压铸镁合金组织与力学性能及复杂铸件成形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足汽车轻量化的需要,实现镁合金在汽车结构件上的应用,本文开展了复杂汽车结构件用压铸镁合金材料及压铸成形技术的研究。
     针对汽车转向器壳体对材料性能的要求,在AZ91合金的基础上,采用多元微量合金化的方法,通过添加Ca和Y元素,开发出了一种低成本高强韧压铸Mg-Al-Ca-Y合金,200℃时抗拉强度可以达到226.8MPa,比商用AZ91合金具有更好的室温力学性能和高温力学性能,可用于汽车上有特殊力学性能,特别是对高温性能要求的关键零部件的生产。根据细晶强化原则和稀土镁合金热处理强化的特点,采用冷模压铸工艺对不含铝的GWK系镁合金进行了研究,开发出高强度耐热压铸GWK系镁合金材料及压铸工艺,该合金经短时低温热处理后的力学性能能够进一步提高,其中GW123K-T4合金的室温抗拉强度、屈服强度和伸长率分别达到了269.4MPa、251.0MPa和4.2%。通过向GWK系合金中添加元素Ca和Zn,降低了稀土元素Gd的含量,不仅改善了合金的室温力学性能,而且降低了合金成本,这对压铸GWK系合金的应用具有重要的实际意义。
     根据汽车转向器壳体冲击试验条件,建立了壳体的有限元分析模型,利用有限元分析软件对镁合金转向器壳体结构进行了分析,并采用强度理论进行校核,为壳体材料替换的可行性提供理论依据。根据转向器壳体的技术要求,分析其结构及工艺性,并提出了铸件浇注系统的设计原则。利用理论计算及计算机数值模拟软件Flow3D对原铸件的浇注系统进行改进,并确定最佳的真空压铸排溢系统形式。利用慢压射理论,建立了压室内冲头慢压射运动的分析模型,利用Flow3D软件研究了压室内液态金属的运动规律,并得出最佳的慢压射工艺参数,即0.5m/s2匀加速运动。考虑到慢压射过程的影响,建立了带有压室填充的流体分析模型,并通过正交模拟试验研究真空压铸条件下镁合金转向器壳体的压铸充型过程,获得镁合金转向器壳体最佳的压铸工艺参数,即浇注温度为680℃,模具温度为200℃,压射速度3.4m/s(充型速度40m/s)。
     通过压铸试验验证模拟得到的工艺参数比较合理,在此工艺参数下采用AZ91-1.0Y-1.5Ca合金生产的铸件成形良好,并具良好的生产连续性及切削加工性,其力学性能优于原合金材料,产品合格率达到94%。镁合金转向器壳体的重量比铝合金转向器壳体的重量降低了33.5%,实现了产品的轻量化。
     采用真空压铸能够降低铸件中的气体含量,降低气孔尺寸且使其分布更加均匀,从而提高铸件的性能和合格率。通过对真空工艺参数的研究,得出最佳抽真空开启时间为0.8s,型腔真空度为5KPa时铸件质量最优。真空压铸镁合金壳体可以通过热处理来进一步提高其力学性能,经固溶与时效处理后,铸件可以获得更好的综合力学性能,其室温抗拉强度、屈服强度和伸长率分别达到280MPa、198.8MPa和5 %。与铸态合金性能相比,分别提高了12.5%,12.9%和2.0%。
In order to fulfill demand of automotive lightweight and make application of automotive structural parts of magnesium alloys possible, new magnesium alloys for complex automotive parts and its corresponding high pressure die casitng(HPDC) technology were studied in the paper.
     According to the property demand of automotive steering gear housing, a new high strengthening and toughening Mg-Al-Ca-Y alloy with low cost was developed by using multi-alloying method, in which Ca and Y elements were added in the AZ91 alloy. With better mechanical properties at room and elevated temperature than those of commercial AZ91 alloy, the alloy can be used on parts with special mechanical properties demand, especially for key parts with demand of high temperature properties because ultimate tensile strength of alloy can reach 226.8MPa at 200℃. According to the principle of grain refinement strengthening and characteristics of RE-containing Mg alloy, a non-aluminum high strength and heat resistant die casting GWK(Mg-Gd-Y-Zr)magnesium alloy and corresponding cold mould die casting process as well as heat treatment process were developed. The mechanical properties of alloy can be enhanced by short time and low temperature heat treatment. The mechanical properties of die casting GW123K-T4 alloy can reachσb=269.4MPa,σs=251.0MPa,δ5=4.2%. In order to decrease the cost of GWK series alloys, adding Ca and Zn elements and reducing rare earth element Gd content may improve tensile mechanical properties of alloy at room temperature, which have extremely important practice significance to apply the GWK alloy.
     According to impact test conditions of steering gear housing, the finite element model of the steering gear housing was built and the structural analysis was performed using finite element analysis software and strength theory, which provided a theoretical basis for material substitution of steering gear housing. According to technological demand of steering gear housing, the structure and die casting process characters of die castings were analyzed. The improvement in pouring system of original castings and vacuum exhausting-flooding system was optimized and designed using theoretical calculation and Flow3D computer simulation software. Based on the theory of slow injection, analysis model of slow shot movement of shot plunger in shot sleeve was established. The movement rule of the liquid metal in shot sleeve and best slow shot parameters were investigated using Flow3D software. The optimal slow shot process was uniform acceleration motion with 0.5m/s2 acceleration rate. The fluid analysis model with sleeve filling was built considering influence of slow shot state. The best die casting processing parameters at vacuum condition were obtained using orthogonal simulation experiment as follow: pouring temperature 680℃, mold temperature 200℃and shot speed 3.4m/s(die filling speed 40 m/s).
     Experimental results of vacumm die casting showed that the optimal processing parameters by simulation were reasonable. Using the optimized processing parameters the AZ91-1.0Y-1.5Ca magnesium alloy castings were found good forming, good production continuity and cutting machining performance.The mechanical properties of magnesium alloy housing were better than those of the original alloy material, and product qualification rate can reach to 94%. The weight of magnesium alloy steering shell housing was decreased 33.5% compared with that of the aluminum steering gear housing, which realized lightweight of product.
     The vacuum die casting can reduce the gas content and gas porosity size, and make it more uniform distribution, thereby the mechanical properties and product qualification rate were increased. The optimal vacuum processing parameters were found as follow: vacuum starting time 0.8s and cavity vacuum pressure 5KPa. The mechanical properties of vacuum die casting magnesium alloy housing can be enhanced further after heat treatment. The best comprehensive mechanical properties of castings subjected to solid solution and aging treatment were obtained as follow: ultimate tensile strength 280MPa, yield tensile strength 198.8MPa and elongation rate 5%, compared with properties of as-die cast alloy, which increased by 12.5%, 12.9% and 2.0%, respectively.
引文
[1] Nicholas J. High-performance magnesium. Advanced Materials and Processes, 2005, 163(9): 65-67.
    [2]潘辉,刘晓烈,孙立喜等.镁及镁合金晶粒细化的研究现状.金属材料与冶金工程,2009,37(1):8-12.
    [3]张鹏,曾大本.异军突起的镁合金压铸.特种铸造及有色合金,2000,(6):55-57.
    [4]吴炳尧.镁合金压铸技术分析.铸造,2000,49(8):443-448.
    [5]陈力禾,申志勇.镁合金压铸及其在汽车工业中的应用.铸造,1999,(10):45-50.
    [6] Claude D , Winandy. World magnesium industry: a quick look at yesterday, today and tomorrow. Magnesium, 2002(8):14-21.
    [7]李宏战,夏兰廷,师素粉.镁及镁合金的晶粒细化.铸造设备研究,2007,(5):39-42.
    [8]张鹏,曾大本.异军突起的镁合金压铸.特种铸造及有色合金,2007,特刊:307-309.
    [9] Mordike B L, Ebert T. Magnesium properties-applications-potential. Materials Science and Engineering A, 2001, 302(1): 37-45.
    [10]黄瑞芬.镁合金的研究应用及其发展.科技与经济,2006,(1):58-59.
    [11] Modike B L, Ebert T. Magnesium properties-applications-potential. Materials Science and Engineering A, 2001,302(1): 37-45.
    [12]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002.
    [13]吴云书.现代工程合金.北京:国防工业出版社,1983.
    [14]王先文,张金山,许并社.镁合金材料的应用及其加工成型技术.太原理工大学学报,2001(6): 599-603.
    [15]陆文华,李隆盛,黄良余.铸造合金及其熔炼.北京:机械工业出版社,1996.
    [16]王峰.压铸镁合金及轮毂成形研究:(硕士学位论文).沈阳:沈阳工业大学,2004.
    [17]郭会廷,夏兰廷.合金元素对镁及镁合金力学性能强化的研究.铸造设备研究,2007,(2): 40-41.
    [18]刘峰,冯可芹,杨屹.镁合金晶粒细化的研究现状及发展.铸造技术, 2004,25(6):450-452.
    [19]邹宏辉,曾小勤,翟春泉等.镁合金的强韧化进展.机械工程材料,2004,28(5):1-3,16
    [20] Spigarelli S, Regev M, Evangelista E, et al. Review of creep behaviour of AZ91magnesium alloy produced by different technologies. Materials Science and Technology, 2001,17(6): 627-636.
    [21]陈振华.镁合金.北京:化学工业出版社,2004.
    [22]彭立明,曾小勤,朱燕萍等.固溶处理对AM60B+xRE及AZ9lD+xRE镁合金性能的影响.材料研究学报,2003,17(1):97-106.
    [23]于宝义,包春玲,宋鸿武等.AZ91D镁合金挤压成形管材的组织性能研究.热加工工艺, 2005,(8):30-33.
    [24] XUE Feng, MIN Xue-gang, SUN Yang-shan. Microstructures and mechanical properties of AZ91 alloy with combined additions of Ca and Si. Journal of Materials Science, 2006, 41(15): 4725-4731.
    [25] Ninomiya R, Ojtro T, Kubpta K. Improved heat resistance of Mg-A1 alloys by the Ca Addition. Acta Metallurgica et Materialia, 1995, 43(2): 669-674.
    [26]张诗昌,魏伯康,林汉同.耐高温压铸镁合金的发展及研究现状.中国稀土学报,2003,21(增刊):150-152.
    [27] ZHANG Shi-chang, WEI Bo-kang, CAI Qi-zhou, et al. Effect of mischmetal and yttrium on microstructures and mechanical properties of Mg-Al alloy. Transaction of Nonferrous Metals Society of China., 2003, 13(1): 83-87.
    [28] Khomamizadeh F, Namib B, Khoshkhooei S. Effect of rare-earth element additions on high-temperature mechanical properties of AZ91 magnesium alloy. Metallurgical and Materials Transactions A, 2005, 36A: 3489-3494.
    [29] YUAN Guang-yin,SUN Yang-shan,DING Wen-jiang. Effects of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy. Materials Science and Engineering A, 2001, 308: 38-44.
    [30] YUAN Guang-yin, SUN Yang-shan, DING Wen-jiang. Effect of Sb addition on the microstructure and mechanical properties of AZ91 magnesium alloy. Scripta Materialia, 2000, 43: 1009-1010.
    [31]郑飞燕,郑开宏,戚文军等.微量B对AZ91镁合金显微组织与力学性能的影响.轻合金加工技术,2008,26(2):7-11.
    [32]滕新营,王彬,王致明.微量Si、Ba、Sn对AZ91铸态组织的影响.特种铸造及有色合金,2007,27(2):83-85.
    [33]李金锋,耿浩然,滕新营.Ba对AZ91镁合金组织和性能的影响.热加工工艺,2005,(7) : 5-7.
    [34]程素玲,杨根仓,樊建锋等.Ca对Mg-9wt%Al合金阻燃特性的影响.铸造,2005,54(2):141-143.
    [35]闵学刚,孙扬善,薛烽.Ca对AZ91显微组织及力学性能的影响.材料科学与工艺,2002, 10 (1) :93 -96.
    [36] WANG Qu-dong, CHEN Wen-zhou, ZENG Xiao-qin, et al. Effects of Ca addition on the microstructure and mechanical properties of AZ91 magnesium alloy. Journal of Materials Science, 2001, 36: 3035-3040.
    [37] SUN Yang-shan, ZHANG Wei-min, MIN Xue-gang. Tensile strength and creep resistance of Mg-9A1-1Zn based alloys with calcium addition. Acta metallurgica sinica, 2001, 14(5): 330-334.
    [38]闵学刚,杜温文,薛烽等.Ca提高Mg17Al12相熔点的现象及EET理论分析.科学通报,2002,47 (2) :109-112.
    [39] DU Wen-wen, SUN Yang-shan, MIN Xue-gang, et al. Influence of Ca addition on valence electron structure of Mg17Al12. The Chinese Journal of Nonferrous Metals, 2003, 13(6): 1274-1279.
    [40]张金龙,王智民,杨璀珍等.提高AZ91镁合金耐热性的研究.轻合金加工技术,2008, 36 (3):48-52.
    [41]程素玲,杨根仓,樊建锋等. Ca、Y对AZ91镁合金显微组织和力学性能的影响.稀有金属材料与工程,2006,35 (9) :1140-1143.
    [42]闵学刚,孙扬善,杜温文等.Ca,Si和RE对AZ91合金的组织和性能的影响.东南大学学报,2002,32(5):409-414.
    [43]曾小勤,王渠东,吕宜振等.Mg-9Al-0.5Zn-0.1Be-XCa合金的组织和力学性能研究.机械工程材料,2001,25(5):15-18.
    [44]韩辉,刘生发.复合合金化对AZ91镁合金铸态组织的影响.铸造,2007,56(9):938-941.
    [45]李冬升,程晓农.抗蠕变镁合金研究进展.材料导报,2006,20(6):424-427.
    [46]刘文辉,刘海峰,侯骏.高强度耐高温压铸镁合金的开发.汽车工艺与材料,2003,(4):12-15.
    [47]刘海峰,侯骏,佟国栋等.抗高温蠕变压铸镁合金的研制.汽车工艺与材料,2003,(8):9-13.
    [48] Lee S, Lee S H, Kim.D H. Effect of Y, Sr, and Nd additions on the microstructure and microfracture mechanism of squeeze-cast AZ91-X magnesium alloys. Metallurgical and materials transactions A, 1998, 29A: 1221-1235.
    [49]曾荣昌,柯伟,徐永波.镁合金的最新发展及应用前景.金属学报,2001,37(7): 673-685.
    [50]毛萍莉,王峰,刘正等.镁合金方向盘骨架应用研究及性能测试.特种铸造及有色合金,2009,(5):420-422.
    [51]曾正南,彭小仙,刘楚明.压铸镁合金及其应用.金属材料与冶金工程.2007,25(2):3-7.
    [52]李冬升,程晓农,李丹.微量钦、硼对AM50镁合金组织和性能的影响.机械工程材料:2006,30(11):45-51.
    [53]王越,林立,李锋等.钕对压铸AM50镁合金力学性能的优化作用.铸造,2003,52(10): 732-736.
    [54]崔红卫,李红,高巧春等.合金元素Sb对AM50镁合金组织和性能的影响.铸造技术,2009,30(6):791-795.
    [55]黄晓锋,王渠东,卢晨等.Si对AM50力学性能和高温蠕变性能的影响.材料研究学报,2004,18(6):631-634.
    [56] Bronfin B, Katsir M, Aghion E. Preparation and solidification features of AS21 magnesiumalloy. Materials Science and Engineering A, 2001, 302: 46-50.
    [57] Mayer H, Papakyriacou M, Zettl B et al. Influence of porosity on the fatigue limit of die-casting magnesium and aluminum alloys. International Journal of Fatigue, 2003, 25: 245-256.
    [58] Hosokawa H. Iwasaki H, Mori T. Effects of Si on deformation behavior and cavitation of coarse-grained AL-4.5Mg alloy exhibiting large elongation. Acta Materialia, 1999, 6: 1859-1868.
    [59] Luo A, Pekouleryuz M O. Review cast magnesium alloys for elevated temperature applications. Journal of Materials Science, 1992, 29: 5259-5269.
    [60] Kim J J, Kim D H, Shin K S, et a1. Modification of Mg2Si morphology in squeeze cast Mg-A1-Zn-Si alloy by Ca or P addition. Scripta Materialia, 1999, 41(3): 333-340.
    [61] Evangelista E, Gariboldi E, Lohne O, et al. High temperature behavior of as die-cast and heat treated Mg-Al-Si AS21X magnesium alloy. Materials Science and Engineering A, 2004, 387-389: 41-45.
    [62] Li Y, Jones H. Effect of rare earth and silicone additions on structure and property of melt spun Mg-9Al-1Zn alloy. Materials Science and Technology, 1996, 8: 651-660.
    [63] Pettersen G, Westengen H, Hoier R, et al. Microstructure of a Pressure die cast magnesium-4%aluminum alloy modified with rare earth additions. Materials Science and Engineering A, 1996, 207: 115-120.
    [64] Suzuki A, Saddock N D, Jones J W, et al. Structure and transition of eutectic (Mg,Al)2Ca Laves Phase in a die-cast Mg-Al-Ca base alloy. Scripta Materialia, 2004, 51: 1005-1010.
    [65] Suzuki A, Saddock N D, Jones J W, et al. Solidification paths and eutectic intermetallic phases in Mg–Al–Ca ternary alloys. Acta Materialia, 2005, (in press)
    [66] Luo A. Recent magnesium alloy development for elevated temperature applications. International Materials Reviews, 2004, 49(1): 13-30.
    [67] Lou A A, Powell B R. Tensile and compressive creep of magnesium aluminum calcium based alloys. Magnesim Technology 2001. New Orleans, LA, United States: TMS, 2001: 137-144.
    [68]胡文俊.碱土元素锶、钙对AZ91镁合金铸态组织和性能的影响.(硕士学位论文).湖南:湖南大学,2007.
    [69]夏德宏,郭梁.镁及镁合金广阔的应用前景.金属漫谈, 2005, 2: 47-49.
    [70]陈礼清,赵志江.从镁合金在汽车及通讯电子领域的应用看其发展趋势.世界有色金属, 2004,(7):12-20.
    [71]张崧,唐建新,冯可芹等.高强度镁合金的研究现状及发展.热加工工艺,2004,(8):52-54.
    [72]李玉兰,刘江,彭晓东等.镁合金压铸件在汽车上的应用.特种铸造及有色合金,1999,增刊(1):120-122.
    [73]李玉青,吴殿杰.汽车轻量化以及铝镁铸件的应用.中国铸造装备与技术,2005,(4):48-50.
    [74]刘正,王越,王光中.镁基轻质材料的研究与应用.材料研究学报,2000,14(5):449-456.
    [75] Pekguleryuz M O, Baril E. Creep resistant magnesium die casting alloys based on alkaline earth elements. Materials Transactions, 2001, 7(42): 1258-1267.
    [76]宋柯.镁合金在汽车轻量化中的应用发展.机械研究与应用,2007,20(1):14-16.
    [77]杜文博,吴玉峰,左铁墉.镁合金在交通工具中的应用现状.世界有色金属,2006,(2):19-21.
    [78]廖君.汽车轻量化技术发展的探讨.机械,2009,36(1):4-7.
    [79]刘倩,单忠德.镁合金在汽车工业中的应用现状与发展趋势.铸造技术,2007,28(12):1668-1671.
    [80]厄普顿.压力铸造.北京:机械工业出版社,1988.
    [81]赖华清.压铸工艺及模具.北京:机械工业出版社,2004.
    [82]于海朋,王峰,于宝义.工艺参数和热处理对压铸AZ91D镁合金力学性能的影响.特种铸造及有色合金,2002,(2):27-28.
    [83]夏明许,袁森,蒋百灵等.镁合金压铸件收缩缺陷分析及对策.特种铸造及有色合金,2002,(6):23-25.
    [84]金温琳,许宝成.最新实用压铸技术.北京:兵器工业出版社,1993.
    [85]潘宪曾.压铸模设计手册.北京:机械工业出版社,1999.
    [86]汪之青.国外镁合金压铸技术的发展.铸造.1997,(8):48-51.
    [87]张津,张宗和.镁合金及应用.北京:化学工业出版社,2004.
    [88]汤翼生.真空压铸摩托车铝合金整体车轮.中国铸造装备与技术,1999,(6):36-38.
    [89] Niu X P. Vacuum assisted high pressure die casting of aluminum alloys. Journal of Materials Processing Technology, 2000, 105: 119-127.
    [90] Shunzo A. Manufacture of weldable and heat treatable thin-walled die castings with high vacuum die casting technology. Mold Technology, 2002, 17(4): 25-30.
    [91]胡泊,熊守关,村上正幸等.AZ91镁合金真空压铸力学性能研究.铸造技术,2007,28(12):1579-1583.
    [92]陈金城.真空压铸的发展.特种铸造及有色合金,1996,(6):32-33.
    [93]申泽骥,李宝东.镁合金铸造技术进展.铸造,2001,(9):522-526.
    [94] Decker R F. Magnesium semi-solid metal forming. Advanced Materials & Processes, 1996, (2): 41-42.
    [95]古泽升,吕新宁,土国军等.镁合金半固态成形技术的研究进展.金属热处理,2003,28(5): 8-11.
    [96] Ann A. Thixomoulding of magnesium components experiencing rapid commercial growth. Die casting World, 1996, (6): 26-28.
    [97] Hans J, Heine. Semi-solid processing of alloys and composites. Foundry Management & Technology, 1998, (9): 50-55.
    [98] Garber L W. Filling of the cold chamber during slow-shot travel. Die Casting Engineer, 1981,25(4): 36-38.
    [99] Garber L W. Theoretical analysis and experimental observation of air entrapment during cold chamber filling. Die Casting Engineer,1982, 26(3): 14-22.
    [100]杨杰,袁烺,熊守美.压室压射对压铸充型流场影响的研究.铸造,2007,56(6):622-625.
    [101]潘宪曾.正确选择慢压射速度.铸造技术,2005,26(5):397-400.
    [102]严炎祥,田汀南.慢压射和预填充技术在气缸体压铸生产中的应用.特种铸造及有色合金,2008,28(12):938-942.
    [103]卢宏远,李荣彬,吕吴凝碧.计算机模拟压铸型腔内的金属液流动.铸造,1994,(7):1-6.
    [104]周乐,刘正,陈立佳.AM 60镁合金空调机支架充型过程的数值模拟.铸造,2007,56(6):626-629.
    [105]郭剑,龙思远,,曹韩学等.压铸镁合金汽车座椅支架的数值模拟.科技资讯,2007,(11):15-16.
    [106]宁夏网. 2009年中国汽车产销量跃居世界第一. http://www.nxnet.net/ jiche/qcxs/201003/t20100309_779483.htm.
    [107]张洪杰.高性能镁-稀土结构材料的研制、开发与应用.中国稀土学报,2004,22(1):40-47.
    [108] Honma T. Chemistry of nanoscale precipitates in Mg-2.1Gd-0.6Y-0.2Zr (at.%) alloy investigated by the atom probe technique. Materials Science and Engineering A, 2005,395:301-306.
    [109]李克杰,李全安,谢建昌.稀土在耐热镁合金中的研究应用.稀土,2009,30(3):79-83.
    [110] Anyanwu I A, Kamado S, Kojima Y. Aging characteristics and high temperature tensileproperties of Mg-Gd-Y-Zr alloys. Materials Transactions, 2001, 42(7): 1206-1211.
    [111] Taniike S, Kitaquchi Y. Forge ability of Mg-heavy rare earth metal alloys and aging characteristics and tensile properties of their forged material. Journal of Japan Institute of Light Metals, 1997, 47(5): 261-266.
    [112]于海朋,于宝义,张尚洲译.NADCA压铸手册.2001.
    [113] Avedesian M M, Baker H. Magnesium and magnesium alloys. Materials Park, OH: ASM International, 1999.
    [114]张诗昌,蔡启舟,王立世.钇和混合稀土对AZ91合金高温力学性能的影响.特种铸造及有色合金,2005,25(5):287-290.
    [115]樊昱,吴国华,高洪涛等.Ca对镁合金组织、力学性能和腐蚀性能的影响.中国有色金属学报,2005,15(2):211?216.
    [116]张伟,刘伟东,王彦春等.Mg-Al-Ca合金中第二相价电子结构计算与强化机制分析.稀有金属材料与工程,2009,38(1):120-125.
    [117] Emley E F. Principles of magnesium technology. Oxford: Pergamon Press, 1966, 248-961.
    [118]丁文江.镁合金科学与技术.北京:科学出版社,2007.
    [119]郭学锋,黄正华,张忠明.Ce/Ca对AZ91D镁合金组织与力学性能的影响.西安理工大学学报,2003,19(3):201-205.
    [120] Lee Y C, Dahle A K, Stjohn D H, et al. Effect of grain refinement and silicon content on grain formation in hypoeutectic Al-Si alloys. Materials Science and Engineering A,1999,259(1): 43-52.
    [121] Hutt J E C, Dahle A K, Lee Y C, et al. Effects of growth restriction and effective nucleant potency on grain size and morphology in Al-Si and Al-Cu alloys. In: Eckert CE, ed.TMS Annual Meeting. San Diego: Minerals,Metals and Materials Society, 1999. 685-692.
    [122]张诗昌,段汉桥,蔡启舟等.主要合金元素对镁合金组织和性能的影响.铸造,2001,50(6):310-315.
    [123]王渠东,曾小勤,吕宜振等.高温铸造镁合金的研究与应用.材料导报,2000,14(3):21-25.
    [124] Apps P J, Karimzadeh H, King J F, et al. Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium. Scripta Metallurgica, 2003, (48): 475-481.
    [125]陈振华.耐热镁合金.北京:化学工业出版社,2007.
    [126] Vostry P. Electrical resistively changes due to solution treatment of magnesium-rare earth binary alloys. Z. Metallkd, 1999, 90(11): 888-891.
    [127]丁道云.铁金属的结构与性能.北京:科技出版社,1999.
    [128] Mizer D, Peters B C. A study of precipitation at elevated temperature in a Mg-8.7 pct alloy. Metallurgical and Materials Transactions B, 1972, 3 (12): 3262-3264.
    [129] Horikiri H, Kato A, Inoue A. New Mg based amorphous alloys in Mg-Y-mish metal systems. Materials Science and EngineeringA, 1994, (179-180): 702-706.
    [130] Eliezer D, Aghion E, Froes F H. Magnesium science, technology and applications. Advanced Performance Materials, 1998, (5): 201-212.
    [131]刘正,王越,王中光等.镁基轻质材料的研究与应用.材料研究学报,2000,14(5):449-456.
    [132]刘正,计海涛,盛晓方等.镁合金强韧化复合机制与方法的探索.沈阳工业大学学报,2006,28(5):481-485.
    [133] Han B Q, Dunand D C. Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids. Materials Science and Engineering A, 2000, (277): 297-304.
    [134] Nussbaum G, Sainfort P, Regazzoni G, et al. Strengthening mechanisms in the rapidly solidified AZ91 magnesium alloy. Scripta Metallurgica, 1989, (23): 1079-1084.
    [135]赵经文,王宏钮.结构有限元分析,哈尔滨:哈尔滨工业大学出版社,1988.
    [136]朴正华.大型复杂镁合金压铸件的应力分析数值模拟研究.(硕士学位论文).长春:吉林大学,2008.
    [137]高卫民,王宏雁.汽车结构分析有限元法.汽车研究与开发,2000,(6):30-32.
    [138]刘鸿文.材料力学.北京:高等教育出版社,2004.
    [139]姜银方,朱元右.压铸模设计应用实例.北京:机械工业出版社,2005.
    [140]卢宏远,董显明,王峰.压铸技术与生产.北京:机械工业出版社,2008.
    [141]陈金城.慢压射技术的开发和理论要点.特种铸造及有色合金,1998,(5):30-33.
    [142]文春领.液态金属在冷室压铸机压室中运动的理论与分析.铸造技术,2006,27(6):558-561.
    [143] Badal A, Longa Y, Hairy P. Effectiveness of the vacuum technique in pressure die casting. Die Casting Engineer, 2001, (7): 54-60.
    [144]胡泊,熊守美,村上正幸等.镁合金真空压铸力学性能研究,铸造技术,2007,28(12):1579-1583.
    [145]万里,潘欢,罗吉荣.高真空压铸技术及高强韧压铸铝合金开发和应用的现状及前景.特种铸造及有色合金,2007,27(12):939-942.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700