三元稀土钨电极材料的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用传统的工业生产方法,按掺杂-→还原制粉-→压制-→预烧-→垂熔-→旋锻-→拉伸的工艺制备了Φ2.0mm的CeO_2+La_2O_3+Y_2O_3三元复合稀土钨电极。通过与铈钨、二元复合稀土钨等电极相比较,发现:三元复合稀土钨电极有更优越的热电子发射性能。
     利用金相显微镜、扫描电镜、能谱仪,并结合电子探针通过对加工态下不同规格的杆料进行观察,分析结果表明:第二相含量一定时,材料的加工性能与第二相的大小和分布密切相关,细小而弥散均匀的第二相有利于加工,复合稀土氧化物改变了材料的变形特性。通过对退火料的分析表明:不同稀土配比的钨电极第二相的变化是不相同的。Y_2O_3比例较低时,第二相加工到最后呈纤维状,退火后会分裂、球化;而Y_2O_3比例较高时,第二相在退火后形成长颗粒串。这直接影响到材料的加工性能及热电子发射性能。
W LCY(dopped with La2O3+CeO2+Y2O3) electrode of 2.0mm has been made by means of traditionally industrial metal-processing technology. Compared with Wce electrode and Wcv(dopped with CeO2+Y2O3) electrode, the former is of better electrode performance.
    Observing and analyzing of the worked WLCY material of different diameter by metallograph,SEM,EDS and electronprobe micro-analyzer ,the results show: While wt percent of dopant is certain,the material's processing property is closely connected with the size and distribution of dopant. Fine and dispersive dopant is benefit to work processing. Oxide compounded with rare-earth elements changes the transfiguration character of material. Analysis of WLCY electrode annealed at high temperature shows: Different proportion of La2O3:CeO2:Y2O3,different changes of dopant in tungsten electrode. Little Y2O3 lead to seperating and spherizing of annealed dopant,while much Y2O3 makes annealed dopant become long particle-chains.That directly influence on processing property and transmit property of heated electrons.
引文
1 重庆西南难熔金属研究所.以铈代钍的钨电极研制获得初步成功.钨钼材料,1973,7:31~32.
    2 Suga Y, Ogawwa K, Matsumoto HJ. Light Met. Weld & Construction, 1991,29(10):455~461.
    3 Sadek AA,Ushio M&Matsuda E Metallurgial Trans A, 1990,21(A):3221~3236.
    4 Matsuda F.,et al. Trans. of Japan Weld Soc., 1990, 21 (2): 3.
    5 Suga Y., et al. J.High Temperature Soc. Of Japan, 1991,17(3): 136.
    6 电子管设计手册编委会.磁控管设计手册.国防工业出版社,1978.
    7 郑良永.钨丝工艺学.上海科技出版社,1986.
    8 Nippon Tungsten Review. 1979,12:7~9.
    9 Staudt. J. Abhang Daut. Akal .Wiss 1962, Sektion Ⅲ:321~326.
    10 Chapin ,N.A.Cobine, J.D. Gallaghe., Tungsten-Thoria Electrodes for Insert Arc Welding J.A.WS.,30,529(1951)
    11 Druyvesteyn ,A.J.Electron Emisson of the cathode of an Mrc. Native, 1936:137,580.
    12 钨钼材料,1978,2:8~13.
    13 钨钼材料,1973,7:31~32.
    14 焊接,1973,12:20~21.
    15 四机部电真空手册编写组.电真空新型材料.1978,10.
    16 中国科学院上海光机所研究报告集,第七集,1979:28~29.
    17 中国科学院上海光机所研究报告集,第七集,1979:120~127.
    18 U.S.patent.No.4083811,Apr,1978.
    19 付炯芳.镧钼电极的研制.中南工业大学硕士论.1989.
    20 徐光宪.稀土(上册),冶金工业出版社,1995:30~34.
    21 钨钼材料,1980.2:31~32.
    22 粉末冶金.(俄)No9.1977:44~49.
    23 特许公报.(日)59.177305.
    24 罗英浩、阮允翔,何飓祺译.钨.冶金工业出版社,1983:394~395.
    25 肖纪美,霍明远.中国稀土理论与应用研究.高等教育出版社,1992:207~208.
    26 何肇基.金属力学性质.冶金工业出版社,1982.
    27 黄培云.粉末冶金原理.冶金工业出版社,1997.
    28 肖纪美.金属的韧性与韧化.上海科技出版社,1980.
    29 Proc. Of the second International congress on Fracture, 1969.
    30 Hahn G.T and .Rasenfield A.R Acta Met. 14(1966),1815.
    31 Hasselman D.P.H. and. Falrath R.M, J.Am. Ceramic Sa. 1966,49:68.
    32 特许公报.49:19494.
    33 Walter. H.Brattain And Joseph A.Becker. Phy. Rev. 1933,43:428.
    34 Langmuir Ⅰ. Phys. Rev. 1923,22:357.
    35 Rurgers. W. G.,Van Liempt, I. A. M. Z. anag. W. allg. chem., 1932,193:144.
    
    
    36 Smithels.C.Z,Tungsten,London 1952.3.
    37 Langmuir I.J.Franklin Institute 1934,217:543.
    38 (日)安藤弦平,长谷川克雄.焊接电弧现象,1978.
    39 Kondrator I.A 等.Plansee berichte fur Polver Meta-Megie.1976,15.
    40 陈响明,俞韦强.稀土对钨钼材料能影响规律的研究(内部资料).2001.
    41 中山大学.稀土物理化学常数.冶金工业出版社,1978.
    42 东芝.1963,18:149~154.
    43 樊小武,聂祚仁,陈颖等.TIG 焊中钨电极rim(凸缘)现象的研究.稀土金属材料与工程,1998,27:44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700