AppliedPower Electronics Conference and Exposition,2004. APEC '04. Nineteenth AnnualIEEE,2004:1751-1756.
    [138] Jianjiang S, Jie L, Xiangning H. Common-Duty-Ratio Control of Input-SeriesOutput-Parallel Connected Phase-shift Full-Bridge DC/DC Converter Modules[J].Power Electronics, IEEE Transactions on.2011,26(11):3318-3329.
    [139] Giri R, Choudhary V, Ayyanar R, et al. Common-duty-ratio control of input-seriesconnected modular DC-DC converters with active input voltage and load-currentsharing[J]. Industry Applications, IEEE Transactions on.2006,42(4):1101-1111.
    [140]章涛.高输入电压大功率DC-DC变换器的研究[D].南京航空航天大学,2005.
    [141] Hui L, Danwei L, Peng F Z, et al. Small Signal Analysis of A Dual Half BridgeIsolated ZVS Bi-directional DC-DC converter for Electrical Vehicle Applications[C].Power Electronics Specialists Conference,2005. PESC '05. IEEE36th,2005:2777-2782.
    [142] Vorperian V. Simplified analysis of PWM converters using model of PWM switch.Continuous conduction mode[J]. Aerospace and Electronic Systems, IEEETransactions on.1990,26(3):490-496.
    [143] Khazraei S M, Rahmati A, Abrishamifar A. Small signal and large signal chargecontrol models for a phase-shifted PWM converter[C]. Industrial Technology,2008.ICIT2008. IEEE International Conference on,2008:1-6.
    [144]杨荫福,段善旭,朝泽云.电力电子装置及系统[M].北京:清华大学出版社,2006.
    [145]管敏渊,徐政,屠卿瑞,等.模块化多电平换流器型直流输电的调制策略[J].电力系统自动化.2010,34(2):48-52.
    [146] Yuen C, Oudalov A, Timbus A. The Provision of Frequency Control Reserves FromMultiple Microgrids[J]. Industrial Electronics, IEEE Transactions on.2011,58(1):173-183.
    [147]郭力,王成山.含多种分布式电源的微网动态仿真[J].电力系统自动化.2009,33(2):82-86.
    [148] Kjaer S B, Pedersen J K, Blaabjerg F. A review of single-phase grid-connectedinverters for photovoltaic modules[J]. Industry Applications, IEEE Transactions on.2005,41(5):1292-1306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700