铁基粉末冶金材料烧结渗硼工艺及组织、性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过烧结渗硼新工艺对粉末压坯实施烧结、渗硼一步处理,旨在以此烧结渗硼工艺替代传统粉末冶金烧结和后续表面渗硼复杂工序,取消二次表面处理工序,获得与传统渗硼处理具有同等质量的表面硬化粉末冶金零件。实验选用铁基粉末为原材料,压制不同密度压坯,在不同温度和保温时间条件下,对压坯进行烧结渗硼。用X射线衍射测定渗硼层的相结构;用电子显微术研究微观组织形貌和相结构;用摩擦磨损试验和三点弯曲强度测试方法对烧结渗硼材料的性能进行表征;采用电化学动电位极化曲线研究烧结渗硼材料的耐腐蚀性能。
     实验结果表明,原始压坯密度、烧结温度和保温时间都对烧结渗硼材料的组织和性能有影响,密度为7.0g/cm3的粉末压坯在1100oC保温4小时获得的烧结渗硼材料的组织、性能最好,是最佳工艺参数。本文还对稀土元素和渗碳气氛对烧结渗硼层组织和性能的影响进行了研究。稀土可以增加渗硼层厚度并明显提高烧结渗硼材料的弯曲强度,同时对渗硼有促进作用。渗碳气氛可以使碳原子在烧结渗硼时渗入渗硼层,使渗硼层发生共晶化,进而大幅度降低渗硼层脆性,提高了烧结渗硼材料的弯曲强度。含碳烧结渗硼材料热处理后可以使材料的摩擦磨损性能和弯曲强度得到明显改善。本文还利用JEM2010F高分辨透射电镜对渗硼层显微组织进行详细的高分辨电子显微分析,测定渗硼层的相结构,观察到铁、硼原子族的投影排列位置和硼化物沿<002>方向长大的规律,并在此基础上提出了烧结渗硼机理。烧结渗硼机理研究表明渗硼过程开始较早,但进行速度较慢,整体渗硼层是在烧结完成之后形成,在较长一段时间内烧结过程和渗硼过程是同时进行的。
With the development of morden industry and technologies, the requirement on the performance of Powder Metallurgy (PM) part increases. Due to their usage as constructral materials, PM parts are requested to have better wearing resistantce and surface hardness, making surface mordification of PM parts a very important field in material science. The surface chemcal heat treatment, which is used to alter the composition, structure and morphology by atoms diffusion and chemical reactions, has been widely used in PM parts.
     Boronization, as a common surface chemical heat treatment, can increase the surface hardness to 1200-2000HV. It can improve the parts’wearing resistance comparing with other chemical heat treatment such as carbonization, nitriding, carbonitriding and percolations. Besides, boronizing layer has very good corrosion resistance and hot hardness. Presently, boronizations are generally carried out after the sintering of PM parts. The energy comsumption can be reduced and the distortion of PM parts induced by second heating can be eliminated, if the sintering and boronizing can be combinded.
     In this thesis, a new sintering-boronizing process is developed and Fe-based PM parts with comparable surface properties as traditional boronizing process are achieved. Process parameters, resultant boronizing layer and properties are stuied. HRTEM is employed to study the microstructures as resultant boronizing layer. Phase structures, positions of iron and boron atoms are determined.The growth disciplinary of boride is also observed. Based on above experiments, a mechanism of sintering-boronizing process is proposed.
     Due to the shortage of boronization such as brittle and shedding, rare earth element or solid carburizing agent is added to produce a rare earth element boronizing or a carbonious boronizing atmosphere. Surface hardened Fe-pased PM part with rare earth element containing or carbon containing boronizing layers are achieved. The effect on boronizing structures and properties are studied.
     The effects of sintering temperature, heating duration and compact density on PM parts properties are first studied. And the results indicate that sintering temperature has a very big influence on the thickness of boroning layer, followed by heating duration. At a lower compact density, the resultant higher porosity is benefit for increasing the thickness of boronizing layer but the quality of boronizing layer is reduced when the porosity is too big. The optimized boronizing parameters are 1100°C and 4 hours, with a resultant boronizing thickness of 145μm.
     Studies on traditional boronization structures show that boronization structures are mainly composed of Fe2B phase and small amount of FeB phase. The micro hardness of boronizing layer can reach 1000~1600HV0.3 while that of substrate is only 190 HV0.3. Quenching process can eliminate the grads of hardness transitions from boroning layer to substrate and increase the interaction between boronizing layer and substrate. The three-point bending experiments indicate that the bearing capacityof boronizing layer is bigger against a compressive stress than against a tensile stress. The wearing resistance of sintering-boronizing layer is better than quenched carburizing speciments and direct sintering specimens. The wearing rate of sintering-boronizing specimens is only 5~10% of that of direct sintering specimens. The sintering-boronizing specimens also have a better corrosion resistance. The corrosion rate is reduced to 50% by replacing direct sintering with sintering-boronizing process.
     The effect of rare earth element content on sintering-boronizing process is also studied. The results demonstrate that rare earth element has a positive effect on sintering-boronizing in a certain range and excessive rare earth element can reduce the thickness of boronizing layer. The EDX observation show that the solid solution content of rare earth element in boronizing layer is 0.44 at.% and that in transition region is 0.68at.%. Rare earth element tends to exist inside the defects. Rare earth element bearing boronizing layer is also mostly composed of Fe2B phase with little FeB phase. The FeB in boronizing layers decreases as the increase of rare earth element content. Results of three-point bending experiment show that the bending strength of 6wt.% rare earth element content boronizing specimens can reach as 606.7 MPa, which is higher then that of derect sintering specimens (510.6 MPa) and that of none rare earth element boronizing specimens (566.1 MPa). Quenching process can obviously increase the bending strength of boronizing specimens. Rare earth element containing boronizing layer have a higher microhardness, improved wearing resistence, reduced friction coefficient and enhanced corrosion resistence.
     Studies on the effect of carburizing atmosphere on the microstructure and properties of sintering-boronizing showed that the carbon atoms hinder the borozing to some extent. The boronizing layer decreases as the increase of the concentration of carbon atoms. At 1120°C, due to the infiltration of carbon atoms, the microstructure of boronizing layer is changed from original Fe2B phase to eutectic boride, ferrite and pearlite. X-Ray diffraction analysis at this temperature show that Fe2B,α-Fe and Fe3(C,B) domain in the boronizing layer. Fe2B phase reduces and Fe3(C,B) increases as the increase of carbon content in boronizing agent. The result of three-point bending experiments shows that sintering boronizing specimens have a higher bending strength and improved tenacity. Bending strength of carbon containing boronizing specimen can be further improved by quenching process. It can reach 1258.3 MPa with 30% carbon atoms, which is significantly higher than that of carburized specimen (899.3MPa) and quenched boronizing specimen (922.1MPa), indicating the carbon content of carbon boride layer greatly improve the bending properties. Due to the existence of eutectic structure in carburous boronizing layer, the hardness of boronzing layer decrease to 680HV0.3. However, the wear resistence is comparable with that of boronizing specimen, which shows that the carburous boronizing specimen has good wear resistance. Corrosion tests show that the same carbon boride samples has good corrosion resistance.
     TEM samples are prepared. HRTEM was employed to analysis the microstructures of boronizing layer and Fe2B phase. The results are listed below. The boronizing layer is found to be Fe2B phase based on the calculations on diffraction patterns and measurements from HRTEM images from different directions i.e. B= [1(2|-)0], B= [1(3|-)0]and B= [1(4|-)0]. Elliptical Cu-rich precipitates are observed in boronizing layer and substrates. The phase relationship of Cu-rich precipitate and Fe2B is that {111}_(Cu)//{002}_(Fe_2B) and that of Cu-rich precipitate andα-Fe is {111}_(Cu)// {110}_(α-Fe). HRTEM observations show that Fe2B grows along the <002> direction. Based on the analysis of growth mechanism of powder under different conditions and the precipitation of elliptical Cu-rich phase, Mechanism model of the formation of sintering-boronizing process is established. From this model, it is believed that sintering and boronizing process simultaneously but the preicipitaion of Cu-rich pahse is before the formation of boronizing layer. Additionally, boride may nucleate and grow inside the holes in the materials.
     In this thesis, the sintering boronizing process of iron based PM material was further improved, and the understanding of the formation of boride and related theories are also presented. In addition, a reference for future studies of iron based PM materials is provided. Then this thesis bring both practical guidance and values for the preparation of high performance PM materials.
引文
[1]黄云培.粉末冶金原理(第二版)[M].北京:冶金工业出版社,1997.
    [2]周作平,申小平.粉末冶金机械零件实用技术[M].北京:化学工业出版社,2006.
    [3] OMORI M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS) [J]. Materials Science and Engineering A, 2000, 287(2): 183-188.
    [4] LEONELLI C, VERONESI P, DENTI L, et al. Microwave assisted sintering of green metal parts [J]. Journal of Materials Processing Technology, 2008, 205(1-3): 489-496.
    [5] OGHBAEI M, MIRZAEE O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications [J]. Journal of Alloys and Compounds, 2010, 494(1-2): 175-189.
    [6] PANDA S S, SINGH V, UPADHYAYA A, et al. Sintering response of austenitic (316L) and ferritic (434L) stainless steel consolidated in conventional and microwave furnaces [J]. Scripta Materialia, 2006, 54(12): 2179-2183.
    [7] Glardon R, Karapatis N, Romano V, et al. Influence of Nd:YAG Parameters on the Selective Laser Sintering of Metallic Powders [J]. CIRP Annals - Manufacturing Technology, 2001, 50(1): 133-136.
    [8] KENTHILKUMARAN K, PANDEY P M, RAO P V M. Influence of building strategies on the accuracy of parts in selective laser sintering [J]. Materials and Design, 2009, 30(8): 2946-2954.
    [9] MOSSINO P. Some aspects in self-propagating high-temperature synthesis [J]. Ceramics International, 2004, 30(3): 311-332.
    [10] MOLOODI A, RAISZADEH R, VAHDATI-KHAKI J, et al. An assessment of the process of Self-propagating High-Temperature Synthesis for the fabrication of porous copper composite [J]. Journal of Alloys and Compounds, 2009, 487(1-2): 413-419.
    [11] RAGULYA A V. Fundamentals of Spark Plasma Sintering[J]. Encyclopedia of Materials: Science and Technology, 2008: 1-5.
    [12] UPADHYAYA G S. Some issues in sintering science and technology [J]. Materials Chemistry and Physics, 2001, 67(1-3): 1-5.
    [13] GROZA J R, SUBHASH H R, KAZUO Y. Plasma activated sintering of additive-free AlN powders to near-theoretical density in 5 minutes [J]. Journal of Materials Research,1992, 7(10): 2643-2645.
    [14]范景莲,黄伯云,刘军,等.微波烧结原理与研究现状[J].粉末冶金工业, 2004, 14(01): 29-33.
    [15] ANKLEKAR R M, AGRAWAL D K, ROY R. Microwavesintering and mechanical Properties of PM copper steel [J]. Powder Metallurgy, 2001, 44(4): 355-362.
    [16] MURALI K, CHATTERJEE A N, SAHA P, et al. Direct selective laser sintering of iron-graphite powder mixture [J]. Journal of Materials Processing Technology, 2003, 136(1-3): 179-185.
    [17]任继文,彭蓓.选择性激光烧结技术的研究现状与展望[J].机械设计与制造, 2009, (10): 266-268.
    [18]殷声.燃烧合成[M].北京:冶金工业出版社,1999.
    [19] FILIMONOV I A, KIDIN N I. High-temperature combustion synthesis: Generation of electromagnetic radiation and the effect of external electromagnetic fields (review) [J]. Combustion Explosion and Shock Waves, 2005, 41(6): 639-656.
    [20] SARITAS S, DOGAN C, VAROL R. Improvement of fatigue properties of PM steels by shot peening [J]. Powder Metallurgy, 1999, 42(2): 126-130.
    [21]姚寿山,李戈扬,胡文彬.表面科学与技术[M].北京:机械工业出版社,2005.
    [22] LEE H S, KIM D S, JUNG J S, et al. Influence of peening on the corrosion properties of AISI 304 stainless steel [J]. Corrosion Science, 2009, 51(12): 2826-2830.
    [23] TURNBULL A, PITTS J J, LORD J D. Residual stress relaxation in shot peened high strength low alloy steel [J]. Materials Science and Technology, 2008, 24(3): 327-3234.
    [24] BENEDETTI M, FONTANARI V, SCARDI P, et al. Reverse bending fatigue of shot peened 7075-T651 aluminium alloy: The role of residual stress relaxation [J]. International Journal of Fatigue, 2009, 31(8-9): 1225-1236.
    [25] TSUJI N, TANAKA S, TAKASUGI T. Effects of combined plasma-carburizing and shot-peening on fatigue and wear properties of Ti-6Al-4V alloy [J]. Surface and Coatings Technology, 2009, 203(10-11): 1400-1405.
    [26] RAJADHYAKSHA S M, MICHALERIS P. Optimization of thermal processes using an Eulerian formulation and application in laser surface hardening [J]. International Journal for Numerical Methods in Engineering, 2000, 47(11): 1807-1823.
    [27] ZHANG K K, HAN C X, QUAN S L, et al. Superplastic solid state welding of steel and copper alloy based on laser quenching of steel surface [J]. Transactions of NonferrousMetals Society of China 2005, 15(2): 384-388.
    [28] YAO C W, XU B S, HUANG J, et al. Study on the softening in overlapping zone by laser-overlapping scanning surface hardening for carbon and alloyed steel [J]. Optics and Lasers in Engineering, 2010, 48(1): 20-26.
    [29] CHEN C H, ALTSTETTER C J, RIQSBEE J M. Laser processing of cast iron for enhanced erosion resistance [J]. Metallurgical transactions A , 1982, 15(4): 719-728.
    [30] LI H X, CHEN G N, ZHANG G X, et al. Characteristics of the interface of a laser-quenched steel substrate and chromium electroplate [J]. Surface and Coatings Technology, 2006, 201(3-4): 902-907.
    [31] TASSIN C, LAROUDIE F, PONS M, et al. Improvement of the wear resistance of 316L stainless steel by laser surface alloying [J]. Surface and Coatings Technology, 1996, 80(1-2): 207-210.
    [32] LO K H, CHENG F T, KWOK C T, et al. Improvement of cavitation erosion resistance of AISI 316 stainless steel by laser surface alloying using fine WC powder [J]. Surface and Coatings Technology, 2003, 165(3): 258-267.
    [33] TANG C H, CHENG F T, MAN H C. Improvement in cavitation erosion resistance of a copper-based propeller alloy by laser surface melting [J]. Surface and Coatings Technology, 2004, 182(2-3): 300-307.
    [34] GUAN Y C, ZHOU W, LI Z L, et al. Study on the solidification microstructure in AZ91D Mg alloy after laser surface melting [J]. Applied Surface Science, 2009, 255(19): 8235-8236.
    [35] DUTTA MAJUMDAR J, RAMESH CHANDRA B, NATH A K, et al. Studies on compositionally graded silicon carbide dispersed composite surface on mild steel developed by laser surface cladding [J]. Journal of Materials Processing Technology, 2008, 203(1-3): 502-512.
    [36] LIN W C, CHEN C. Characteristics of thin surface layers of cobalt-based alloys deposited by laser cladding [J]. Surface and Coatings Technology, 2006, 200(14-15): 4557-4563.
    [37] LEE J H, JANG J H, JOO B D, et al. Laser surface hardening of AISI H13 tool steel [J]. Transactions of Nonferrous Metals Society of China, 2009, 19(4): 917-920.
    [38] GRUM J, KEK T. The influence of different conditions of laser-beam interaction in laser surface hardening of steels [J]. Thin Solid Films, 2004, 453-454: 94-99.
    [39]李月英,刘勇兵,陈华.凸轮材料的表面强化及其摩擦学特性[J].吉林大学学报(工学版), 2007, 37(5): 1064-1068.
    [40] PELLETIER J M, RENAUD L, FOUQUET F. Solidification microstructures induced by laser surface alloying: influence of the substrate [J]. Materials Science and Engineering A, 1991, 134: 1283-1287.
    [41] ANJOS M A, VILAR R, LI R, et al. Fe-Cr-Ni-Mo-C alloys produced by laser surface alloying [J]. Surface and Coatings Technology, 1995, 70(2-3): 235-242.
    [42] TONG X, ZHOU H, REN L Q, et al. Thermal fatigue characteristics of gray cast iron with non-smooth surface treated by laser alloying of Cr powder [J]. Surface and Coatings Technology, 2008, 202(12): 2527-2534.
    [43] TAM K F, CHENG F T, MAN H C. Enhancement of cavitation erosion and corrosion resistance of brass by laser surface alloying with Ni-Cr-Si-B [J]. Surface and Coatings Technology, 2002, 149(1): 36-44.
    [44] ZHANG S Y, ZHENG K Q. The C-N-B laser alloying of the #5 steel surface [J]. Materials Chemistry and Physics, 1990, 25(3): 277-285.
    [45] LEE S Z, ZUM K H. Laser-induced surface alloying of Al2O3 ceramics with ZrO2---TiO2 powders [J]. Ceramics International, 1994, 20(3): 147-157.
    [46] TASSIN C, LAROUDIE F, PONS M, et al. Carbide-reinforced coatings on AISI 316 L stainless steel by laser surface alloying [J]. Surface and Coatings Technology, 1995, 76-77: 450-455.
    [47]胡木林,谢长生,王爱华.激光熔敷材料相容性的研究进展[J].金属热处理, 2001, (1): 1-8.
    [48] LIU J C, LI L J. In-time motion adjustment in laser cladding manufacturing process for improving dimensional accuracy and surface finish of the formed part [J]. Optics and Lasers in Engineering, 2004, 27(6): 477-483.
    [49] TU S R, LIU Y, REN L Q, et al. Development of Laser-Cladding Layers Containing Nano-Al2O3 Particles for Wear-Resistance Materials [J]. Metallurgical and Materials Transactions A, 2006, 37A(12): 3639-3645.
    [50] CHRISTODOULOU G, WALKER A, STEEN W.M., et al. Laser surface melting of some alloy steel [J]. Metals Technology, 1983, 10(6): 215-223.
    [51] GENG H R, LIU Y, CHEN C Z, et al. Laser surface remelting of Cu-Cr-Fe contact material [J]. Materials Science and Technology, 2000, 165(5): 64-567.
    [52] XIAN A P, ZHU Y X. The development of manufacture processing for Cu-Cr contact alloy [J]. Acta Metallurgica Sinica, 2003, 39(3): 225-233.
    [53]吕大铭,凌贤野.新型真空触头材料—粉末冶金Cr-Cu系合金[J].粉末冶金技术, 1984, (3): 45-49.
    [54]齐宝森,陈路宾,王忠诚,等.化学热处理技术[M].北京:化学工业出版社,2006.
    [55] CHILD H C, PLUMB S A, REEVES G. The effect of thermo chemical treatments on the mechanical properties of tool steel [J]. Materials and Design, 1983, 4(1): 682-687.
    [56] NOBILI L, CAVALLOTTI P, PESETTI M. Gas-Carburizing Kinetics of a Low-Alloy Steel [J]. Metallurgical and materials Transactions A, 2010, 41A(2): 460-469.
    [57] FORD S I, MUNROE P R, YOUNG D J. Microstructural analysis of carbonitrided austenitic steels [J]. Micron, 2001, 32(8): 817-824.
    [58] TUCKART W, GREGORIO M, LURMAN L. Sliding wear of plasma nitrided AISI 405 ferritic stainless steel [J]. Surface Engineering, 2010, 26(3): 185-190.
    [59] LI C M, SHEN B L, LI C J, et al. Effect of boronizing temperature and time on microstructure and abrasion wear resistance of Cr12Mn2V2 high chromium cast iron [J]. Surface and Coatings Technology, 2008, 202(24): 5882-5886.
    [60] Habig K H. Wear protection of steels by boriding, vanadizing, nitriding, carburising, and hardening [J]. Materials and Design, 1980, 2(2): 83-92.
    [61] SI X, LU B N, WANG Z B. Aluminizing Low Carbon Steel at Lower Temperatures [J]. Journal of Materials Science and Technology, 2009, 25(4): 433-436.
    [62] LEE J W, WANG H C, LI J L, et al. Tribological properties evaluation of AISI 1095 stell chromized at differnet temperatures [J]. Surface and Coatings Technology, 2004, 188: 550-555.
    [63] VOJTECH D, KUATIK T, JUREK K, et al. Cyclic-oxidation resistance of protective silicide layers on titanium [J]. Oxidation of Metals, 2005, 63(5-6): 305-323.
    [64] MARTINZ H P, PRANDINI K, K?CK W, et al. Carburization of high temperature PM-materials [J]. Materials and Corrosion, 1998, 49(4): 246-251.
    [65] MU?OZ RIOFANO R M, CASTELETTI L C, CANALE L C F, et al. Improved wear resistance of P/M tool steel alloy with different vanadium contents after ion nitriding [J]. Wear, 2008, 265(1-2): 57-64.
    [66] STAGNO E, PINASCO M R, PALOMBARINI G, et al. Behaviour of sintered 410 low carbon steels towards ion nitriding [J]. Journal of Alloys and Compounds, 1997,247(1-2): 172-179.
    [67]张仲武.渗硼技术的发展和应用[J].金属热处理, 1981, (02): 1-16.
    [68] SAHIN S. Effects of boronizing process on the surface roughness and dimensions of AISI 1020, AISI 1040 and AISI 2714 [J]. Journal of Materials Processing Technology, 2009, 209(4): 1736-1741.
    [69] YOON J H, JEE Y K, LEE S Y. Plasma paste boronizing treatment of the stainless steel AISI 304 [J]. Surface and Coatings Technology, 1999, 112(1-3): 71-75.
    [70] HUNGER H J, LOBIG G. Generation of boride layers on steel and nickel alloys by plasma activation of boron trifluoride [J]. Thin Solid Films, 1997, 310(1-2): 244-250.
    [71]丁二农.深层渗硼层的组织形态及其硼碳扩散机制的研究[J].合肥工业大学学报, 1993, 16(4): 71-75.
    [72]蒋百灵,雷廷权,刘威,等. 20钢渗硼过程中硼化物形核和生长的TEM观察及室温形变的影响[J].金属学报, 1990, 26(2): A117-A121.
    [73] YAN P X, ZHANG X M, XU J W, et al. High-temperature behavior of the boride layer of 45# carbon steel [J]. Materials Chemistry and Physics, 2001, 71(1): 107-110.
    [74] XU C H, XI J K, GAO W. Improving the mechanical properties of boronized layers by superplastic boronizing [J]. Journal of Materials Processing Technology, 1997, 65(1-3): 94-98.
    [75] FICHTL W. Boronizing and its practical applications [J]. Materials and Design, 1981, 2(6): 276-286.
    [76] BEKTES M, CALIK A, UCAR N, et al. Pack-boriding of Fe-Mn binary alloys: Characterization and kinetics of the boride layers [J]. Materials Characterization, 2010, 61(2): 233-239.
    [77] OZDEMIR O, USTA M, BINDAL C, et al. Hard iron boride (Fe2B) on 99.97wt.% pure iron [J]. Vacuum, 2006, 80(11-12): 1391-1395.
    [78] CAMPOS I, PALOMAR M, AMADOR A, et al. Evaluation of the corrosion resistance of iron boride coatings obtained by paste boriding process [J]. Surface and Coatings Technology, 2006, 201(6): 2438-2442.
    [79] CAMPOS I, TORRES R, BAUTISTA O, et al. Effect of boron paste thickness on the growth kinetics of polyphase boride coatings during the boriding process [J]. Applied Surface Science, 2006, 252(6): 2396-2403.
    [80] KüPER A, QIAO X, STOCK H R, et al. A novel approach to gas boronizing [J]. Surfaceand Coatings Technology, 2000, 130(1): 87-94.
    [81] BINDAL C, HIKMET A. Characterization of borides formed on impurity-controlled chromium-based low alloy steels [J]. Surface and Coatings Technology, 1999, 122(2-3): 208-213.
    [82] RODRIGUEZ E, LAUDIEN G, BIEMER S., et al. Plasma-assisted boriding of industrial components in a pulsed d.c. glow discharge [J]. Surface and Coatings Technology, 1999, 116-119: 229-233.
    [83] YAN P X, SU Y C. Metal surface modification by B-C-nitriding in a two temperature stage process [J]. Materials Chemistry and Physics, 1995, 39(4): 304-308.
    [84]李辉.工业规模气体渗硼工艺的研究[J].武汉食品工业学院学报, 1997, (4): 47-51.
    [85]曹晓明,王建安,姜信昌.用BCl3-H2介质渗硼工艺的研究[J].河北工学院学报, 1987, (1): 10-20.
    [86] MATIAOVSKY K, CHRENKOVá-PAU M, FELLNER P, et al. Electrochemical and thermochemical boriding in molten salts [J]. Surface and Coatings Technology, 1988, 35(1-2): 133-149.
    [87]孔德谆.化学热处理原理[M].北京:航空工业出版社,1992.
    [88]陈涛,陈彬南.中温盐浴渗硼的试验研究[J].金属热处理, 1986, (6): 26-30.
    [89] ALLAOUI O, BOUAOUADJA N, SAINDERNAN G. Characterization of boronized layers on a XC38 steel [J]. Surface and Coatings Technology, 2006, 201(6): 3475-3482.
    [90] SEN U, SEN S, YILMAZ F. An evaluation of some properties of borides deposited on boronized ductile iron [J]. Journal of Materials Processing Technology, 2004, 148(1): 1-7.
    [91] KEDDAM M, CHENTOUF S M. A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding [J]. Applied Surface Science, 2005, 252(2): 393-399.
    [92] JAIN V, SUNDARARAJAN G. Influence of the pack thickness of the boronizing mixture on the boriding of steel [J]. Surface and Coatings Technology, 2002, 149(1): 21-26.
    [93]陈树旺,程焕武,陈卫东.渗硼技术的研究应用发展[J].国外金属热处理, 2003, 24(5): 8-12.
    [94]黄拿灿.硼砂型固体渗硼剂渗硼机理探讨[J].广州机械学院学报, 1994, 12(4): 9-14.
    [95]孙希泰,裴贻初,张正中,等.硼铁—氟硼酸钾—氧化铝粉末渗硼及其应用[J].山东工学院学报, 1979, (02): 32-40.
    [96] SPENCE T W, MAKHLOUF M M. Characterization of the operative mechanism in potassium fluoborate activated pack boriding of steels [J]. Journal of Materials Processing Technology, 2005, 168(1): 127-136.
    [97]孙希泰,裴贻初,张正中,等.氟硼酸钾—碳酸氢铵复合催渗粉末渗硼的研究[J].金属热处理, 1980, (06): 8-13.
    [98]孙希泰,李木森.固体渗硼的发展概况[J].金属热处理, 1995, (6): 5-8.
    [99] TABUR M, LZCILER M, GUL F, et al. Abrasive wear behavior of boronized AISI 8620 steel [J]. wear, 2009, 266(11-12): 1106-1112.
    [100] SEN U, SEN S, YILMAZ F. Structural characterization of boride layer on boronized ductile irons [J]. Surface and Coatings Technology, 2004, 176(2): 222-228.
    [101] OZDEMIR O, OMAR M A, USTA M, et al. An investigation on boriding kinetics of AISI 316 stainless steel [J]. Vacuum, 2008, 83(1): 849-860.
    [102] OZBEK I, BINDAL C. Mechanical properties of boronized AISI W4 steel [J]. Surface and Coatings Technology, 2002, 154(1): 14-20.
    [103] FICHTL W, TRAUSNER N, MATUSCHKA A G. Boronizing with EKabor [M]. Munich:ESK GmbH,1988.
    [104] USLU L, COMERT H, IPEK M, et al. A comparison of borides formed on AISI 1040 and AISI P20 steels [J]. Materials and Design, 2007, 28(6): 1819-1826.
    [105] Evaluation of borides formed on AISI P20 steel Evaluation of borides formed on AISI P20 steel [J]. Materials and Design, 2007, 28(1): 55-61.
    [106] NAM K S, LEE K H, LEE S R, et al. A study on plasma-assisted bonding of steels [J]. Surface and Coatings Technology, 1998, 98(1-3): 886-890.
    [107] LEE K H, NAM K S, SHIN P W, et al. Effect of post-oxidizing time on corrosion properties of plasma nitrocarburized AISI 1020 steel [J]. Materials Letters, 2003, 57(13-14): 2060-2065.
    [108] NAM K S, LEE K H, LEE D Y, et al. Metal surface modification by plasma boronizing in a two-temperature-stage process [J]. Surface and Coatings Technology, 2005, 197(1): 51-55.
    [109]片桐敏夫. Fe-Fe2B共晶化处理にする表面硬化[J].金属表面技术, 1978, 29(5): 256-258.
    [110]马鹤庆.渗硼组织共晶化[J].金属热处理学报, 1982, 3(2): 91-105.
    [111]马鹤庆.渗硼共晶化组织的研究[J].金属热处理学报, 1982, 3(2): 91-105.
    [112]李丹明. 38CrMoAl钢激光渗硼处理[J].热加工工艺, 1987, (6): 5-8.
    [113] BADINI C, BIANCO M, TALENTINO S, et al. Laser boronizing of some titanium alloys [J]. Applied Surface Science, 1992, 54(1): 374-380.
    [114]程树红.高频感应加热渗硼[J].热加工工艺, 1987, (2): 12-16.
    [115] KIM W B, NA SJ. A study on residual stresses in surface hardening by high frequency induction heating [J]. Surface and Coatings Technology, 1992, 52(3): 281-288.
    [116]陈树旺.钢的高频感应加热渗硼[J].新技术新工艺, 1983, (4): 2-5.
    [117] GE C L, YE R C. Research on self-propagating eutectic boriding [J]. Journal of Materials Processing Technology, 2002, 124: 14-18.
    [118]叶荣昌,葛长路.自蔓延高温渗硼共晶化的研究[J].热加工工艺, 2000, (1): 21-24.
    [119]叶荣昌,葛长路,骆俊. T10钢自蔓延高温渗硼共晶化的研究[J].金属热处理, 2003, 28(5): 30-32.
    [120]胡金锁,李志源,郝敬敏,等.渗硼层激光共晶化机理及其耐磨性探讨[J].金属热处理, 2002, 27(5): 18-21.
    [121] KULKA M, PERTEK A. Gradient formation of boride layers by borocarburizing [J]. Applied Surface Science, 2008, 254(16): 5281-5290.
    [122] KULKA M, PERTEK A, KLIMEK L. The influence of carbon content in the borided Fe-alloys on the microstructure of iron borides [J]. Materials Characterization, 2006, 56(3): 232-240.
    [123] PERTEK A, KULKA M. Characterization of complex (B + C) diffusion layers formed on chromium and nickel-based low-carbon steel [J]. Applied Surface Science, 2002, 202(3-4): 252-260.
    [124]吉泽升,程晓辉,武云启.稀土在渗硼及硼的复合渗中的作用[J].金属热处理, 1997, (12): 21-23.
    [125]曹晓明,温鸣,韩文祥.稀土元素对固体渗硼层的改性作用[J].中国稀土学报, 1997, 15(4): 350-354.
    [126] ZAKHARIEW Z, PETROVA R. Gas phase reactions during simultaneous boronizing and aluminizing of steels [J]. Journal of Alloys and Compounds, 1993, 196(1-2): 59-62.
    [127] MARAGOUDAKIS N E, STERGIOUDIS G, OMAR H, et al. Boron-aluminidecoatings applied by pack cementation method on low-alloy steels [J]. Materials Letters, 2002, 53(6): 406-410.
    [128] CARBUCICCHIO M., SAMBOGNA G. Influence of chromium on boride coatings produced on iron alloys [J]. Thin Solid Films, 1985, 126(3-4): 299-305.
    [129]秦志伟,何大川,徐进.稀土对固体渗硼剂渗硼扩散激活能的影响[J].物理测试, 2006, 24(4): 10-14.
    [130]杨志兵. 45钢硼稀土铬共渗工艺与组织性能的研究[D]:长沙:2004.
    [131]王国阳.碳钢硼钒稀土共渗工艺与组织性能研究[D]:大连:2006.
    [132]王世清,王立铎,杨爱华.稀土元素在化学热处理中的应用[J].金属热处理, 1998, 13(3): 52-59.
    [133]吴宝善,何孝渝,郑水玉,等.固体渗硼化学反应机理及渗硼层相结构、形成机理及相变[J].金属热处理学报, 1981, 12: 73-85.
    [134]何孝渝,郑水玉,吴宝善,等.钢的渗硼层形成及生长机理的探讨[J].金属热处理, 1979, 10: 14-27.
    [135] DEAN J A. Lange's Handbook of Chemistry, 15th ed.[M]. Columbus:McGraw-Hill Book Copanies,1999.
    [136] JR. KOTTCAMP E H, et al. ASM Metals Handbook: Volume 3: Alloy Phase Diagrams[M]. US:ASM International,2005.
    [137]姜信昌,曹晓明,韩文祥,等.渗硼层形成机理的探讨[J].金属科学与工艺, 1991, 10(2): 78-83.
    [138]王国佐,王万智.钢的化学热处理[M].北京:中国铁道出版社,1980.
    [139]胡志忠.钢及其热处理曲线手册[M].北京:国防工业出版社,1986.
    [140] SELCUKA B, IPEK R, KARAMIS M B, et al. An investigation on surface properties of treated low carbon and alloyed steels (boriding and carburizing) [J]. Journal of Materials Processing Technology, 2000, 103: 310-317.
    [141] BéJAR M A, MORENO E. Abrasive wear resistance of boronized carbon and low-alloy steels [J]. Journal of Materials Processing Technology, 2006, 173: 352-358.
    [142] KARIOFILLIS G K, KIOURTSIDIS G E, TSIPAS D N. Corrosion behavior of borided AISI H13 hot work steel [J]. Surface and Coatings Technology, 2006, 201(1-2): 19-24.
    [143] MU D, SHEN B L. Oxidation resistance of boronized CoCrMo alloy [J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(3): 424-428.
    [144] SEN U, SEN S. The fracture toughness of borides formed on boronized cold work tool steels [J]. Materials Characterization, 2003, 50(4-5): 261-267.
    [145]李木森,侯绪荣,崔建军,等.渗硼层脆性判据K的物理本质[J].金属热处理学报, 1995, 16(1): 43-47.
    [146]施英杰,邢世高,安宝瑞.铁基粉末冶金雾化片的渗硼强化[J].机械工人热加工, 1982, (5): 37-40.
    [147]涉谷佳男,木材启造,施海明.铁基烧结材料的渗硼处理[J].国外金属热处理, 1984, (3): 19-26.
    [148]王素勤.铁基粉末冶金制件渗硼的金相分析及应用[J].机械工程师, 1987, (8): 18-20.
    [149]陈嘉权,李逸泰,郭永茂.铁基粉末冶金零件膏剂渗硼的研究[J].粉末冶金技术, 1989, 7(2): 77-82.
    [150]陈嘉权,李逸泰,卢美德.铁基粉末冶金件烧结渗硼一体化工艺[J].新技术新工艺, 1989, (2): 2-4.
    [151]刘素亮.铁基粉末冶金零件粉末渗硼的研究[J].河北工业科技, 1992, 9(2): 28-34.
    [152] DOROFEEV V Y, SELEVTSOVA I V. Borided hot-worked powder materials based on iron. I. Kinetics of diffusion boriding for powder materials [J]. Powder Metallurgy and Metal Ceramics, 2001, 40(1-2): 19-24.
    [153] DOROFEEV V Y, SELEVTSOVA I V. Borided hot-worked powder materials based on iron. III. Wear resistance and mechanical properties [J]. Powder Metallurgy and Metal Ceramics, 2001, 40(9-10): 452-457.
    [154] DOROFEEV V Y, SELEVTSOVA I V. Borided hot-pressed powder materials based on iron. II. Effects of hot pressing conditions on surface quality and properties of borided powder materials [J]. Powder Metallurgy and Metal Ceramics, 2001, 40(3-4): 149-153.
    [155] VAROL R, EKSI A, BEDIR F. The effects of boronizing on the surface and fatigue properties of PM steel [J]. METALL, 2003, 57(10): 636-639.
    [156]姜信昌,韩文祥.渗硼过渡区的实质及其过冷奥氏体转变动力学研究[J].河北工学院学报, 1987, (01): 49-57.
    [157]崔昆.钢铁材料及有色金属材料[M].北京:机械工业出版社,1981.
    [158] QU J, BLAU P J, JOLLY B C. Tribological properties of stainless steels treated by colossal carbon supersaturation [J]. Wear, 2007, 263(1-6): 719-726.
    [159]曹楚南.腐蚀电化学原理(第二版)[M].北京:化学工业出版社,2004.
    [160]李木森,傅绍丽,徐万东. Fe2B相价电子结构及其本质脆性[J].金属学报, 1995, 31(51): 201-207.
    [161] YAN M F, PAN W, BELL T, et al. Study on absorption and transport of carbon in steel during gas carburizing with rare-earth addition [J]. Applied Surface Science, 2001, 173(1-2): 91-94.
    [162] CHENG X H, XIE C Y. Effect of rare earth elements on the erosion resistance of nitrided 40Cr steel [J]. Wear, 2003, 254(5-6): 415-420.
    [163] YUAN Z X, YU Z S, Tan P, et al. Effect of rare earths on the carburization of steel [J]. Materials Science and Engineering A, 1999, 267(1): 162-166.
    [164] LIU W, ZHU M H, QIU X M, et al. Influence of rare earth element on the formation of Fe2B phase in the boriding surface layer [J]. Rare Metal Materials and Engineering, 2005, 34: 143-146.
    [165] ZHANG W, FAN Z K, HU P F, et al. Effect of Rare Earth on Void Band of Diffusion Layer and Properties of Aluminized Steel [J]. Journal of Iron and Steel Research, International, 2006, 13(5): 60-64.
    [166]钟华仁.钢的稀土化学热处理[M].北京:国防工业出版社,1998.
    [167]唐殿福,卯石刚,张焕敏,等.钢的化学热处理[M].沈阳:辽宁科学技术出版社,2009.
    [168]邵会孟,张企新.渗硼组织的共晶化[J].沈阳机电学院学报, 1982, (1): 15-26.
    [169] QIU H, MORI H, ENOKI M, et al. Fracture mechanism and tough-ness of the welding heat-affected zone in structural steel under static and dynamic loading [J]. Metallurgical and materials Transactions A, 2000, 31(11): 2785-2791.
    [170]郭可信,叶恒强.高分辨电子显微学在固体科学中的应用[M].北京:科学出版社,1985.
    [171] GUAN R N, YOSHIDA T, HASHIMOLO H, et al. Crystal structure of Cu4O formed by oxidation of copper [J]. Journal of Electron Microscopy, 1982, 2: 13-14.
    [172] GUAN R N, HASHIMOTO H, KUO K H. Electron miciroscopic study of the structure of metasable oxide formed in the initial stage of copper oxidation (1) Cu4O [J]. Acta Crystallography, 1984, 40B: 109-114.
    [173] ZHOU W, JEFFERSON D A, LIANG W Y. HRTEM studies of surface chemistry of supercongducting YBa2Cu3O7-8 [J]. Superconductor Science Technology, 1993, 6:81-90.
    [174] NING X G, AVALOS-BORJA M. High-resolution transmission electron microscopy of structural changes at and near surface of ZnTe crystals [J]. Journal of Applied Physics, 1996, 79: 125-18.
    [175]李斗星.材料科学中的高分辨电子显微学—发展历史、现状与展望[J].电子显微学报, 2000, 19(2): 81-103.
    [176] BJURSTR?M T. R?ntgenanalyse der Systeme Eisen-Bor, Kobalt-Bor and Nickel-Bor [J]. ARKIV FOERKEMI, MINERALOGI OCH GEOLOGI, 1933, 11A(5): 1.
    [177] ARONSSON B, LUNDSTR?M T, ENGSTR?M I. Some aspects of the crystal chemistry of borides, boro-carbides and silicides of the transition metals [C], Anisotropy in single-crystal refractory compounds, proceedings of an international symposium. DAYTON OHIO, 1968.
    [178] PDF Cards #36-1332, #32-0463, #65-4899PCPDFWIN, Version 2.02, JCPDS-ICDD. 1999.
    [179]蒋百灵,雷廷权.渗硼层生长的控制因素及其动力学过程分析[J].金属学报, 1991, 27(1): A11-15.
    [180]李树有,关若男,李日升,等.表面的高分辨电子显微平面像的模拟[J].电子显微学报, 1997, 16(3): 182-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700