锂离子电池正极材料Li_2MnSiO_4的合成和电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Li2MnSiO4作为一种新型锂离子电池正极材料,尽管2006年才被Dominko研究小组首次报道,但由于其具有333 mAh/g的高理论容量、成本低廉、环境友好等突出的优点,被认为是一种极具潜力的锂离子电池正极材料。然而,Li2MnSiO4材料的电子电导率低,循环性能差,循环过程中结构易坍塌,急需系统深入研究。本文以Li2MnSiO4为研究对象,对其合成工艺、改性技术、电化学性能等方面进行了系统的研究。
     采用最易产业化的高温固相法和新颖的多元醇法合成Li2MnSiO4系列锂离子电池正极材料;利用XRD、FESEM、HRTEM、ICP-AES、元素分析和粒度分析等手段对合成材料进行表征;利用电池测试仪测试合成材料的电化学性能。
     利用TG-DSC初步确定固相反应的基础温度为800℃。利用正交试验法进行工艺优化。研究了合成温度和保温时间对Li2MnSiO4材料组织及电化学性能的影响。结果表明,随着合成温度的升高和保温时间的延长,Li2MnSiO4样品电化学性能提高。在900℃保温20 h合成的Li2MnSiO4样品具有较好的首次放电比容量117.9 mAh/g。探讨了样品的纯度、组织结构与电化学性能的关系。
     利用交流阻抗法研究Li2-xMnSiO4材料的脱嵌锂动力学,测得了不同充放电状态下Li2-xMnSiO4材料的交流阻抗谱,并计算相应的锂离子扩散系数,结果表明,充电时,随着脱锂量的增加,Li2-xMnSiO4材料的锂离子扩散系数增大;放电时,随着嵌锂量的增加,Li2-xMnSiO4材料的锂离子扩散系数减小。
     采用固相法,以导电碳黑、石墨、蔗糖和柠檬酸为碳源合成了一系列Li2MnSiO4/C复合材料。探索了碳源及碳含量对Li2MnSiO4/C材料组织及电化学性能的影响。成功筛选出最佳的蔗糖碳源,其对应样品的首次可逆容量达到88mAh/g,10次循环后容量保持在62.1 mAh/g。在本实验范围内,不管采用何种碳源,随着碳含量的升高,样品的杂质含量增多,晶粒度和粒度减小,当碳含量为9%-10%的范围时,合成的Li2MnSiO4/C样品总能得到最好的电化学性能。分析了碳源及碳含量对Li2MnSiO4/C性能的影响机理。
     采用固相法成功合成了Fe2+、A13+、Mg2+、Ti4+掺杂的Li2Mn1-xMxSiO4(M=Fe,Al, Mg, Ti)固溶体材料,有效地解决了Li2MnSiO4在充放电过程中结构坍塌的问题。Fe2+掺杂样品的电化学性能随掺Fe2+量的提高而提高,当x=0.9时得到最高的首次放电比容量72.3 mAh/g。A13+、Mg2+、Ti4+等离子掺杂可有效提高Li2MnSiO4材料的电化学性能;其机理在于离子掺杂可以稳定Li2MnSiO4的晶体结构。进一步阐明了离子掺杂稳定Li2MnSiO4结构的机理,掺杂半径较小的阳离子可以减小Li2MnSiO4的晶胞体积,从而稳定其结构。晶体场理论分析表明Fe2+掺杂可以提高Li2MnSiO4的晶体场稳定化能,从而稳定其结构。
     采用多元醇法,以蔗糖为碳源成功合成出Li2MnSiO4/C材料,并考察合成温度对其组织和电化学性能的影响。结果表明,合成的材料具有纳米级颗粒尺寸;在Li2MnSiO4颗粒周围包覆有一层无定型的碳膜;600℃合成的样品具有较优的电化学性能,在C/30倍率下首次可逆容量达到132 mAh/g。Al3+掺杂可以有效体高Li2MnSiO4样品的充放电性能,在0.1C倍率下充放电时,掺杂10%Al3+的样品比未掺Al3+样品的首次放电比容量提高1.4倍。
Li2MnSiO4 was firstly reported by Dominko's group as a new cathode material for lithium ion batteries in 2006. Because of its high theoretical capacity (333 mAh/g), low cost and environmental compatible, Li2MnSiO4 was considered as a potential cathode material for lithium ion batteries. However, the electron conductivity of Li2MnSiO4 is low and the cycle ability is poor, so Li2MnSiO4 is in dire need of system and deep researching. This thesis focused on Li2MnSiO4 and studied its synthesis process, modified technic and electrochemical performance.
     Solid state method and polyol process were used to synthesize the Li2MnSiO4 cathode material; XRD, FESEM, HRTEM, ICP-AES, elemental analysis and granularity analysis were employed to character the physical and chemical properties; Battery testing system was used to test the electrochemical properties.
     The basic process parameter reaction temperature of 800℃was chose via TG-DSC, and then optimized by orthogonal experiments. Effect of sythesis temperature and holding time on microstructure and electrochemical performance of Li2MnSiO4 material were studied. The results showed that along with the raise of sythesis temperature and prolong of holding time, the electrochemical performance of Li2MnSiO4 was improved. The sample synthesized at 900℃for 20 h has the better initial discharge capacity of 117.9 mAh/g. The relationship of phase purity, microstructure and electrochemical properties was discussed.
     EIS was employed to study the extraction insertion kinetics of Li2MnSiO4 material. The EIS of Li2-xMnSi04 at different charge-discharge state was tested, and the corresponding lithium ion diffusion coefficient was calculated. In charge cycle, the lithium ion diffusion coefficient of Li2-xMnSi04 increased with the increase of x. In discharge cycle, the lithium ion diffusion coefficient of Li2-xMnSi04 decreased with the decrease of x.
     Li2MnSiO4/C composites were synthesized by solid state method with carbon black, graphite, sucrose and citric acid as carbon source. Effect of carbon source and carbon content on microstructure and electrochemical performance of Li2MnSiO4/C was studied. The Li2MnSiO4 sample corresponding to the best sucrose carbon source has the best initial reversible capacity of 88 mAh/g, and a discharge capacity of 62.1 mAh/g was obtained after 10 cycles. In the scope of this study, whichever carbon source was chose, along with the increase of carbon content, the grain size and particle size reduced and the amount of impurity increased. When carbon content was 9%-10%, the Li2MnSiO4/C samples can always achieve the best electrochemical performance. The effect mechanism of carbon source and carbon content on the electrochemical performance of Li2MnSiO4/C was analysed.
     Li2Mni-xMxSi04 (M=Fe, Al, Mg, Ti) cathode material was synthesize by solid state reaction; the problem that the structure of Li2MnSiO4 is collapsed during the charge-discharge cycle has been effectively solved. The electrochemical performance of the Fe2+doping samples was increased with the raise of the Fe2+doping amount. The best initial discharge capacity of 72.3 mAh/g was achived when x= 0.9. Al3+, Mg2+and Ti4+doing can improve the electrochemical performance of Li2MnSiO4 effectively, since ion doping can stabilize the crystal structure of Li2MnSiO4. The mechanism of that ion doping stabilize the structure of Li2MnSiO4 was illustrated. The crystal volume of Li2MnSiO4 was shrinked by doped positive ion which has small ion radius, thus the structure was stabilized. The crystal field theory in coordination chemistry was used to reveal that Fe2+doping can improve the crystal field stabilization energies and thus the structure was stabilized.
     Li2MnSiO4/C material was synthesized by polyol method with sucrose as carbon source, and the effect of synthesis temperature on microstructure and electrochemical performance of Li2MnSi04/C was explored. The results shown, the obtained samples have pure Li2MnSiO4 phase and nanoparticles, which coated by a very thin amorphous carbon film. The sample obtained at 600℃has a best initial reversible capacity of 132 mAh/g. Al3+doping can remarkably improve the charge-discharge property of Li2MnSiO4. When cycled at 0.1C rate, the initial discharge capacity of the sample doped 10% Al3+was 2.4 times as that of the pristine sample.
引文
[1]郭炳昆,李新海,杨松青.化学电源-电池原理及制造技术[M].长沙:中南工业大学出版社,2000.
    [2]K A. Directions in secondary lithium battery research and development [J]. Electrochimica Acta,1993,38(9):1233-1248.
    [3]陈立泉.混合电动车及其电池[J].电池,2000,30(3):98.100.
    [4]M T J, M.. A. Issues and challenges facing rechargeable lithium batteries [J]. Nature,2001,414:359-367.
    [5]叶尚云.高性能锂离子电池正极材料合成与性能研究[D].北京;北京科技大学,2006.
    [6]WHITTINGHAM M S. Electrical Energy Storage and Intercalation Chemistry [J]. Science,1976,192(4244):1126-1127.
    [7]WHITTINGHAM M S. Chalcogenide battery.1977, US Patent 4009052.
    [8]DAHN J R, SLIGH A K, SH H, et al. Lithium Batteries [M] PISTOIA G. New Materials, Developments and Perspectives. Amsterdam; Elsevier.1994.
    [9]LAZZARI M, SCROSATI B. A cyclable lithium organic electrolyte cell based on two intercalation electrodes [J]. J. Electrochem Soc,1980,127,773-780.
    [10]SEKAI K, AZUMA H, OMARU A, et al. Lithium-ion rechargeable cells with LiCoO2 and carbon electrodes [J]. Journal of Power Sources,1993,43(1-3): 241-244.
    [11]SCROSATI B. Lithium rocking chair batteries:and old concept [J]. J Electrochem Soc,1992,139(10):2776-2781.
    [12]刘兴泉.锂离子二次电池正极材料研究[D].成都;中国科学院成都有机化学研究所,2000.
    [13]张勇,胡信国,张翠芬.新型化学电源的电极反应原理[J].电池工业,2004,9(1):33-36.
    [14]吴宇平,戴晓兵,马军旗等.锂离子电池-应用与实践[M].北京:化学工业出版社,2004.
    [15]王凤飞,王新庆,杨冰.锂离子电池负极材料的研究进展[J].纳米技术与精密工程,2004,2(3):192-195.
    [16]PARK Y-S, BANG H J, OH S-M, et al. Effect of carbon coating on thermal stability of natural graphite spheres used as anode materials in lithium-ion batteries [J]. Journal of Power Sources,2009,190(2):553-557.
    [17]ZOU L, KANG F, LI X, et al. Investigations on the modified natural graphite as anode materials in lithium ion battery [J]. Journal of Physics and Chemistry of Solids,2008,69(5-6):1265-1271.
    [18]ZHAO H, REN J, HE X, et al. Purification and carbon-film-coating of natural graphite as anode materials for Li-ion batteries [J]. Electrochimica Acta,2007, 52(19):6006-6011.
    [19]FU L J, GAO J, ZHANG T, et al. Effect of Cu2O coating on graphite as anode material of lithium ion battery in PC-based electrolyte [J]. Journal of Power Sources,2007,171(2):904-907.
    [20]KIDA Y, YANNAGIDA K, A. FUNAHASHI E A. Electrochemical characteristics of graphite, coke and graphite/coke hybrid carbon as negative electrode materials for lithium secondary batteries [J]. J Power Sources,2001,94,74-77.
    [21]高宏权,王洪强,李庆余等.锂离子电池超高容量负极材料的研究进展[J].矿冶工程,2005,25(5):57-61.
    [22]周恒辉,慈云祥,刘昌炎.锂离子电池电极材料研究进展[J].化学进展,1998,10(1):85-94.
    [23]HWANG Y J, JEONG S K, SHIN J S, et al. High capacity disordered carbons obtained from coconut shells as anode materials for lithium batteries [J]. Journal of Alloys and Compounds,2008,448(1-2):141-147.
    [24]FEY G T-K, LEE D C, LIN Y Y, et al. High-capacity disordered carbons derived from peanut shells as lithium-intercalating anode materials [J]. Synthetic Metals, 2003,139(1):71-80.
    [25]DALN J R, ZHENG T, AL Y L E. Mechanisms for lithium insertion in carbonaceous materials [J]. Science,1995,270,590-593.
    [26]IDOTA Y, KUBOTA T, AL A M E. Tin-based amorphous oxide:A high-capacity lithium-ion-storage material [J]. Science,1997,276,1395-1397.
    [27]LI N, MARTIN C R, SCROSATI B. Nanomaterial-based Li-ion battery electrodes [J]. J Power Sources,2001,97-98,240-243.
    [28]HAN S, JANG B, AL T K E. Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes [J]. Adv Fund Mater 2005,15(11):1845-1850.
    [29]KIM C, NOH M, AL.. M C E. Criticalsize of a nano SnO2 electrode for Li-secondary battery [J]. Chem Mater,2005,17,3297-3301.
    [30]POIZOT P, LARUELLE S, AL S G E. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Nature,2000,407,496-499.
    [31]NOBORU.OYAMA. Development of polymer based lithium secondary battery [J]. MacromolSymp,2000,159,221-229.
    [32]SV S. Performance of Li ion cell switch new electrolyte conceived for low temperature applications [J]. J Power Sources,2000,87(1-2):112-117
    [33]尉继英,孙长敏,高海春.LiMn2O4的溶胶-凝胶-酯化法合成及性能[J].盐湖研究,1999,7(2):11-15.
    [34]LARCHER.D. Electrochemically active LiCoO2 and LiNiO2 made by cationic exchange under hydrothermal conditions [J]. J Electrochem Soc,1997,144(2): 408-417.
    [35]H T. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping [J]. J Electrochem Soc,1997,144(9):3164-3168.
    [36]吴宇平.锂在碳材料中的可逆高储存机理[J].化学通报,1998,4,15-18.
    [37]高虹.锂离子电池正极材料的结构和性能研究方法[J].电池,2001,31(3):126-127.
    [38]雷永泉,万群,石永康.新能源材料[M].天津:天津大学出版社,2000.
    [39]LIU R M, YANG X H, G L. WU E A. Mechanism of Li1+xCoO2 synthesis and the influence of x value on performance [C]; proceedings of the Proceeding of 12th International Confernce on Solid State Ionics,1999.
    [40]GUPTA R, MANTHIRAM A. Chemical extraction of lithium from layered LiCoO2 [J]. J Solid State Chem 1996,121,483-491.
    [41]LU C H, LIU S W. EELS analysis of electrochemically deintercalated Li1-xMn204 and substituted spinels LiMn1.6Mo.404(M=Co,Cr,Ni) [J]. J Power Sources, 200197-98,458-460.
    [42]吴宇平,方世壁,刘昌炎.锂离子电池正极材料氧化钴锂的进展[J].电源技术,1997,21(5):208-226.
    [43]闫时建,田文怀,其鲁.锂离子电池正极材料钻酸锂近期研制进展[J].兵器材料科学与工程,2005,28(1):56-61.
    [44]J T, ZHAO X B, D. G. ZHUANG E A. Studies of cycle ability of LiMn2O4 and LiLao.o1Mni 99O4 as cathode materials for Li-ion battery [J]. Physica B,2006, 382(1-2):129-134.
    [45]秦毅红,马尚德,张云河.锂镍复合掺杂尖晶石LiMn2O4的制备及电化学性能[J].电源技术,2008,32(5):293-295.
    [46]薛云,陈野,张密林.锰酸锂的制备及其在中性电解液中的电容性能[J].硅酸盐学报,2006,34(12):1528-1531.
    [47]HYUNKOO K, WOOK A, L. SOUNGCOO E A. Eutectic self-mixing method for the preparation of Mn2O4 without any artificialmixing procedures [J]. J Power Sources,2006,163,166-172.
    [48]王承位,高德淑,丁燕怀等.熔融法合成层状锰酸锂及改性研究[J].湘潭大学自然科学学报,2006,28(4):57-60.
    [49]杨书廷,董红玉,赵娜红等.微波-模板法合成锂离子电池正极材料LiMn2O4机理的光谱学研究[J].光谱学与光谱分析,2005,25(12):1968-1971.
    [50]SUNGHO K. (LiyMn2-y)O4, spinel cathode material prepared by a solution method [J]. ElectrochemSolid-State Lett,2000,3(12):536-539.
    [51]LIU W, FARRINGTON G C, F. CHAPUT E A. Synthesis and electrochemical studies of spinel phase LiMn2O4, cathode materials prepared by the pechini process [J]. Electrochem Soc,1996,143(3):879-884.
    [52]HERMAN L, MORALES J, L. SANCHEZ E A. Use of Li-M-Mn-O spinels prepared by a sol-gel method as cathodes in high-voltage lithium batteries [J]. Solid State Ionics,1999,118,179-185.
    [53]CHEN Z Y, LIU X Q, L. Z. GAO E A. Electrochemical capacity fading in high temperature of spinel LiMn2O4 and its improvement [J]. Chinese Journal of Inorganic Chemistry,2001,17(3):325-329.
    [54]胡晓宏,杨汉西,艾新平等.LiMn2O4正极在高温下性能衰退现象的研究[J].电化学,1999,5(2):224-230.
    [55]许寒,郭西凤,刘锦平.锂离子电池正极材料尖晶石型锰酸锂研究现状[J].无机盐工业,2009,41(5):12-14.
    [56]苏育志,马文石,龚克成.聚有机二硫化物正极材料的研究现状[J].高技术通讯,1999,3(6):58-62.
    [57]VISCO S J, MAILHE C C, DE JONGHE L C, et al. A Novel Class of Organosulfur Electrodes for Energy Storage [J]. Journal of the Electrochemical Society, 1989,136(3):661-664.
    [58]DOEFF M M, LERNER M M, VISCO S J, et al. The Use of Polydisulfides and Copolymeric Disulfides in the Li/PEO/SRPE Battery System [J]. Journal of the Electrochemical Society,1992,139(8):2077-2081.
    [59]NAOI K, MENDA M, OOIKE H, et al. An enhanced redox process of disulfide compounds at polyaniline film electrode [J]. Journal of Electroanalytical Chemistry,1991,318(1-2):395-398.
    [60]TATSUMA T, MATSUI H, SHOUJI E, et al. Reversible Electron Transfer Reaction between Polyaniline and Thiol/Disulfide Couples [J]. The Journal of Physical Chemistry,1996,100(33):14016-14021.
    [61]YE S, BELANGER D. Electrochemical and In Situ Spectroelectrochemical Study on Polypyrrole/Disulfide Composite Electrode [J]. Journal of the Electrochemical Society,1994,141(4):L49-L50.
    [62]王维坤,王安邦,曹高萍等.锂电池正极材料多硫化碳炔的制备及电化学性能[J].应用化学,2005,22(4):367-371.
    [63]翁国明,苏育志.锂电池正极材料含硫化物的研究进展[J].化学世界,2008,18):744-748.
    [64]PADHI A K, NANJUNDASWAMY K S, MASQUELIER C, et al. Mapping of Transition Metal Redox Energies in Phosphates with NASICON Structure by Lithium Intercalation [J]. Journal of the Electrochemical Society,1997,144(8): 2581-2586.
    [65]PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries [J]. Journal of the Electrochemical Society,1997,144(4):1188-1194.
    [66]施志聪,杨勇.聚阴离子型锂离子电池正极材料研究进展[J].化学进展,2005,17(4):604-613.
    [67]OKADA S, SAWA S, EGASHIRA M, et al. Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries [J]. Journal of Power Sources, 2001,97-98,430-432.
    [68]YAMADA A, HOSOYA M, CHUNG S-C, et al. Olivine-type cathodes: Achievements and problems [J]. Journal of Power Sources,2003,119-121,232-238.
    [69]LI G, AZUMA H, TOHDA M. Optimized LiMnyFe1-yPO4 as the Cathode for Lithium Batteries [J]. Journal of the Electrochemical Society,2002,149(6): A743-A747.
    [70]ANDERSSON A S, KALSKA B, EYOB P, et al. Lithium insertion into rhombohedral Li3Fe2(PO4)3 [J]. Solid State Ionics,2001,140(1-2):63-70.
    [71]CHO Y-D, FEY G T-K, KAO H-M. The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes [J]. Journal of Power Sources,2009, 189(1):256-262.
    [72]CHO G B, SONG M G, BAE S H, et al. Surface-modified Si thin film electrode for Li ion batteries (LiFePO4/Si) by cluster-structured Ni under layer [J]. Journal of Power Sources,2009,189(1):738-742.
    [73]CAI Z P, LIANG Y, LI W S, et al. Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder [J]. Journal of Power Sources,2009,189(1):547-551.
    [74]ZHENG J-C, LI X-H, WANG Z-X, et al. LiFePO4 with enhanced performance synthesized by a novel synthetic route [J]. Journal of Power Sources,2008, 184(2):574-577.
    [75]ZAGHIB K, DONTIGNY M, CHAREST P, et al. Aging of LiFePO4 upon exposure to H2O [J]. Journal of Power Sources,2008,185(2):698-710.
    [76]CAO Y L, YU L H, LI T, et al. Synthesis and electrochemical characterization of carbon-coated nanocrystalline LiFePO4 prepared by polyacrylates-pyrolysis route [J]. Journal of Power Sources,2007,172(2):913-918.
    [77]ZHUANG D, ZHAO X, XIE J, et al. One-step Solid-state Synthesis and Electrochemical Performance of Nb-doped LiFePO4/C [J]. Acta Physico-Chimica Sinica, 2006,22(7):840-844.
    [78]ZHANG S S, XU K, JOW T R. An improved electrolyte for the LiFePO4 cathode working in a wide temperature range [J]. Journal of Power Sources,2006, 159(1):702-707.
    [79]ZHANG M, JIAO L-F, YUAN H-T, et al. The preparation and characterization of olivine LiFePO4/C doped with MoO3 by a solution method [J]. Solid State Ionics,2006,177(37-38):3309-3314.
    [80]ARNOLD G, GARCHE J, HEMMER R, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique [J]. Journal of Power Sources,2003,119-121,247-251.
    [81]HUANG H, YIN S C, NAZAR L F. Approaching Theoretical Capacity of LiFeP04 at Room Temperature at High Rates [J]. Electrochemical and Solid-State Letters,2001,4(10):A170-A172.
    [82]YANG S, SONG Y, ZAVALIJ P Y, et al. Reactivity, stability and electrochemical behavior of lithium iron phosphates [J]. Electrochemistry Communications,2002,4(3):239-244.
    [83]CHEN Z, DAHN J R. Reducing Carbon in LiFePO4/C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density [J]. Journal of the Electrochemical Society,2002,149(9):A1184-A1189.
    [84]SUNG-YOON C, JASON T B, YET-MING C. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nature Materials,2002,1(2):123.
    [85]YANG S, SONG Y, NGALA K, et al. Performance of LiFePO4 as lithium battery cathode and comparison with manganese and vanadium oxides [J]. Journal of Power Sources,2003,119-121,239-246.
    [86]CROCE F, EPIFANIO A D, HASSOUN J, et al. A Novel Concept for the Synthesis of an Improved LiFePO4 Lithium Battery Cathode [J]. Electrochemical and Solid-State Letters,2002,5(3):A47-A50.
    [87]BARKER J, SAIDI M Y, SWOYER J L. Lithium Iron(II) Phospho-olivines Prepared by a Novel Carbothermal Reduction Method [J]. Electrochemical and Solid-State Letters,2003,6(3):A53-A55.
    [88]NANJUNDASWAMY K S, PADHI A K, GOODENOUGH J B, et al. Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds [J]. Solid State Ionics,1996,92(1-2): 1-10.
    [89]PADHI A K, ARCHIBALD W B, NANJUNDASWAMY K S, et al. Ambient and High-Pressure Structures of LiMnVO4and Its Mn3+/Mn2+Redox Energy [J]. Journal of Solid State Chemistry,1997,128(2):267-272.
    [90]PATOUX S, WURM C, MORCRETTE M, et al. A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3 [J]. Journal of Power Sources,2003,119-121,278-284.
    [91]SAIDI M Y, BARKER J, HUANG H, et al. Electrochemical Properties of Lithium Vanadium Phosphate as a Cathode Material for Lithium-Ion Batteries [J]. Electrochemical and Solid-State Letters,2002,5(7):A149-A151.
    [92]MORGAN D, CEDER G, SAI M Y, et al. Experimental and computational study of the structure and electrochemical properties of monoclinic LixM2(PO4)3 compounds [J]. Journal of Power Sources,2003,119-121,755-759.
    [93]SAI M Y, BARKER J, HUANG H, et al. Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries [J]. Journal of Power Sources,2003,119-121,266-272.
    [94]MASQUELIER C, PADHI A K, NANJUNDASWAMY K S, et al. New Cathode Materials for Rechargeable Lithium Batteries:The 3-D Framework Structures Li3Fe2(XO4)3(X=P, As) [J]. Journal of Solid State Chemistry,1998,135(2):228-234.
    [95]AZMI B M, ISHIHARA T, NISHIGUCHI H, et al. Vanadyl phosphates of VOPO4 as a cathode of Li-ion rechargeable batteries [J]. Journal of Power Sources, 2003,119-121,273-277.
    [96]DUPR N, GAUBICHER J, LE MERCIER T, et al. Positive electrode materials for lithium batteries based on VOPO4 [J]. Solid State Ionics,2001,140(3-4): 209-221.
    [97]DUPR N, GAUBICHER J, ANGENAULT J, et al. Electrochemical performance of different LiVOPO4 systems [J]. Journal of Power Sources,2001,97-98, 532-534.
    [98]KERR T A, GAUBICHER J, NAZAR L F. Highly Reversible Li Insertion at 4 V in epsilon-VOPO4/alpha-LiVOPO4 Cathodes [J]. Electrochemical and Solid-State Letters,2000,3(10):460-462.
    [99]WURM C, MORCRETTE M, ROUSSE G, et al. Lithium Insertion/Extraction into/from LiMX2O7 Compositions (M= Fe, V; X= P, As) Prepared via a Solution Method [J]. Chemistry of Materials,2002,14(6):2701-2710.
    [100]SHACKLE D R. Alkali metal ion battery electrode material:US 6085015. 2000.
    [101]ARMAND M, MICHOT C, RAVET N, et al. Lithium insertion electrode materials based on orthosilicate derivatives:US.2000-.
    [102]ZHOU F, COCOCCIONI M, KANG K, et al. The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M=Fe, Mn, Co, Ni [J]. Electrochemistry Communications,2004,6(11):1144-1148.
    [103]NYTEN A, ABOUIMRANE A, ARMAND M, et al. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material [J]. Electrochemistry Communications,2005,7(2):156-160.
    [104]ZAGHIB K, AIT SALAH A, RAVET N, et al. Structural, magnetic and electrochemical properties of lithium iron orthosilicate [J]. Journal of Power Sources, 2006,160(2):1381-1386.
    [105]TARTE P, CAHAY R. Symthese et structure d'une nouvelle famille de composes Li2XⅡSi04 et Li2XⅡGe04 structuralement apparentes a Li3PO4 [J]. CR Acad Sc Paris,1970, C271,777-779.
    [106]DOMINKO R, BELE M, GABERCEK M, et al. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials [J]. Electrochemistry Communications,2006,8(2):217-222.
    [107]DOMINKO R, CONTE D E, HANZEL D, et al. Impact of synthesis conditions on the structure and performance of Li2FeSiO4 [J]. Journal of Power Sources, 2008,178(2):842-847.
    [108]NYTE'N A, STJERNDAHL M, HKAN RENSMO E A. Surface characterization and stability phenomena in Li2FeSiO4 studied by PES/XPS [J]. J Mater Chem,2006,16,3483-3488.
    [109]NYTE'N A, KAMALI S, HA"GGSTRO"M L. The lithium extraction/insertion mechanism in Li2FeSiO4 [J]. J Mater Chem,2006,16,2266-2272.
    [110]LARSSON P, AHUJA R, NYTEN A, et al. An ab initio study of the Li-ion battery cathode material Li2FeSiO4 [J]. Electrochemistry Communications,2006,8(5): 797-800.
    [111]GONG Z L, LI Y X, YANG Y. Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries [J]. Journal of Power Sources, 2007,174(2):524-527.
    [112]ARROYO-DE DOMPABLO M E, ARMAND M, TARASCON J M, et al. On-demand design of polyoxianionic cathode materials based on electronegativity correlations:An exploration of the Li2MSiO4 system (M= Fe, Mn, Co, Ni) [J]. Electrochemistry Communications,2006,8(8):1292-1298.
    [113]WU S Q, ZHANG J H, ZHU Z Z, et al. Structural and electronic properties of the Li-ion battery cathode material LixCoSiO4 [J]. Current Applied Physics,2007, 7(6):611-616.
    [114]DOMINKO R, BELE M, KOKALJ A, et al. Li2MnSi04 as a potential Li-battery cathode material [J]. Journal of Power Sources,2007,174(2):457-461.
    [115]LI Y-X, GONG Z-L, YANG Y. Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries [J]. Journal of Power Sources,2007,174(2):528-532.
    [116]YANG Y, LI Y X, GONG Z L. Synthesis and Characterization of High Capacity Silicate/C Cathode Materials for Lithium Ion Batteries [M]. IMLB2006. Biarritz, France.2006.
    [117]GONG Z L, LI Y X, YANG Y. Synthesis and Characterization of Li2MnxFe1-xSi04 as a Cathode Material for Lithium-Ion Batteries [J]. Electrochemical and Solid-State Letters,2006,9(12):A542-A544.
    [118]KOKALJ A, DOMINKO R, MALI G, et al. Beyond One-Electron Reaction in Li Cathode Materials:  Designing Li2MnxFe1-xSi04 [J]. Chemistry of Materials,2007,19(15):3633-3640.
    [119]LI W, LUCHT B L. Inhibition of solid electrolyte interface formation on cathode particles for lithium-ion batteries [J]. Journal of Power Sources,2007,168(1): 258-264.
    [120]XIA Y, YOSHIO M, NOGUCHI H. Improved electrochemical performance of LiFePO4 by increasing its specific surface area [J]. Electrochimica Acta, 2006,52(1):240-245.
    [121]TARASCON J M, GUYOMARD D. The Li1+xMn204/C rocking-chair system:a review [J]. Electrochimica Acta,1993,38(9):1221-1231.
    [122]OHZUKU T, KITAGAWA M, HIRAI T. Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell [J]. Journal of the Electrochemical Society,1990, 137(3):769-775.
    [123]ZHANG C, HUANG X, YIN Y, et al. Hydrothermal synthesis of monodispersed LiFePO4 cathode materials in alcohol-water mixed solutions [J]. Ceramics International, In Press, Corrected Proof.
    [124]PROSINI P P, ZANE D, PASQUALI M. Improved electrochemical performance of a LiFePO4-based composite cathode [J]. Electrochimica Acta,2001, 46(23):3517-3523.
    [125]AMINE K, LIU J, BELHAROUAK I. High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells [J]. Electrochemistry Communications,2005, 7(7):669-673.
    [126]巴德A J,福克纳L R,谷林瑛等.电化学测定方法原理及应用[M].北京:化学工业出版社,1988.
    [127]BELLINI J V, MEDEIROS S N D, PONZONI A L L, et al. Manganese ferrite synthesized from Mn(II) acetate+hematite freeze-dried powders [J]. Materials Chemistry and Physics,2007,105,92-98.
    [128]KHOMANE R B, SHARMA B K, SAHA S, et al. Reverse microemulsion mediated sol-gel synthesis of lithium silicate nanoparticles under ambient conditions: Scope for CO2 sequestration [J]. Chemical Engineering Science,2006,61,3415-3418.
    [129]WINTER M, BRODD R J. What Are Batteries, Fuel Cells, and Supercapacitors? [J]. Chemical Reviews,2005,105(3):1021-1024.
    [130]JEONG I-S, KIM J-U, GU H-B. Electrochemical properties of LiMgyMn2-yO4 spinel phases for rechargeable lithium batteries [J]. Journal of Power Sources,2001,102(1-2):55-59.
    [131]HONG J, WANG C, KASAVAJJULA U. Kinetic behavior of LiFeMgPO4 cathode material for Li-ion batteries [J]. Journal of Power Sources,2006,162(2): 1289-1296.
    [132]SHIH F-Y, FUNG K-Z. Effect of annealing temperature on electrochemical performance of thin-film LiMn2O4 cathode [J]. Journal of Power Sources,2006,159(1):179-185.
    [133]CHOUDHURY S R, RENGASWAMY R. Characterization and fault diagnosis of PAFC cathode by EIS technique and a novel mathematical model approach [J]. Journal of Power Sources,2006,161(2):971-986.
    [134]SHAJU K M, SUBBA RAO G V, CHOWDARI B V R. EIS and GITT studies on oxide cathodes,02-Li(2/3)+x(Coo.15Mno.85)02 (x=0 and 1/3) [J]. Electrochimica Acta,2003,48(18):2691-2703.
    [135]禹筱元.层状LiNi1/3Co1/3Mn1/3O2与改性尖晶石LiMn2O4的研究[D].长沙;中南大学,2005.
    [136]史美伦.交流阻抗谱原理及应用[M].北京:国防工业出版社,2001.
    [137]T.PIAO, S.M.PARK, C.H.DOH E A. Intercalation of lithium ions into graphite electrodes studies by AC impedance measurements [J]. J Electrochem Soc, 1999,146(8):2794-2798.
    [138]吕东生,李伟善,刘煦,等.锂离子嵌脱的交流阻抗模型[J].电池,2003,33(5):326-327.
    [139]M.ITAGAKIN.KOBARIS.YOTSUDA E A. LiCoO2 electrode/electrolyte interface of Li-ion rechargeablebatteries investigated by in situelectrochemical impedance spectroscopy [J]. J Power Sources,2005,148,78-84.
    [140]陈晗.新型锂离子电池正极材料LiFePO4的合成及改性研究[D].长沙;湖南大学,2007.
    [141]李泓.锂离子电池负极材料及电极过程的研究[D].北京;中科院物理所,1999.
    [142]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [143]阮艳莉.磷酸铁锂正极材料的应用基础研究[D].天津;天津大学,2005.
    [144]张永刚,王成扬,闫裴.锂在包覆修饰废人造石墨中的扩散过程研究[J].电源技术,2008,32(11):739-741.
    [145]龚本利,刘素琴,黄可龙.锂离子电池正极材料LiFePO4的研究进展[M].庆祝中国硅酸盐学会成立六十周年固态离子学研讨会.北京.2005.
    [146]FRANGER S, LE CRAS F, BOURBON C, et al. Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties [J]. Journal of Power Sources,2003,119-121,252-257.
    [147]杨勇,方海升,李莉萍等.Li2MnSiO4/C复合正极材料的合成及电化学性能[J].稀有金属材料与工程,2008,37(6):1085-1088.
    [148]EIN-ELI Y, VAUGHEY J T, THACKERAY M M, et al. LiNixCuo.5-xMn1.5O4 Spinel Electrodes, Superior High-Potential Cathode Materials for Li Batteries:I. Electrochemical and Structural Studies [J]. Journal of the Electrochemical Society,1999,146(3):908-913.
    [149]周振平,赵世玺,柳震等.正极材料LixMn2O4容量在循环过程中的损失机理研究[J].材料导报,2001,15(5):30-33.
    [150]王凤,戴永年,崔萌佳等.掺杂对尖晶石锰酸锂正极材料的影响[J].无机盐工业,2005,37(1):4-6.
    [151]杨蓉.磷酸亚铁锂型锂离子电池正极材料的制备应用和电化学性能研究[D].西安;西安交通大学,2007.
    [152]阮艳莉,唐致远.LiFePO4/C正极材料的液相合成及电化学性能研究[J].化学学报,2008,66(6):680-684.
    [153]BREGADO-GUTIERREZ J, SALDIVAR-GARCIA A J, LOPEZ H F. Synthesis of Co-50Ni nanocrystals obtained by a modified polyol method [J]. Materials Letters,2008,62(6-7):939-942.
    [154]YAN S, SUN G, TIAN J, et al. Polyol synthesis of highly active PtRu/C catalyst with high metal loading [J]. Electrochimica Acta,2006,52(4):1692-1696.
    [155]LIM P Y, LIU R S, SHE P L, et al. Synthesis of Ag nanospheres particles in ethylene glycol by electrochemical-assisted polyol process [J]. Chemical Physics Letters,2006,420(4-6):304-308.
    [156]秦瑞飞,宋宏伟,潘国徽等.NaGdF4纳米晶多元醇法的合成、表征与NaGdF4:Eu3+和NaGdF4:Yb3+,Er3+纳米晶的发光[J].发光学报,2008,29(1):186-191.
    [157]KIM T R, KIM D H, RYU H W, et al. Synthesis of lithium manganese phosphate nanoparticle and its properties [J]. Journal of Physics and Chemistry of Solids,2007,68(5-6):1203-1206.
    [158]KIM D-H, KIM J. Synthesis of LiFePO4 nanoparticles and their electrochemical properties [J]. Journal of Physics and Chemistry of Solids,2007, 68(5-6):734-737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700