高功率微波功率合成技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功率合成是获得高功率微波辐射的一条重要技术途径。它允许在单个高功率微波源的基础上将有效辐射功率提高n倍甚至几十倍,对高功率微波技术的发展具有深远的意义。
    目前,国际上对高功率微波功率合成报道不多;国内则未见报道。本文重点研究高功率合成的关键技术。对高功率微波功率合成的关键技术如锁相源、高功率移相器、功率合成器进行了讨论分析,结合实验室实际情况,提出了以三端口输出相对论磁控管作为相干高功率微波源进行高功率合成技术研究的方案。理论计算和三维电磁仿真软件HFSS结合,设计了一种高功率微波介质移相器和波导型功率合成器,给出具体设计参数。目前处于实际加工阶段。
    本文还用矩量法对一种锁相源—多注速调管的谐振腔参数进行了计算和仿真,结果与实测一致。对输入腔加载同轴滤波器也做了一些初步设计,理论计算和HFSS仿真吻合较好。
Power combining technology is one of the important method which can obtain high power microwave radiation. It can enhance efficient radiation power to n times or more over based on the single high power microwave oscillator, so it's meaningful to the development of HPM.
     There isn't too much power combining reports of HPM at the present time in international. This thesis has studied some key HPM power combining technologies such as phase-locked source, high power phase shifter and high power combiner. According to the facts of HPRL, it presents a combining project of relativistic magnetron with three output ports which acts as an phase-coherent HPM source. Through theoretical computation and HFSS simulation, we have designed the HPM dielectric phase shifter and waveguide-based combiner.
     At the end, this thesis also has studied some characters of multiple-beam klystron resonator by moment method and the measured result accords with the computed result. A coaxial loaded filter of input resonator also presented in the thesis, the simulation data agrees well with the theoretical data.
引文
[1] James B, John S. 高功率微波[M]. 贺云汉,张国良译.
    [2] 连汉雄. 微波锁相振荡源[M]. 北京:人民邮电出版社,1982.
    [3] 邓绍范. 微波功率合成技术[M]. 哈尔滨:哈尔滨工业大学出版社,1990.
    [4] 王少庆,林为干. N个微波振荡器互相注入锁定理论[J]. 电子科技大学学报,1994,23(4):145-150.
    [5] 谢文楷,蒙林. 高功率微波振荡器功率合成中的锁频与锁相[J]. 电子科技大学学报,1994,23(4):393-399.
    [6] S. C. Chen, G.. Bekefi, R. Temkin. Injection locking of a long-pulse relativistic magnetron. SPIE, 1991, 1407:67.
    [7] W. Woo, J. Benford, D. Fittingghoff, et al. Phase locking of high power microwave oscillators[J]. Appl, Phys, 1989,64.
    [8] J. S Levine, J. Benford, R. Courtney, et al. Operational characteristics of a phase-locked module of relativistic magnetrons[J]. SPIE,1407:74-82.
    [9]魏克珠.微波铁氧体新器件[M].北京:国防工业出版社,1995.
    [10]向仁生.微波铁氧体线性器件原理[M].北京:科学出版社,1979.
    [11]温俊鼎,韩军. 正脊、背脊和矩形波导锁式铁氧体相移器的一般理论[J]. 电子学报,1987,6:43-48.
    [12]高昌杰. 铁氧体波导移相器的高功率设计初探[J]. 火控雷达技术,2001,30:47-50.
    [13]沙侃,车文荃,温勇武、温俊鼎. 铁氧体大功率移相器研究[J].雷达与对抗,1999,3:33~37.
    [14]K. J. Russell. Microwave power combining techniques[J]. IEEE Trans on MTT, 1979, 27(5):472-478.
    [15]U. H. Gysel. A new N-way power divider/combiner suitable for high power applications[J]. IEEE Trans on MTT-S, 1975:116-118.
    [16]A. M. Saleh. Planar electrically symmetric n-way hybrid power dividers/combiners[J]. IEEE Trans on MTT, 1980, 28(6):555-563.
    [17]A. Sanada, K. Fukui, S. Nogi. A waveguide type power divider/combiner of double-ladder multiple-port structure[J]. IEEE Trans on MTT, 1994, 42(7):1154-1161.
    [18]K. Chang, M. Li, K. A. Hummer. High power four-way power divider/combiner[J]. IEEE Trans on MTT-S, 1990:1329-1332.
    [19]Y. Tahara, H. O. Hashi, T. Ban, et al. A low-loss serial power combiner using novel suspended stripline couplers[J]. IEEE Trans on MTT-S, 2001:39-42.
    
    
    [20]M. Hanczor, M. Kumar. 12-KW S-band solid state transmitter for modern radar systems[J]. IEEE Trans on MTT, 1993, 41(12):2237-2242.
    [21]M. Kumar, M. Hanczor, H. Voigt, et al. 22-KW next generation low cost s-band solid state transmitter for surveillance and air traffic control radars[J]. IEEE Trans on MTT-S, 1995:1601-1604.
    [22]白义广. 径向功率分配/合成器的设计[J]. 微波学报,1995,15(2):189-192.
    [23]G. W. Swift, D. Stones. A comprehensive design for the radial wave power combiner[J]. IEEE Trans on MTT-S, 1988:279-281.
    [24]R. Mallavarpu, M. P. Puri. High CW power with multi-octave bandwidth from power-combined mini-TWTs[J]. IEEE Trans on MTT-S, 1990:1333-1336.
    [25]B.Even-or. Broadband phase equalizing technique for combining high power TWTs[J]. Microwave journal,1988,11:107~114.
    [26]J.S.Levine, B.D.Harteneck, et al. Frequency agile relativistic magnetrons[J]. ISPIE,vol 2557:74~78.
    [27]钟哲夫. 空间合成高功率微波研究. 珠海:全国第五届高功率微波会议论文集,2002,12.
    [28]N.F.Kovalev, B.D.Kol, et al Relativistic magnetron with diffraction coupling[J]. Sov,Tech,Phys,Lett,1977, 3.
    [29] H.Sze,B.Harteneck etc. Operating characteristics of a relativistic magnetron with a washer cathode[J]. IEEE Trans on Plasma Sci,1987,15:327~331.
    [30]柯林. 微波工程基础[M]. 吕继尧译. 北京:人民邮电出版社,1981:299~300.
    [31]张克潜,李德杰. 微波与光电子学中德电磁理论[M]. 北京:电子工业出版社,2001:305-310.
    [32]瓦尔特朗. 被导电磁波原理[M].徐鲤庭译.北京:人民邮电出版社,1977:396-397.
    [33]G.F. Bland, A.G. Franco. Phase-shift characteristics of dielectric loaded waveguide[J]. IRE Trans on MTT, 1962,10(11):492-496.
    [34]R.Seckelmann. Propagation of TE modes in dieletric loaded waveguides[J]. IEEE Trans on MTT,1966,14(11):518-527.
    [35]N. Eberhardt. Propagation in the off center E-plane dielectriclly loaded waveguide[J]. IEEE Trans on MTT,1967,15(5):282~289.
    [36]Fred E.Gardiol. Higher-order modes in dielectrically loaded rectangular waveguides[J]. IEEE Trans on MTT,1966,16(11):919-924.
    [37]R.G. Heeren, J.R. Band. An Inhomogeneously filled rectangular waveguide capable of supporting TEM propagation[J]. IEEE Trans on MTT,1971,(11):884~885.
    
    
    
    [38]C. C. Yu, T. H. Chu. Analysis of dielectric-loaded waveguide[J]. IEEE Trans on MTT,1990,38(9):1333~1338.
    [39]L. Outifa, M.Delmotte, H.Jullien. Dielectric and geometric dependence of electric field and power distribution in a waveguide heterogeneously filled with lossy dieletrics[J]. IEEE Trans on MTT,1997,45(8):1154~1161.
    [40]Z. Menachem,E Jerby. Transfer matrix function for wave propagation in dieletric waveguides with arbitrary transverse profiles[J]. IEEE Trans on MTT,1998,46(7):975~982.
    [41]E. Silvestre, M.Angel etc. Analysis of inhomogeneously filled waveguides using a bi-orthonormal method[J]. IEEE Trans on MTT,2000,48(4):589~594.
    [42]应嘉年,顾茂章,张克潜. 微波与光导波技术[M]. 北京:国防工业出版社,1994.
    [43]丁耀根. 大功率速调管的技术现状和发展趋势[J]. 真空电子技术,1995,2:14-17.
    [44]电子管设计手册编辑委员会. 大功率速调管设计手册[M]. 北京:国防工业出版社,1979:91~112.
    [45]Williamson A G. The resonant frequency and tuning characteristics of a narrow-gap reentrant cylindrical cavity[J]. IEEE Trans on MTT, 1976, 24(4):182~187.
    [46]Jaworski M. On the resonant frequency of a reentrant cylindrical cavity[J]. IEEE Trans on MTT, 1978,26(4):256~260.
    [47]朱 敏,吴鸿适. 速调管双重入式柱形腔的计算[J]. 电子学报,1981, 4:8~15.
    [48]黄 华,李正红,江金生. 相对论速调管单重入式谐振腔的解析分析[J]. 强激光与粒子束,2000,12(4):501~504.
    [49]Edward A G, Ludvik M B, Yevgeny V Z, etc. The new generation of high-power multiple-beam klystron[J].IEEE Trans on MTT, 1993, 41(1):15~19.
    [50]斯廷逊 D C. 电磁学中的数学[M],王昌曜,刘天惠译. 北京:国防工业出版社,1982:32~57,132~94.
    [51]宋文淼. 并矢格林函数和电磁场的算子理论[M]. 合肥:中国科学技术大学出版社,1991:140~151.
    [52]谭博学,魏佩玉,饶明中. 三维谐振腔分析的互补性[J].华中理工大学学报,1999,27(8):84~86.
    [53]甘本祓,吴万春. 现代微波滤波器的结构与设计[M]. 北京:科学出版社,1973.
    [54]G. L. Matthaei, L. Yong, E. M. Jones. Microwave filters, impedance Matching networks and coupling structure. New York, McGraw-Hill,1964.
    [55]李家胤,熊祥正,杨梓强等. 相对论磁控管的实验研究[J]. 强激光与粒子束,1997,9(4):563-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700