转染HCN4基因的犬骨髓间充质干细胞同种异体移植对传导阻滞心脏电生理变化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:
     生物起搏(Biological Pacemaker)是利用细胞技术和基因技术,将目的基因(起搏基因或可促进心脏自主节律的基因)直接导入心脏或者利用各种起搏/非起搏细胞将起搏电流传递至疾病的心脏,使其能在局部发挥其接近生理状态的起搏或提高心率的作用。本研究拟通过基因转染技术和细胞治疗技术,利用骨髓间充质干细胞(MSCs)作为传递起搏电流的细胞平台,试图在动物体内“构建”生物心脏起搏器,以探索治疗缓慢型心律失常疾病的新方法。本研究是在本课题组前期研究的基础上,结合国内外这一领域研究的最新成果,就小鼠HCN4基因(mHCN4)转染犬骨髓间充质干细胞(cMSCs)同种异体移植对完全性房室传导阻滞(CAVB)心脏电生理改变的影响进行探索。包括以下三方面内容:(1)利用携带mHCN4基因的慢病毒载体(Lentiviral-mHCN4),将mHCN4基因转染到cMSCs,体外构建可表达功能性起搏通道的起搏样干细胞(Lv-mHCN4-cMSCs);(2)将构建好的起搏样干细胞(mHCN4-cMSCs),同种异体移植到已植入电子心脏起搏器的CAVB模型犬心室肌内,通过监测全天心律、运动变时性研究、神经递质反应性研究、组织学和分子生物学等,评价细胞移植对传导阻滞心脏心室自律性的影响;(3)将mHCN4-cMSCs同种异体移植到CAVB模型犬心室肌内,观察其对传导阻滞心脏的致心律失常相关电生理参数的改变有无影响,以探索和评价利用mHCN4-cMSCs心室移植增强传导阻滞心脏生物起搏功能的安全性和临床应用可行性。
     方法:
     1.利用构建好的Lentiviral-EGFP-mHCN4慢病毒载体进行293T细胞病毒包装,将mHCN4基因转染到第2-3代cMSCs,得到Lentiviral-EGFP-mHCN4-cMSCs(HCN4组细胞,以下简称mHCN4-cMSCs);对照组cMSCs只转染Lentiviral-EGFP,得到EGFP-cMSCs。待荧光显微镜观察到两组cMSCs稳定表达HCN4通道蛋白和绿色荧光蛋白(GFP)后,利用全细胞膜片钳技术对两组转染阳性的cMSCs进行通道电生理学研究。
     2.取成年犬射频消融希氏束建立完全性房室传导阻滞(CAVB)动物模型,并在颈部皮下植入电子起搏器。1周后对模型犬进行开胸手术,将mHCN4-cMSCs (HCN4组)或EGFP-cMSCs(对照组)悬液斜行注入左心室前壁(第一对角支和第二对角支之间区域)处心外膜下,并在该处心外膜进行超速起搏,做好标记。
     3.术后对各组模型犬的心室自律性和移植部位组织目的基因蛋白表达进行综合检测和分析。主要采用体表心电图QRS波形分析、24小时动态心电图心律变化记录、起搏器活动日志记录分析、其对于神经体液调节和体能运动的反应能力评估心室自律性变化;用组织病理学HE染色、免疫组织荧光染色技术和Western Blot分子生物学技术等多项技术方法对细胞移植后体内存活和目的基因蛋白表达进行检测。
     4.另取健康成年犬开胸,于心外膜直视下用程序电刺激(PES)的方法测定其各局部(左室前壁拟注射细胞部位、右室前壁、左室游离壁下部)心脏电生理基础参数,包括:舒张期起搏阈值(DPT)、心室有效不应期(VERP)、心室有效不应期差值(ΔVERP)、单项动作电位时程(MAPD)、单项动作电位时程差值(ΔMAPD)、室颤阈值(VFT)。测定之后做好注射部位标记,在标记处附近注射mHCN4-cMSCs(HCN4组)、EGFP-cMSCs(cMSCs对照组)和生理盐水(盐水组),然后关胸。
     5.1周后对HCN4组和细胞对照组犬制备CAVB模型,盐水对照组不进行CAVB制作,术后每96小时检查24小时动态心电图。4周后各组再次开胸行PES测定心脏电生理参数,处死动物,取材利用组织病理学HE染色、免疫组织化学染色、western blot技术检测移植部位细胞存活和HCN4蛋白表达及移植部位边缘心室肌缝隙连接蛋白43(CX43)表达情况。
     结果:
     1.慢病毒载体Lentiviral-EGFP-mHCN4经包装后转染第3-4代犬骨髓间充质干细胞的转染阳性率约为65%,经免疫荧光染色技术测定其膜表面可表达HCN4蛋白,经多次传代后细胞生长状态依然良好,仍可表达HCN4蛋白。
     2.利用全细胞膜片钳技术对转染阳性的细胞进行电生理研究,能够记录到类似If特性的细胞膜通道离子电流。该电流具备超极化钳制电压激活和时间依赖的特点,对细胞内cAMP反应良好,符合起搏电流If的典型特征。而EGFP对照组细胞(转染lentiviral-EGFP)检测不出类似特性的电流。
     3.将mHCN4-cMSCs(HCN4组)和EGFP-cMSCs(对照组)移植到已植入电子心脏起搏器的CAVB模型犬的左心室心外膜下。在移植后第2周内,24小时动态心电图及每周体表心电图检查提示HCN4组8只犬中有6只出现起源于左室的自主心律,占总心搏数的比例高于60%;并且在第2周末时犬运动时最大心率达到最高103±12bpm(对照组为50±3bpm),同时休息时的静息心率和平均心率也随着时间逐渐增加,到第4周时趋于稳定(基础心率55±6bpm,平均心率59±5bpm)。且明显高于对照组对应心率指标(基础心率27±2bpm,平均心率38±2bpm)。HCN4组电子起搏率从第2周开始下降,到第4周时下降至6±2%,而对照组则为57±7%。通过神经递质反应性测试证实,这一异位起搏心律对阿托品无明显反应,但对肾上腺素反应良好,同时对生理性体能运动也有良好的变时性。
     4.用组织病理学、免疫荧光化学染色和分子生物学技术检测细胞移植部位的心室肌标本,证实移植的MSCs细胞能够在移植部位存活至少6周,局部未发现明显的细胞凋亡坏死和免疫排斥反应。免疫荧光组织化学研究证实异体移植的MSCs细胞能够在移植部位有效表达HCN4通道蛋白,且其表达量明显超过注射未转染基因的对照组。
     5.心脏电生理参数测定结果显示犬在模型制备前各组间参数无显著差异;细胞移植+CAVB模型后4周细胞对照组QT、QTc、DPT、VERP、MAPD显著高于盐水对照组(P<0.01)和HCN4组(P<0.05),ΔVERP、ΔMAPD显著高于盐水对照组(P<0.01),VFT低于盐水对照组(P<0.01)和HCN4组(P<0.05);HCN4组ΔVERP、ΔMAPD显著高于细胞对照组(P<0.01),VFT高于细胞对照组(P<0.05)。
     结论:
     1.利用慢病毒载体可在体外稳定转染mHCN4基因至犬骨髓间充质干细胞。转染阳性的细胞可稳定表达HCN4通道蛋白。全细胞膜片钳技术对转染阳性细胞进行膜通道电流检测,证实其在体外培养环境下可表达对cAMP反应敏感的起搏样电流IHCN4,因此我们把这种细胞称为起搏样干细胞mHCN4-cMSCs。
     2.将mHCN4-cMSCs同种异体移植到完全性房室传导阻滞犬心室肌后,能在机体内存活达6周,且在体内继续表达HCN4蛋白,并可有效提高移植部位的室性自主节律,减少电子起搏器依赖,并且这种生物起搏心律具有良好的变时性和神经递质反应性。
     3.健康犬在心脏传导阻滞后其心室电生理特性明显改变,各致心律失常敏感性指标均高于健康状态;在心室心外膜下移植mHCN4-cMSCs可部分减轻传导阻滞后心室电生理特性的改变,并且移植部位边缘心室肌缝隙连接蛋白的表达高于移植普通cMSCs的对照组和注射生理盐水的空白组。
     4.通过转基因技术和骨髓间充质干细胞移植相结合,能够传递起搏电流至心脏,提高完全性房室传导阻滞后的心室率,且一定程度上可以减轻心动过缓心脏的电活动不稳定性。
Object
     The field of biological pacing is entering its second decade of active investigation. Theprincple was to employ both gene-based and cell-based methodologies and taken distinctapproaches to achieving automaticity pacemaking fuction in heart with bradycardiac-arrhythmia. Here we study the ability of mesenchymalstemcells(MSCs)as deliveryplatforms which have been loaded with genes of interest to reconstruct biologicalpacemaking function in animals. This study was conducted under the long-term research ofHCN4gene and MSCs in our department and combined with the advanced achievements ofbiological pacemaker nowadays. The following list are what we had explored in this study.
     1.To construct pacemaker-like cells by transfection of mouse HCN4gene into caninemesenchymal stem cells(cMSCs) with pysiological pacemaking function
     2.To assess the capability of the mHCN4modified cMSCs to reconstruct biologicalpacemaker fuction in vivo by transplanting them in dogs with experimentally inducedcomplete heart block and electronic pacing.
     3.To assess the effect of mHCN4modified cMSCs transplantation on cardiacelectrophysiology in dogs with experimentally induced complete heart block and electronicpacing.
     Methods
     1. We packaged lentivirus vector (Lenti6.3-IRES2-EGFP-mHCN4or Lenti6.3-IRES2-EGFP) with293T cells to get lentivirus supernatant.Then the2-3thpassages ofcMSCs were transduced by EGFP-mHCN4or EGFP. Expression of GFP was detected byfluorescence microscope and expression of HCN4was detected by immunofluorescentstaining.Patch clamp was performed to evaluate the electrophysiological properties of thepositively transfected cells.
     2. Complete atrioventricular block(CAVB) was induced in adult dogs byradiofrequency ablation of His bundle with backup electronic pacemaker implantedsubcutaneously. After1week recovery,certain amount of cMSCs transfected withmHCN4(mHCN4-cMSCs) or not(EGFP-cMSCs) were injected subepicardially into the leftventricular anterior wall of these dogs. Overdrive pacing was performed at the injectionsite,followed by marking with suture.
     3. The ventricular automaticity was evaluated by24-hour animal Holter,six-leadsurface ECG,electronic pacemaker log record,HRV analysis, catecholamine responsivenesstest and physical exercise responsiveness.Expression of HCN4was detected by HEstaining,immunofluorescence and Western blot.
     4. Cardiac electrophysiology was measured in intact canines by epicardiallyprogrammed electrical stimulation (PES) in different sites(injection sites, right ventricularanterior wall,and left ventricular free wall near apex).The following listedelectrophysiological parameters was measured through PES: diastolic pacing threshold(DPT), ventricular effective refractory period (VERP), absolute difference ofVERP(ΔVERP), monophasic action potential duration(MAPD), absolute difference ofMAPD(ΔMAPD), ventricular fibrillation threshold (VFT). Then certain amount ofmHCN4-cMSCs or normal cMSCs or saline were injected subepicardially into the leftventricular anterior wall of the animals. The injection site was marked with suture,and theanimals were divided into HCN4group, control group and saline group as the differenttreatment.
     5. After1-week recovery, animals of control and HCN4groups were interventionedinto complete atrioventricular block (CAVB). ECG was recorded by24-hour ECGmonitoring throughout the following4-weeks study. Then PES was performed again tomeasure the ventricular electrophysiology. Histology study and immunochemistry methodswere used to evaluate the changes in gap junction properties between canines treated withthe different substance.
     Results
     1. The transfection efficiency of passage3-4cMSCs were about65%and theexpression of HCN4was confirmed by immunofluorescent staining.And the expression ofHCN4was quite strong after several rounds of generation.
     2. By using the whole cell patch clamp we recorded a time-and voltage-dependentinward current which was fully activated when hyperpolarized at-160mV and completelydeactivated at+20mV in mHCN4-cMSCs.The current was suppressed by extracellular Cs+and increased by intracellular cAMP which is similar to Ifcurrent.
     3. At2weeks, the maximum heart rate and the number of impulses generated from theinjection sites was much higher in dogs injected with HCN4modified MSCs dogs than incontrol dogs. Basal heart rate increased in the HCN4group and became fully stabilized byWeek4, evidenced by markedly reduced numbers of electronic pacemaker beats. At Week2,HRV during exercise was significantly higher in HCN4dogs than in controls. HRV in thecontrol group remained at a low level throughout the observation period.
     4. HE staining,immunofluorescence stainning and western blot proved that cMSCssurvive and express HCN4protein in situ in heart of HCN4dog.
     5. PES results showed that the ventricular electrophysiological parameters includingDPT,VERP,ΔVERP,MAPD and ΔMAPD were all increased at4weeks after CHBinduced,but the VFT decreased. The parameters of dogs injected with mHCN4-EGFP-cMSCs were higher comparing to the dogs injected with EGFP-cMSCs. At the sametime,ΔVERP and ΔMAPD in dogs injected with cMSCs were significantly higher than theones injected with saline.
     Conclusion
     1.Mouse HCN4can be introduced into MSCs cultured in vitro. Pacemaker current hadbeen recorded from mHCN4-cMSCs and EGFP-cMSCs by patch clamp study.
     2.Transplantation of mHCN4modified cMSCs provided a stable biologicalpacemaking function that allowed an appropriate chronotropic response to physical exerciseand catecholamine for up to6weeks.
     3.Injection of cMSCs loaded with mHCN4into myocardium can achieve biologicalpacemaking function and alleviate alteration of ventricular electrophysiological propertiesin canine with CAVB.
引文
[1]姚青. mHCN4基因修饰大鼠骨髓间充质干细胞体外诱导分化为心脏起搏样细胞的实验研究[博士]:第三军医大学;2007.
    [2] Rosen MR, Brink PR, Cohen IS, Robinson RB. Cardiac pacing: from biological toelectronic... to biological? Circ Arrhythm Electrophysiol.2008;1(1):54-61.
    [3] Rosen MR, Robinson RB, Brink PR, Cohen IS. The road to biological pacing. NatRev Cardiol.2011;8(11):656-66.
    [4] Robinson RB, Brink PR, Cohen IS, Rosen MR. I(f) and the biological pacemaker.Pharmacol Res.2006;53(5):407-15.
    [5] Wainger BJ, DeGennaro M, Santoro B, Siegelbaum SA, Tibbs GR. Molecularmechanism of cAMP modulation of HCN pacemaker channels. Nature.2001;411(6839):805-10.
    [6] Marionneau C, Couette B, Liu J, Li H, Mangoni ME, Nargeot J, et al. Specific patternof ionic channel gene expression associated with pacemaker activity in the mouseheart. J Physiol.2005;562(Pt1):223-34.
    [7] Shi W, Wymore R, Yu H, Wu J, Wymore RT, Pan Z, et al. Distribution andprevalence of hyperpolarization-activated cation channel (HCN) mRNA expression incardiac tissues. Circ Res.1999;85(1): e1-6.
    [8] Qu J, Plotnikov AN, Danilo P, Jr., Shlapakova I, Cohen IS, Robinson RB, et al.Expression and function of a biological pacemaker in canine heart. Circulation.2003;107(8):1106-9.
    [9] Plotnikov AN, Sosunov EA, Qu J, Shlapakova IN, Anyukhovsky EP, Liu L, et al.Biological pacemaker implanted in canine left bundle branch provides ventricularescape rhythms that have physiologically acceptable rates. Circulation.2004;109(4):506-12.
    [10] Potapova I, Plotnikov A, Lu Z, Danilo P, Jr., Valiunas V, Qu J, et al. Humanmesenchymal stem cells as a gene delivery system to create cardiac pacemakers. CircRes.2004;94(7):952-9.
    [11] Plotnikov AN, Shlapakova I, Szabolcs MJ, Danilo P, Jr., Lorell BH, Potapova IA, etal. Xenografted adult human mesenchymal stem cells provide a platform for sustainedbiological pacemaker function in canine heart. Circulation.2007;116(7):706-13.
    [12] Cai J, Yi FF, Li YH, Yang XC, Song J, Jiang XJ, et al. Adenoviral gene transfer ofHCN4creates a genetic pacemaker in pigs with complete atrioventricular block. LifeSci.2007;80(19):1746-53.
    [13] Stieber J, Herrmann S, Feil S, L ster J, Feil R, Biel M, et al. Thehyperpolarization-activated channel HCN4is required for the generation ofpacemaker action potentials in the embryonic heart. Proceedings of the NationalAcademy of Sciences of the United States of America.2003;100(25):15235.
    [14] Er F, Larbig R, Ludwig A, Biel M, Hofmann F, Beuckelmann DJ, et al.Dominant-negative suppression of HCN channels markedly reduces the nativepacemaker current I(f) and undermines spontaneous beating of neonatalcardiomyocytes. Circulation.2003;107(3):485-9.
    [15] Harzheim D, Pfeiffer KH, Fabritz L, Kremmer E, Buch T, Waisman A, et al. Cardiacpacemaker function of HCN4channels in mice is confined to embryonic developmentand requires cyclic AMP. EMBO J.2008;27(4):692-703.
    [16] Herrmann S, Stieber J, St ckl G, Hofmann F, Ludwig A. HCN4provides a"depolarization reserve"and is not required for heart rate acceleration in mice. TheEMBO Journal.2007;26(21):4423-32.
    [17] Schweizer PA, Duhme N, Thomas D, Becker R, Zehelein J, Draguhn A, et al. cAMPsensitivity of HCN pacemaker channels determines basal heart rate but is not criticalfor autonomic rate control. Circ Arrhythm Electrophysiol.2010;3(5):542-52.
    [18] Jun C, Zhihui Z, Lu W, Yaoming N, Lei W, Yao Q, et al. Canine bone marrowmesenchymal stromal cells with lentiviral mHCN4gene transfer create cardiacpacemakers. Cytotherapy.2012;14(5):529-39.
    [19]仝识非. mHCN4基因修饰小鼠骨髓间充质干细胞重建功能性的起搏离子流通道[博士]:第三军医大学;2006.
    [20] Passier R, van Laake LW, Mummery CL. Stem-cell-based therapy and lessons fromthe heart. Nature.2008;453(7193):322-9.
    [21] Quevedo HC, Hatzistergos KE, Oskouei BN, Feigenbaum GS, Rodriguez JE, ValdesD, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronicischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci US A.2009;106(33):14022-7.
    [22] Shake JG, Gruber PJ, Baumgartner WA, Senechal G, Meyers J, Redmond JM, et al.Mesenchymal stem cell implantation in a swine myocardial infarct model:engraftment and functional effects. Ann Thorac Surg.2002;73(6):1919-25;discussion26.
    [23] Valiunas V, Doronin S, Valiuniene L, Potapova I, Zuckerman J, Walcott B, et al.Human mesenchymal stem cells make cardiac connexins and form functional gapjunctions. J Physiol.2004;555(Pt3):617-26.
    [24] Beeres SL, Atsma DE, van der Laarse A, Pijnappels DA, van Tuyn J, Fibbe WE, et al.Human adult bone marrow mesenchymal stem cells repair experimental conductionblock in rat cardiomyocyte cultures. J Am Coll Cardiol.2005;46(10):1943-52.
    [25] Chang MG, Tung L, Sekar RB, Chang CY, Cysyk J, Dong P, et al. Proarrhythmicpotential of mesenchymal stem cell transplantation revealed in an in vitro coculturemodel. Circulation.2006;113(15):1832-41.
    [26] Heubach JF, Graf EM, Leutheuser J, Bock M, Balana B, Zahanich I, et al.Electrophysiological properties of human mesenchymal stem cells. J Physiol.2004;554(Pt3):659-72.
    [27] Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, et al. Adultbone marrow-derived cells for cardiac repair: a systematic review and meta-analysis.Arch Intern Med.2007;167(10):989-97.
    [28] Santos PM, Winterowd JG, Allen GG, Bothwell MA, Rubel EW. Nerve growth factor:increased angiogenesis without improved nerve regeneration. Otolaryngol Head NeckSurg.1991;105(1):12-25.
    [29] Kim SK, Pak HN, Park JH, Fang YF, Kim GI, Park YD, et al. Cardiac cell therapywith mesenchymal stem cell induces cardiac nerve sprouting, angiogenesis, andreduced connexin43-positive gap junctions, but concomitant electrical pacingincreases connexin43-positive gap junctions in canine heart. Cardiol Young.2010;20(3):308-17.
    [30] Zhang YM, Hartzell C, Narlow M, Dudley SC, Jr. Stem cell-derived cardiomyocytesdemonstrate arrhythmic potential. Circulation.2002;106(10):1294-9.
    [31] Rubart M, Soonpaa MH, Nakajima H, Field LJ. Spontaneous and evoked intracellularcalcium transients in donor-derived myocytes following intracardiac myoblasttransplantation. J Clin Invest.2004;114(6):775-83.
    [32] Peters NS, Coromilas J, Severs NJ, Wit AL. Disturbed connexin43gap junctiondistribution correlates with the location of reentrant circuits in the epicardial borderzone of healing canine infarcts that cause ventricular tachycardia. Circulation.1997;95(4):988-96.
    [33] Pak HN, Qayyum M, Kim DT, Hamabe A, Miyauchi Y, Lill MC, et al. Mesenchymalstem cell injection induces cardiac nerve sprouting and increased tenascin expressionin a Swine model of myocardial infarction. J Cardiovasc Electrophysiol.2003;14(8):841-8.
    [34] Chen M, Fan ZC, Liu XJ, Deng JL, Zhang L, Rao L, et al. Effects of autologous stemcell transplantation on ventricular electrophysiology in doxorubicin-induced heartfailure. Cell Biol Int.2006;30(7):576-82.
    [35] Price MJ, Chou CC, Frantzen M, Miyamoto T, Kar S, Lee S, et al. Intravenousmesenchymal stem cell therapy early after reperfused acute myocardial infarctionimproves left ventricular function and alters electrophysiologic properties. Int JCardiol.2006;111(2):231-9.
    [36] Mills WR, Mal N, Kiedrowski MJ, Unger R, Forudi F, Popovic ZB, et al. Stem celltherapy enhances electrical viability in myocardial infarction. J Mol Cell Cardiol.2007;42(2):304-14.
    [37] Wang D, Zhang F, Shen W, Chen M, Yang B, Zhang Y, et al. Mesenchymal stem cellinjection ameliorates the inducibility of ventricular arrhythmias after myocardialinfarction in rats. Int J Cardiol.2011;152(3):314-20.
    [38] Krause K, Schneider C, Lange C, Kokturk B, Boczor S, Geidel S, et al. Endocardialelectrogram analysis after intramyocardial injection of mesenchymal stem cells in thechronic ischemic myocardium. Pacing Clin Electrophysiol.2009;32(10):1319-28.
    [39] Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, et al. Arandomized, double-blind, placebo-controlled, dose-escalation study of intravenousadult human mesenchymal stem cells (prochymal) after acute myocardial infarction. JAm Coll Cardiol.2009;54(24):2277-86.
    [40] Chen SL, Fang WW, Qian J, Ye F, Liu YH, Shan SJ, et al. Improvement of cardiacfunction after transplantation of autologous bone marrow mesenchymal stem cells inpatients with acute myocardial infarction. Chin Med J (Engl).2004;117(10):1443-8.
    [41] Katritsis DG, Sotiropoulou PA, Karvouni E, Karabinos I, Korovesis S, Perez SA, et al.Transcoronary transplantation of autologous mesenchymal stem cells and endothelialprogenitors into infarcted human myocardium. Catheter Cardiovasc Interv.2005;65(3):321-9.
    [42] Chen S, Liu Z, Tian N, Zhang J, Yei F, Duan B, et al. Intracoronary transplantation ofautologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due toisolated chronic occluded left anterior descending artery. J Invasive Cardiol.2006;18(11):552-6.
    [43] Katritsis DG, Sotiropoulou P, Giazitzoglou E, Karvouni E, Papamichail M.Electrophysiological effects of intracoronary transplantation of autologousmesenchymal and endothelial progenitor cells. Europace.2007;9(3):167-71.
    [44] Yang Z, Zhang F, Ma W, Chen B, Zhou F, Xu Z, et al. A novel approach totransplanting bone marrow stem cells to repair human myocardial infarction: deliveryvia a noninfarct-relative artery. Cardiovasc Ther.2010;28(6):380-5.
    [45] Trachtenberg B, Velazquez DL, Williams AR, McNiece I, Fishman J, Nguyen K, et al.Rationale and design of the Transendocardial Injection of Autologous Human Cells(bone marrow or mesenchymal) in Chronic Ischemic Left Ventricular Dysfunctionand Heart Failure Secondary to Myocardial Infarction (TAC-HFT) trial: Arandomized, double-blind, placebo-controlled study of safety and efficacy. Am HeartJ.2011;161(3):487-93.
    [46] Chen HS, Kim C, Mercola M. Electrophysiological challenges of cell-basedmyocardial repair. Circulation.2009;120(24):2496-508.
    [47] Menasche P. Stem cell therapy for heart failure: are arrhythmias a real safety concern?Circulation.2009;119(20):2735-40.
    [48]农耀明.大鼠骨髓间充质干细胞体外诱导分化心肌样细胞膜电流的研究[硕士]:第三军医大学;2006.
    [49]赵欣,杨向军,李红霞,刘志华,宋建平,蒋延波, et al.起搏通道HCN2基因稳定转染HEK293细胞的电生理特点.中国心脏起搏与心电生理杂志.2006;(06):519-22.
    [50]农耀明,宋治远,尹戴佳佳,陈鹏慧.大鼠骨髓间充质干细胞培养一周后的细胞膜电流.中国心脏起搏与心电生理杂志.2006;(04):330-2.
    [51]周亚峰.慢病毒转染HCN4基因构建生物起搏细胞的体外研究[博士]:苏州大学;2009.
    [52] Tong S, Yao Q, Wan Y, Zhou J, Shu M, Zhong L, et al. Development of FunctionalIf Channels in mMSCs after Transfection with mHCN4: Effects on CellMorphology and Mechanical Activity in vitro. Cardiology.2009;112(2):114-21.
    [53]姚青,宋治远,仝识非,王泽文.大鼠骨髓间充质干细胞体外诱导分化为心脏起搏样细胞的研究.中国心脏起搏与心电生理杂志.2007;(01):55-8.
    [54]王泽文,宋治远,姚青. HCN4基因修饰大鼠MSCs体外诱导获得的心脏起搏样细胞动作电位检测.第三军医大学学报.2007;(22):2139-41.
    [55] Heilbronn R, Weger S. Viral vectors for gene transfer: current status of genetherapeutics. Handb Exp Pharmacol.2010;(197):143-70.
    [56] Escors D, Breckpot K. Lentiviral vectors in gene therapy: their current status andfuture potential. Arch Immunol Ther Exp (Warsz).2010;58(2):107-19.
    [57] Matrai J, Chuah MK, VandenDriessche T. Recent advances in lentiviral vectordevelopment and applications. Mol Ther.2010;18(3):477-90.
    [58]王伟,施恒亮,付春玲,曹让娟,朱筱娟.慢病毒介导的酸性成纤维细胞生长因子基因在乳腺癌细胞MCF-7中的表达及其意义.吉林大学学报(医学版).2012;v.38;No.233(01):46-9.
    [59]刘吉宏,李峰,郝子悦,李碧春,陈学进.慢病毒载体法制备转基因动物研究进展.动物医学进展.2008; No.174(02):64-7.
    [60] Stieber J, Hofmann F, Ludwig A. Pacemaker channels and sinus node arrhythmia.Trends Cardiovasc Med.2004;14(1):23-8.
    [61] Yang XJ, Zhou YF, Li HX, Han LH, Jiang WP. Mesenchymal stem cells as a genedelivery system to create biological pacemaker cells in vitro. J Int Med Res.2008;36(5):1049-55.
    [62]张浩.自体起搏细胞移植构建生物心脏起搏器的实验研究[博士]:第二军医大学;2008.
    [63] Qu J. MiRP1Modulates HCN2Channel Expression and Gating in Cardiac Myocytes.Journal of Biological Chemistry.2004;279(42):43497-502.
    [64] Xue T, Marban E, Li RA. Dominant-negative suppression of HCN1-andHCN2-encoded pacemaker currents by an engineered HCN1construct: insights intostructure-function relationships and multimerization. Circ Res.2002;90(12):1267-73.
    [65] Altomare C, Terragni B, Brioschi C, Milanesi R, Pagliuca C, Viscomi C, et al.Heteromeric HCN1-HCN4channels: a comparison with native pacemaker channelsfrom the rabbit sinoatrial node. J Physiol.2003;549(Pt2):347-59.
    [66]霍铖宇,庄建军,黄晓林,侯凤贞,宁新宝.基于Poincaré差值散点图的心率变异性分析方法研究.物理学报.1+8.
    [67]贾晓宁,申岱,李川勇.基于Poincaré散点图的5s心率变异性分析方法用于实时监测自主神经功能的研究.生物医学工程学杂志.2011; v.28(03):597-601+6.
    [68]杨敏,刘光远,温万惠.两类情感状态下心电与心率变异性信号的非线性分析.计算机应用.2012;(10):2963-5+76.
    [69] Tulppo MP, Makikallio TH, Takala TE, Seppanen T, Huikuri HV. Quantitativebeat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol.1996;271(1Pt2): H244-52.
    [70] Ripplinger CM, Bers DM. Human biological pacemakers: intrinsic variability andstability. Circulation.2012;125(7):856-8.
    [71]贾晓宁,申岱,李川勇.基于Poincaré散点图的5s心率变异性分析方法用于实时监测自主神经功能的研究.生物医学工程学杂志.2011;(03):597-601+6.
    [72] Lombardi F. Chaos theory, heart rate variability, and arrhythmic mortality.Circulation.2000;101(1):8-10.
    [73] Verrier RL, Tan A. Heart rate, autonomic markers, and cardiac mortality. HeartRhythm.2009;6(11Suppl): S68-75.
    [74] Lahiri MK, Kannankeril PJ, Goldberger JJ. Assessment of autonomic function incardiovascular disease: physiological basis and prognostic implications. J Am CollCardiol.2008;51(18):1725-33.
    [75] Shlapakova IN, Nearing BD, Lau DH, Boink GJ, Danilo P, Jr., Kryukova Y, et al.Biological pacemakers in canines exhibit positive chronotropic response to emotionalarousal. Heart Rhythm.2010;7(12):1835-40.
    [76] Kanlop N, Thommasorn S, Palee S, Weerateerangkul P, Suwansirikul S, ChattipakornS, et al. Granulocyte colony-stimulating factor stabilizes cardiac electrophysiologyand decreases infarct size during cardiac ischaemic/reperfusion in swine. Acta Physiol(Oxf).2011;202(1):11-20.
    [77] Zhou SX, Lei J, Fang C, Zhang YL, Wang JF. Ventricular electrophysiology incongestive heart failure and its correlation with heart rate variability and baroreflexsensitivity: a canine model study. Europace.2009;11(2):245-51.
    [78] Wang D, Zhang F, Shen W, Chen M, Yang B, Zhang Y, et al. Mesenchymal stem cellinjection ameliorates the inducibility of ventricular arrhythmias after myocardialinfarction in rats. Int J Cardiol.2010.
    [79]郭飞.易损期上限(91).临床心电学杂志.2012;(01):75.
    [80] Van de Water A, Verheyen J, Xhonneux R, Reneman RS. An improved method tocorrect the QT interval of the electrocardiogram for changes in heart rate. J PharmacolMethods.1989;22(3):207-17.
    [81]王德国. Cx43基因修饰骨髓间充质干细胞移植对心肌梗死大鼠心功能及电生理影响的实验研究[博士]:南京医科大学;2010.
    [82] Vos MA, de Groot SH, Verduyn SC, van der Zande J, Leunissen HD, Cleutjens JP, etal. Enhanced susceptibility for acquired torsade de pointes arrhythmias in the dogwith chronic, complete AV block is related to cardiac hypertrophy and electricalremodeling. Circulation.1998;98(11):1125-35.
    [83] Sugiyama A, Satoh Y, Ishida Y, Yoneyama M, Yoshida H, Hashimoto K.Pharmacological and electrophysiological characterization of junctional rhythmduring radiofrequency catheter ablation of the atrioventricular node: possibleinvolvement of neurotransmitters from autonomic nervous system. Circ J.2002;66(7):696-701.
    [84] Thomsen MB, Truin M, van Opstal JM, Beekman JD, Volders PG, Stengl M, et al.Sudden cardiac death in dogs with remodeled hearts is associated with largerbeat-to-beat variability of repolarization. Basic Res Cardiol.2005;100(3):279-87.
    [85] van Opstal JM, Verduyn SC, Leunissen HD, de Groot SH, Wellens HJ, Vos MA.Electrophysiological parameters indicative of sudden cardiac death in the dog withchronic complete AV-block. Cardiovasc Res.2001;50(2):354-61.
    [86] Winckels SK, Thomsen MB, Oosterhoff P, Oros A, Beekman JD, Attevelt NJ, et al.High-septal pacing reduces ventricular electrical remodeling and proarrhythmia inchronic atrioventricular block dogs. J Am Coll Cardiol.2007;50(9):906-13.
    [87] Wei F, Wang TZ, Zhang J, Yuan ZY, Tian HY, Ni YJ, et al. Mesenchymal stem cellsneither fully acquire the electrophysiological properties of mature cardiomyocytes norpromote ventricular arrhythmias in infarcted rats. Basic Res Cardiol.2012;107(4):274.
    [1] Rosen MR, Brink PR, Cohen IS, Robinson RB. Cardiac pacing: from biological toelectronic... to biological? Circ Arrhythm Electrophysiol.2008;1(1):54-61.
    [2] Robinson RB, Brink PR, Cohen IS, Rosen MR. I(f) and the biological pacemaker.Pharmacol Res.2006;53(5):407-15.
    [3] Biel M, Schneider A, Wahl C. Cardiac HCN channels: structure, function, andmodulation. Trends Cardiovasc Med.2002;12(5):206-12.
    [4] Cohen IS, Robinson RB. Pacemaker current and automatic rhythms: toward amolecular understanding. Handb Exp Pharmacol.2006;(171):41-71.
    [5] Marionneau C, Couette B, Liu J, Li H, Mangoni ME, Nargeot J, et al. Specific patternof ionic channel gene expression associated with pacemaker activity in the mouse heart.J Physiol.2005;562(Pt1):223-34.
    [6] Shi W, Wymore R, Yu H, Wu J, Wymore RT, Pan Z, et al. Distribution and prevalenceof hyperpolarization-activated cation channel (HCN) mRNA expression in cardiactissues. Circ Res.1999;85(1): e1-6.
    [7] Ueda K, Nakamura K, Hayashi T, Inagaki N, Takahashi M, Arimura T, et al.Functional characterization of a trafficking-defective HCN4mutation, D553N,associated with cardiac arrhythmia. J Biol Chem.2004;279(26):27194-8.
    [8] Milanesi R, Baruscotti M, Gnecchi-Ruscone T, DiFrancesco D. Familial sinusbradycardia associated with a mutation in the cardiac pacemaker channel. N Engl JMed.2006;354(2):151-7.
    [9] Nof E, Luria D, Brass D, Marek D, Lahat H, Reznik-Wolf H, et al. Point mutation inthe HCN4cardiac ion channel pore affecting synthesis, trafficking, and functionalexpression is associated with familial asymptomatic sinus bradycardia. Circulation.2007;116(5):463-70.
    [10] Schulze-Bahr E, Neu A, Friederich P, Kaupp UB, Breithardt G, Pongs O, et al.Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest.2003;111(10):1537-45.
    [11] Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: frommolecules to physiological function. Annu Rev Physiol.2003;65:453-80.
    [12] Michels G, Er F, Khan I, Sudkamp M, Herzig S, Hoppe UC. Single-channel propertiessupport a potential contribution of hyperpolarization-activated cyclic nucleotide-gatedchannels and If to cardiac arrhythmias. Circulation.2005;111(4):399-404.
    [13] Stieber J, Herrmann S, Feil S, Loster J, Feil R, Biel M, et al. Thehyperpolarization-activated channel HCN4is required for the generation of pacemakeraction potentials in the embryonic heart. Proc Natl Acad Sci U S A.2003;100(25):15235-40.
    [14] Er F, Larbig R, Ludwig A, Biel M, Hofmann F, Beuckelmann DJ, et al.Dominant-negative suppression of HCN channels markedly reduces the nativepacemaker current I(f) and undermines spontaneous beating of neonatalcardiomyocytes. Circulation.2003;107(3):485-9.
    [15] Harzheim D, Pfeiffer KH, Fabritz L, Kremmer E, Buch T, Waisman A, et al. Cardiacpacemaker function of HCN4channels in mice is confined to embryonic developmentand requires cyclic AMP. EMBO J.2008;27(4):692-703.
    [16] Herrmann S, Stieber J, St ckl G, Hofmann F, Ludwig A. HCN4provides a"depolarization reserve"and is not required for heart rate acceleration in mice. TheEMBO Journal.2007;26(21):4423-32.
    [17] Park DS, Fishman GI. The cardiac conduction system. Circulation.2011;123(8):904-15.
    [18] Qu J, Plotnikov AN, Danilo P, Jr., Shlapakova I, Cohen IS, Robinson RB, et al.Expression and function of a biological pacemaker in canine heart. Circulation.2003;107(8):1106-9.
    [19] Plotnikov AN, Sosunov EA, Qu J, Shlapakova IN, Anyukhovsky EP, Liu L, et al.Biological pacemaker implanted in canine left bundle branch provides ventricularescape rhythms that have physiologically acceptable rates. Circulation.2004;109(4):506-12.
    [20] Potapova I, Plotnikov A, Lu Z, Danilo P, Jr., Valiunas V, Qu J, et al. Humanmesenchymal stem cells as a gene delivery system to create cardiac pacemakers. CircRes.2004;94(7):952-9.
    [21] Plotnikov AN, Shlapakova I, Szabolcs MJ, Danilo P, Jr., Lorell BH, Potapova IA, et al.Xenografted adult human mesenchymal stem cells provide a platform for sustainedbiological pacemaker function in canine heart. Circulation.2007;116(7):706-13.
    [22] Cai J, Yi FF, Li YH, Yang XC, Song J, Jiang XJ, et al. Adenoviral gene transfer ofHCN4creates a genetic pacemaker in pigs with complete atrioventricular block. LifeSci.2007;80(19):1746-53.
    [23] Jun C, Zhihui Z, Lu W, Yaoming N, Lei W, Yao Q, et al. Canine bone marrowmesenchymal stromal cells with lentiviral mHCN4gene transfer create cardiacpacemakers. Cytotherapy.2012;14(5):529-39.
    [24] Cho HC, Kashiwakura Y, Marban E. Creation of a biological pacemaker by cell fusion.Circ Res.2007;100(8):1112-5.
    [25] Altomare C, Terragni B, Brioschi C, Milanesi R, Pagliuca C, Viscomi C, et al.Heteromeric HCN1-HCN4channels: a comparison with native pacemaker channelsfrom the rabbit sinoatrial node. J Physiol.2003;549(Pt2):347-59.
    [26] Bucchi A, Plotnikov AN, Shlapakova I, Danilo P, Kryukova Y, Qu J, et al. Wild-Typeand Mutant HCN Channels in a Tandem Biological-Electronic Cardiac Pacemaker.Circulation.2006;114(10):992-9.
    [27] Plotnikov AN, Bucchi A, Shlapakova I, Danilo P, Jr., Brink PR, Robinson RB, et al.HCN212-channel biological pacemakers manifesting ventricular tachyarrhythmias areresponsive to treatment with I(f) blockade. Heart Rhythm.2008;5(2):282-8.
    [28] Proulx MK, Carey SP, Ditroia LM, Jones CM, Fakharzadeh M, Guyette JP, et al.Fibrin microthreads support mesenchymal stem cell growth while maintainingdifferentiation potential. J Biomed Mater Res A.2011;96(2):301-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700